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Respiratory diseases are leading causes of death and disability in the world. While 
early diagnosis is key, this has proven difficult due to the lack of sensitive and 
non-invasive tools. Computed tomography is regarded as the gold standard for 
structural lung imaging but lacks functional information and involves significant 
radiation exposure. Lung magnetic resonance imaging (MRI) has historically 
been challenging due to its short T2 and low proton density. Hyperpolarised 
gas MRI is an emerging technique that is able to overcome these difficulties, 
permitting the functional and microstructural evaluation of the lung. Other 
novel imaging techniques such as fluorinated gas MRI, oxygen-enhanced MRI, 
Fourier decomposition MRI and phase-resolved functional lung imaging can also 
be used to interrogate lung function though they are currently at varying stages 
of development. This article provides a clinically focused review of these contrast 
and non-contrast MR imaging techniques and their current applications in lung 
disease.
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Introduction

Respiratory diseases impose an immense worldwide health burden (1–5). As a global 
measure, traditional lung function tests such as spirometry, e.g., forced expiratory volume 
in 1 s (FEV1) are insensitive to early stage disease, regional heterogeneity, and subtle 
changes over time. Despite these limitations, spirometry and FEV1 remain the default 
clinical standard for the diagnosis and assessment of various lung diseases such as asthma 
and chronic obstructive pulmonary disease (COPD), as well as an intermediate endpoint 
in longitudinal studies and clinical trials. Traditional high resolution computed 
tomography (HRCT) is regarded as the gold standard for structural lung imaging, but 
does not routinely provide much functional information. While contemporary 
CT-techniques such as Xenon-CT are able to assess regional lung ventilation (6), its use 
is currently limited to research settings. Ventilation-perfusion (VQ) scintigraphy and 
single-photon emission computed tomography (SPECT) (7) are other currently available 
methods of assessing lung ventilation but suffer from low spatial resolution and long 
acquisition times. Most importantly, unlike magnetic resonance imaging (MRI), all the 
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aforementioned techniques involve ionizing-radiation, limiting 
its use in patient groups such as pregnant women and children, 
and in situations where frequent repeated imaging is required 
even with low-dose CT protocols (8, 9). Despite being radiation-
free, lung MRI has historically been challenging for the following 
reasons: (i) low proton density of lung tissue; (ii) rapid signal 
decay due to multiple interfaces between air and soft-tissue 
structures; and (iii) motion artefacts generated by cardiac, 
vascular and respiratory motion (10). These factors greatly 
reduce the signal-to-noise ratio of images acquired, resulting in 
the lungs appearing as dark, signal voids.

Recent advances in lung MRI have expanded its use in certain 
pulmonary disorders (11). Inhaled contrast agents such as 
hyperpolarized (HP) gases have permitted the assessment of lung 
ventilation, microstructure, and alveolar-capillary diffusion (12). 
Functional lung MRI is also possible using inhaled fluorinated 
gases (13), oxygen-enhanced techniques (14), and free-breathing 
proton methods (15, 16). Together, these novel and emerging 
techniques have generated a wealth of new information regarding 
the structure–function relationships of various lung diseases.

This review sets out to describe the most common approaches 
to ventilation imaging using MRI-based techniques. Each section 
contains a brief overview of the principles and physics behind 
each imaging modality, followed by a review of its current and 
potential clinical applications to various lung disease  
including but not limited to asthma, COPD, interstitial lung 
disease (ILD), cystic fibrosis (CF) and COVID-19. This review is 
divided into two main sections. First, we discuss HP-MRI, the 
most mature and well-established of these methods. Second, 
we  describe the alternate and emerging techniques including 
fluorinated gas MRI, oxygen-enhanced MRI and free-breathing 
proton MRI. We  conclude by examining the advantages and 
limitations of various techniques, and consider future directions. 
As this review is written with the clinician in mind, detailed 
technical discussions are beyond the scope of this article. 
Likewise, perfusion imaging will not be covered.

Hyperpolarised gas MRI

Basics of hyperpolarization

Hyperpolarization of noble gases involves the transfer of angular 
momentum from circularly polarized light to the noble gas nuclei, 
significantly increasing the atomic nuclei alignment. This results in a 
104–105-fold increase in the magnetic resonance (MR) signal, enabling 
gases such as helium-3 (3He) and xenon-129 (129Xe) to be  imaged 
despite their low levels of intrinsic polarization. Hyperpolarization can 
be  achieved by either spin-exchange optical pumping (17) or 
metastability exchange optical pumping (18), with the former more 
commonly used in practice, and polarization levels of ~20–50% easily 
attainable for 3He (19, 20) and 129Xe (21, 22). Although this will not 
be discussed further, the interested reader is referred to references (23, 
24) for additional information.

It is worth noting that hyperpolarization is not limited to noble 
gases and has also been achieved with carbon-13 (13C). HP 13C MRI 
allows in-vivo probing of enzyme-mediated metabolic processes such 

as cancers and metabolic diseases, and an excellent review of this topic 
can be found here (25–27).

Hardware

Polarizers crucial for the production of HP gas can be custom built 
(28–32) or purchased from commercial companies such as Polarean 
and Xemed LLC (33, 34). Dedicated transceiver coils tuned to the 
resonance frequency of the gas nucleus of interest are also required. 
MRI scanners must also be upgraded with broad-band capabilities.

Transportation

Depolarization of HP gas is accelerated by the presence of 
paramagnetic oxygen, magnetic field inhomogeneities, and atomic 
interactions between HP gas and the storage cell. The use of specialized 
transport equipment can overcome these challenges, facilitating long 
distance transportation of HP gas (35, 36).

Gas delivery

A typical inhalation mixture consists of 200–300 mL of HP gas 
diluted with medical-grade nitrogen in a Tedlar bag to make up a 1 L 
volume. Inhalation occurs from end-expiration via a mouthpiece, with 
images acquired under breath hold conditions of roughly 10–20 s. 
Addition of an exhalation circuit facilitates collection and recycling of 
exhaled 3He.

Safety profile

Both 3He and 129Xe are extremely safe in the small quantities as 
used during HP-MRI. Other than possible transient minor oxygen 
desaturation observed shortly after inhalation, no serious adverse 
events have been described (37).

Xenon has anesthetic properties at a sustained minimum alveolar 
concentration of 63–71% (38, 39), but these levels are not attainable 
with current HP-MRI protocols. Nonetheless, 129Xe has been shown 
to be extremely safe even after inhalation of three times the usual dose, 
with only mild and fleeting symptoms such as dizziness, paresthesia, 
euphoria and hypoesthesia being reported (40).

Noble Gas availability

3He has a low natural abundance and is derived primarily 
from the radioactive decay of tritium (41), but much of its supply 
is redirected toward usage as a neutron detector (42, 43). 129Xe, 
an isotope of xenon, has a natural abundance of 26%. An enriched 
129Xe mixture is often used in HP 129Xe MRI to help improve the 
MR signal. Enriched xenon costs about A$310/L compared to 
A$45/L for 26% 129Xe natural abundance mixture (12). The 
scarcity and exorbitant cost of 3He, together with the fact that 
dissolved phase imaging is exclusively limited to 129Xe has 
prompted the shift toward its use in recent years.
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Pulmonary functional imaging 
approaches

Static ventilation imaging

HP-MRI permits the direct visualization of the distribution and 
heterogeneity of lung ventilation (Figure 1) (44). Ventilation defects 
represent areas of signal void (absence of HP gas) and are commonly 
quantified using ventilation defect percentage (VDP) or ventilated 
volume percentage (VV%) (45–49). VDP is calculated by dividing the 
ventilation defect volume (VDV) by the thoracic cavity volume, and 
VV% represents the inverse of VDP. Ventilation heterogeneity is best 
assessed using signal intensity binning (48, 50, 51), and ventilation 
coefficient of variation calculations (52, 53). Due to its increased 
sensitivity, HP 129Xe MRI may identify clinically relevant ventilation 
defects that would otherwise be missed by 3He (54, 55).

Dynamic ventilation imaging

Compared to static ventilation which provides a snap-shot of the 
pulmonary gas distribution pattern during a single breath-hold, 
dynamic ventilation allows us to study the time-dependent 

distribution of gas within the lungs over the entire respiratory cycle 
(56–58). As image acquisition begins right before inspiration, a slight 
modification in the gas delivery process is required, with various 
protocols in use (56, 57, 59). One such protocol required subjects to 
inhale the HP gas mixture over the first half, and exhale over the 
second half of a 15 s acquisition period (56).

Dynamic ventilation is able to provide information on the rate 
and filling patterns of the central and peripheral airways (60), 
individual lung lobes, and in some cases, the extent of diaphragmatic 
excursion. Dynamic ventilation in healthy volunteers is characterized 
by the uniform distribution of HP-gas throughout the lungs during 
inspiration, followed by a homogeneous decline in signal intensity on 
expiration. In contrast, heterogeneous filling pattern of lung lobes, 
different gas inflow rates and achieved maximum signal intensities, as 
well as limitation in diaphragmatic excursion due to hyperinflation are 
some of the findings in those with lung disease (56, 57, 59, 61–63).

Multiple-breath HP gas MRI is in essence dynamic ventilation 
imaging performed over multiple breath cycles. During each breath, 
a fraction of the HP gas is replaced by newly arrived gas, and as 
sequential scans are acquired at each subsequent breath-hold, a 
volume fractional ventilation measure is calculated by computing the 
rate of change in HP gas MRI signal intensity during wash-in and/or 
wash-out breath maneuvers (64–67). As a quantitative measure of 
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FIGURE 1

Ventilation imaging. (A) 3He and 129Xe ventilation images of a healthy non-smoker (HV) and a patient with chronic obstructive pulmonary disease 
(COPD). (B) 129Xe ventilation images of a healthy 6-year-old (HV, FEV1 = 95%) and an 11-year-old with cystic fibrosis (CF, FEV1 = 102%). (C) 129Xe 
ventilation images (top) and coefficient of variation maps (bottom; blue = low COV, red = high COV) of a patient with asthma pre-and post-
bronchodilator inhalation. (D) 129Xe ventilation image (left) and binning map (right; red = defect, yellow = low intensity, green = medium intensity, 
blue = high intensity) from an older patient with asthma (FEV1 = 53%). In this case, ventilation defect percentage is defined as the ratio of the number of 
red pixels to the total number of pixels in the whole lung × 100. Adapted with permission from (23).
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regional ventilation, fractional ventilation mapping is able to elucidate 
delayed ventilation and gas trapping in certain lung diseases.

Diffusion-weighted imaging

Diffusion-weighted imaging (DWI) exploits the high free 
diffusivity of 3He and 129Xe (68, 69) to probe the lung microstructure 
(70). Diffusion is quantified using the apparent diffusion coefficient 
(ADC), and visually represented on an ADC map with higher values 
suggestive of enlarged alveoli/emphysema (71, 72). Other acinar 
airway morphological parameters such as surface-area-to-volume-
ratio, alveolar radii and mean diffusive length scale (LmD) can also 
be derived, and serve as additional biomarkers of lung microstructure 
(Figure 2) (70, 74–76). Although ADC values obtained using 129Xe and 

3He are not directly comparable, studies have shown them to provide 
similar information (54, 77, 78).

Dissolved phase imaging

After inhalation, majority of HP 129Xe remains in the gas phase, 
with ~2% dissolved in the lung parenchyma/plasma (barrier) and 
blood (RBC). At each of these transitions, 129Xe exhibits a chemical 
shift in its resonance frequency relative to the gas phase by 197 ppm 
and 218 ppm in the barrier and RBC phase (79, 80). MR spectroscopy 
(81, 82), chemical shift saturation recovery and chemical shift imaging 
techniques (22, 83, 84) are able to distinguish these changes, allowing 
gas-exchange to be quantified as the signal ratios of 129Xe within each 
compartment, or by alveolar morphological parameters such as septal 
wall thickness (Figure 3) (21, 85–89).

A summary of these biomarkers is provided in Table 1. Reference 
values are based on currently available data as large-scale population 
studies are lacking.

Clinical applications

Asthma

In the absence of treatment changes or external factors, many of 
the ventilation defects seen in asthmatics tend to either persist in the 
same location over time, or intermittently affect predictable spatial 
locations (19, 49, 100–103) even after an interval of 6 years (104). 
Furthermore, while the number and size of ventilation defects, and 
ventilation heterogeneity increases following bronchoprovocation (53, 
101, 105–107), the locations of these defects are found to be highly 
reproducible regardless of the method of bronchoprovocation, 
suggesting a predilection for certain airways to be affected in asthma 
(108). Taken together, these findings suggest that ventilation 
abnormalities in asthma are neither widespread nor homogeneous, 
but regionally heterogeneous.

Ventilation defects have been associated with airway remodeling 
and mucus plugging. Using computed tomography (CT), bronchial 
wall thickening, a hallmark of airway remodeling, and gas trapping, 
an indirect measure of airflow obstruction, can be directly assessed, 
and found to correlate spatially and quantitatively with ventilation 
defects on HP-MRI (109, 110). Likewise, a correlation between higher 
mucus plugs quantified using CT (111), increased markers of gas 
trapping, and greater VDP have similarly been reported in asthmatics 
(112–114), raising the possibility that ventilation defects may be a 
consequence of proximal airway mucus occlusion with distal 
gas trapping.

Airway inflammation may also contribute to ventilation defects. 
Asthmatic subjects with high sputum eosinophils were observed to 
have a greater number of ventilation defects than those with lower 
counts (115). Significant correlation between increased ventilation 
defects and higher blood eosinophil count (116), sputum eosinophilia 
(115–117), fraction of exhaled nitric oxide (49, 106, 109), and 
neutrophils on bronchoalveolar lavage (110) have also been reported. 
How airway inflammation causes ventilation defects remain unclear, 
and has been postulated to involve increased mucus production and 
reduced mucus clearance (111, 118, 119). Yet, not all mucus plugs are 

FIGURE 2

Diffusion imaging. (A) Examples of histological slides from a healthy 
lung (top) and lung with emphysema (bottom) that are used to 
calculate mean linear intercept (Lm) measurements. (B) 129Xe ADC 
maps and whole lung ADC histograms for a healthy volunteer 
(23-year-old female, top) and chronic obstructive pulmonary disease 
(COPD) patient (68-year-old male, bottom). (C) (Left) Schematic 
drawing of the cylindrical model of acinar airway geometry based 
upon the Haefeli-Bleuer and Weibel acinar geometry (73). (C) (Right) 
Cylinder model 129Xe lung morphometry maps of acinar airway radius 
(R) and mean linear intercept (Lm) in the same healthy volunteer and 
COPD patient as in (B). (D) (Left) Probability distributions of diffusive 
length scale derived from the stretched exponential model for the 
same healthy volunteer and COPD patient. (D) (Right) Stretched 
exponential model 129Xe lung morphometry maps of mean diffusive 
length scale (LmD) for the same healthy volunteer and COPD patient. 
Adapted with permission from (23).
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associated with airway inflammation (114). Similarly, the relative 
contributions of airway remodeling and mucus plugging toward 
ventilation defects are difficult to assess, and likely variable between 
individuals (120).

Clinically, ventilation defects have also been associated with 
asthma severity (45, 121), poorer asthma control and lower quality of 
life measures (122), even in those with milder disease (117). Similarly, 
higher VDP was associated with increased asthma exacerbations 
requiring hospitalizations (116), and higher exacerbation frequency 
(117). HP-MRI has also been shown to be more sensitive to asthma 
disease activity than subjective symptoms and spirometry, with 
ventilation defects observed in asthmatics with normal lung function 
who are asymptomatic or minimally symptomatic (19, 45). The 

minimum clinically important difference for VDV and VDP has 
recently been proposed (123), but lacks validation. Improvements in 
ventilation defects and overall ventilation heterogeneity have 
consistently been described in asthmatic subjects following treatment 
with bronchodilator therapy (19, 55, 115, 124), montelukast (125), 
after deep breathing exercises post-methacholine challenge (53), and 
monoclonal antibodies (126–128).

The relationship between ventilation defects and spirometric 
indices is complex. While numerous studies have reported significant 
correlations between the number of ventilation defects and FEV1 (45, 
49, 55, 105, 109, 116, 117, 121), the ratio of FEV1 to forced vital 
capacity (FVC) (45, 49, 55, 106, 116, 117, 121, 125), and forced 
expiratory flow at 25 and 50% interval (45, 49, 125), correlations with 

A B

C D

FIGURE 3

Probing gas exchange. (A) Cartoon of diffusive exchange of xenon gas from alveolus to capillary, via the parenchymal tissue barrier. The tissue wall 
thickness (air-blood barrier thickness) is represented by δ, and the total septal wall thickness separating neighboring alveoli is represented by d. (B) 129Xe 
MR spectra obtained from a healthy subject (black line) and a patient with idiopathic pulmonary fibrosis (IPF) (blue line). (C) Iterative Decomposition of 
water/fat using Echo Asymmetry and Least-squares estimation (IDEAL) chemical shift imaging of dissolved 129Xe in the lungs of a patient with moderate 
chronic obstructive pulmonary disease, illustrated in the form of ratio maps. (D) Representative binning maps and histograms derived from Dixon-
based dissolved-phase 129Xe MRI acquired from a patient with IPF, highlighting the characteristic high TP (barrier) signal and low RBC signal compared 
with healthy normal subjects (dashed histogram). (The notation barrier: gas is equivalent to TP/Gas). Adapted with permission from (23).
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FVC (45, 49, 117, 125) and the ratio of residual volume to total lung 
capacity (49, 106, 121) have not always been found. Ventilation defects 
have likewise been shown to correlate well with advanced lung 
function tests such as lung clearance index (122), and forced 
oscillation technique-measured resistance and impedance (129). Early 
data also suggests airway closure to be the dominant mechanism for 
these poorly ventilation regions (51).

It is worth mentioning that regional ventilation abnormalities in 
asthma have been identified using nuclear scintigraphy from as early 
as the 1960s (130–133), and later on using SPECT with Technegas 
(134). Compared to HP-MRI, these methods are limited by their 
inherently low spatial resolution, long scanning time, and need for 
ionizing radiation; factors that impede their clinical uptake 
and translation.

Chronic obstructive pulmonary disease

COPD patients often demonstrate ventilation defects or regions 
of ventilation heterogeneity on HP-MRI (46, 47, 93, 94, 135–138). 
These defects improve with bronchodilator therapy (139), show little 
intra-day variability but change after 1 week despite stable spirometry 
(46). Regions of high VDP have also been found to correlate with 
emphysematous areas on CT (140). When used in conjunction with 
CT, HP-MRI is able to phenotype severity of COPD (141), and 
differentiate healthy volunteers from those with disease (142).

Using time-resolved breath-hold 3He MRI, Marshall et al. was able 
to visualize ventilation defects with delayed filling in a small cohort of 
COPD patients. Based on the pattern of delayed filling, the authors 
postulated that these represent regions of collateral ventilation (143). 
A recent study utilizing fast dynamic 129Xe MRI sequence has also 
reported the presence of delayed ventilation in a group of COPD 
patients, a finding not observed in any of the healthy volunteers in the 
control group (144). If validated in larger cohorts, dynamic MRI may 
offer additional insights into the pathophysiology of COPD, assist in 
the detection and localization of pulmonary air leaks (145), and 
provide a non-invasive alternative to the assessment of collateral 
ventilation in patients undergoing bronchoscopic lung volume surgery.

ADC values in emphysematous regions have been found to be ~2 
times higher than in healthy lungs (54, 77, 78), and correlate well with 
emphysema burden on CT (146). Detection of age-related emphysema 
has also been described (147–151). Importantly, ADC values compare 

favorably to current gold standard histological measurements of 
alveolar size (152–154).

Early detection of emphysema has been shown using ADC (155, 
156), lung morphometry (157), and alveolar wall thickness (158, 159). 
As a biomarker of emphysema progression, ADC was observed to 
increase in a small group of ex-smokers with COPD over a 2-year 
period despite stable FEV1 (136), making it a potential treatable trait. 
Intra-and inter-day reproducibility of ADC measurements have also 
been reported (20, 46, 94).

Compared to spirometry, ventilation biomarkers showed 
increased sensitivity to changes in regional ventilation (139, 160), 
bronchodilator therapy (139), and longitudinal lung function decline 
(136, 161). VDP was also predictive of COPD exacerbation requiring 
hospitalization (162), and longitudinal changes in St George’s 
Respiratory Questionnaire (163). Similarly, numerous studies have 
revealed strong correlations between ADC and FEV1 (78, 95, 157), 
diffusion capacity of the lung for carbon monoxide (DLCO) (54, 77, 
78) and quantitative CT (54, 146, 157, 164). Furthermore, compared 
to CT derived mean lung density and emphysema index, ADC 
demonstrated higher sensitivity at separating those with COPD from 
healthy subjects, and better correlation with DLCO (93, 142).

Cystic fibrosis

CF is an inherited disorder due to a mutation in the cystic fibrosis 
transmembrane regulator gene. The lungs are often the primary site of this 
disease, which is currently incurable. Using HP-MRI, ventilation defects 
are commonly seen in CF patients and often appear in higher numbers 
than healthy volunteers (165, 166). These defects are often heterogeneous 
and patchy, with one study reporting ~5 times more ventilation defects in 
CF patients (mean FEV1 66% ± 27%) compared to healthy volunteers. 
Importantly, CF patients with normal FEV1 were also found to have 2–4 
times more ventilation defects than healthy volunteers, highlighting the 
superior sensitivity of HP-MRI over FEV1 (165, 167, 168).

Studies examining the relationship between VDP and spirometry 
have yielded mixed results, with some studies reporting a high level of 
correlation (169–171), and others, none (168, 172). This is not surprising 
given the different physiologic process that VDP and FEV1 measure. In 
contrast, VDP has been found to correlate well with lung clearance index 
(90, 166), a marker of ventilation heterogeneity that is more sensitive than 
conventional spirometry in the detection of mild CF (173); and exhibit 

TABLE 1 Summary of key biomarkers derived from HP-MRI.

Biomarker Description of what it measures Suggested reference values

VDP (VV%) Ventilation 0–5% (95–100%) (90, 91)

CV Regional ventilation heterogeneity Mean CV <15% (92)

IQR CV <10% (90)

ADC Alveolar size 3He: 0.1–0.3 cm2/s (46, 71, 78, 93–96)
129Xe: 0.03–0.04 cm2/s (77, 78, 97, 98)

LmD Alveolar size 3He: 212 ± 24 um (99)
129Xe: 205 ± 23um (99)

RBC:Barrier Gas-exchange function and parenchymal tissue thickening Dependent on imaging technique

RBC:Gas Gas-exchange and perfusion Dependent on imaging technique

Barrier:Gas Tissue thickening Dependent on imaging technique

VDP, ventilation defect percentage; VV%, ventilated volume percentage; CV, coefficient of variation; IQR, interquartile range; ADC, apparent diffusion coefficient; LmD, mean diffusive length 
scale; RBC, red blood cell.
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the greatest sensitivity in identifying ventilation defects in patients with 
early CF lung disease when compared to proton lung MRI, lung clearance 
index (LCI), low-dose CT and spirometry (92). As a marker of disease 
progression, VDP was best able to identify longitudinal changes in CF 
patients with normal lung function when compared to spirometry, 
plethysmography and LCI (174, 175).

HP-MRI has also been used to monitor treatment responses in CF 
patients. For example, in a two part study evaluating the effect of 
short-and long-term ivacaftor treatment on ventilation defects in CF 
patients, a 13 and 9% reduction in VDP was observed after 28 days 
and 48 weeks respectively, along with improvements in FEV1. Notably, 
VDP was also observed to improve in patients whose FEV1 remained 
unchanged, again demonstrating the higher sensitivity of HP-MRI 
over traditional spirometry (171). As expected, both VDP and FEV1 
promptly returned to baseline after cessation of treatment. Similar 
improvements in VDP have also been reported following antibiotic 
therapy in CF patients hospitalized with a pulmonary exacerbation 
(172), and after bronchodilator with albuterol (167). Although studies 
examining the therapeutic response of chest physiotherapy have failed 
to demonstrate any overall change in the number of ventilation 
defects, significant differences in the spatial locations of these defects 
were noted post intervention (168, 169). Comparable findings have 
also been reported in CF patients after maximal exercise (176).

Reassuringly, intra-scan and inter-scan reproducibility of HP-MRI 
images have been demonstrated in stable CF cohorts over intervals 
ranging from 1 to 64 weeks, with ventilation defects often remaining 
in the same spatial location (174, 177, 178). To date, there are no 
studies looking at dissolved phase imaging in CF.

Interstitial lung disease

Most studies examining ILD have focused on dissolved phase 
imaging. Of the few studies examining ventilation abnormalities in 
ILD, increased ventilation defects (179, 180) and ventilation 
heterogeneity (181) have been observed.

HP-MRI DWI is sensitive to the enlarged airways (bronchiectasis) 
and cystic spaces (honeycombing) present in fibrotic lungs (96). 
Elevated ADC and LmD have been reported in individuals with 
idiopathic pulmonary fibrosis (IPF) and found to correlate with 
DLCO and CT fibrosis score (182). LmD was also noted to increase 
over a 12-month period while other metrics remained stable, 
highlighting its potential role in monitoring disease progression (182). 
Diffusion biomarkers may additionally have a role in differentiating 
fibrotic from inflammatory ILD (183).

Gas-exchange assessed using whole-lung spectroscopic 
measurements have revealed significantly lower 129Xe RBC to barrier 
ratio (RBC: Barrier) (82, 184), and increased alveolar septal wall 
thickness in subjects with ILD compared to healthy volunteers (185), 
suggesting the presence of diffusion limitation. As spectroscopic 
methods lack spatial information, dissolved phased imaging was 
developed (179, 186–188), and repeatedly showed elevated 129Xe barrier 
uptake in those with IPF (179, 188). 129Xe RBC transfer was also reduced, 
and corresponded spatially to areas of fibrosis on CT (22, 188), though 
correlated poorly with CT fibrosis scores (179). The increased barrier 
uptake and decreased RBC transfer account for the low RBC:Barrier 
characteristic of subjects with IPF (22, 179, 186, 188–190).

Diffusion biomarkers correlate strongly with DLCO (82, 179, 184–
186, 188, 191), and appear to be  more sensitive toward longitudinal 

disease progression in IPF than current clinical tools (191, 192). Its 
repeatability has also been demonstrated over time (193, 194).

Emerging evidence support the use of Xe gas-exchange imaging 
in identifying areas of early/active disease in IPF that are histologically 
abnormal, but undetected on HRCT (179, 195). If confirmed in future 
studies, these at-risk regions may be the target of increased monitoring 
or therapeutic drug trials.

COVID-19 and other lung diseases

COVID-19 is a novel infectious disease caused by the SARS-
CoV-2 virus. First detected in late 2019, it was declared a global 
pandemic by the World Health Organization in March 2020. Beyond 
the acute respiratory phase, there is emerging evidence that symptoms 
can persist for months after the initial infection has resolved. These 
individuals are said to suffer from long-COVID, with fatigue and 
breathlessness the two most common complaints (196, 197). 
Interestingly, investigations such as blood test, lung function tests, or 
chest imaging often do not reveal any specific explanation for these 
symptoms (198, 199). It is here that HP-MRI, in particular 129Xe MRI, 
has made an impact on our understanding about the causes and 
diagnosis of long-COVID.

In a small study of COVID-19 patients, 129Xe MRI revealed 
alveolar capillary diffusion limitation in all subjects 3 months after 
COVID-pneumonia hospitalization despite normal or near normal 
CT and DLCO (200). These findings build on an earlier study that 
examined COVID-19 patients <1 month after discharge (201) and 
alludes to the possible etiology of persistent respiratory symptoms 
after the initial infection. Similar findings have also been reported in 
long-COVID patients who did not require hospitalization (202). In 
this study by Girst et al., previously hospitalized and never hospitalized 
patients with long-COVID were both found to have significantly 
lower RBC-to-barrier ratio compared to healthy volunteers, with no 
difference found between groups. Given that both groups had normal 
spirometry, DLCO (though this was lower in the never hospitalized 
subgroup), and normal/near normal chest CT, these findings suggest 
that mild COVID-19 disease can result in persistent symptoms and 
gas exchange abnormalities that are undetected by conventional 
investigations. In a separate study, similar gas-exchange abnormalities 
were reported in previously hospitalized long-COVID patients, with 
additional evidence of small vessel pruning derived from 
complementary quantitative lung CT analysis (203). Overall, these 
results are consistent with other findings that implicate alveolar 
membrane thickening and pulmonary vascular dysfunction (from 
microthrombi or alteration in pulmonary blood flow) as possible 
pathophysiologic explanations for long-COVID (204, 205).

Although most attention has been directed toward gas-exchange 
abnormalities, ventilation defects have also been observed in long-
COVID patients, implicating airways disease in the pathophysiology 
of long-COVID. In one study involving 76 long-COVID and 9 healthy 
volunteers, VDP was reported to be significantly worse in those with 
COVID-19 compared to healthy volunteers, and also in patients who 
were hospitalized at the time of their COVID-19 infection compared 
to those who were not (206). Furthermore, VDP was also related to 
6-min walk distance and exertional SpO2, but not to quality of life or 
dyspnea scores (206).

129Xe MRI has also revealed new insights into our understanding 
of various other lung diseases such as non-specific interstitial 
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pneumonia (180), inflammatory ILD (183), pulmonary vascular 
disease (207, 208), and e-cigarette smoking (209).

Other novel and emerging alternatives

Fluorinated gas MRI

Fluorine-19 lung MRI (19F-MRI) was first performed in humans 
in 2008 (13), and uses non-toxic and naturally abundant fluorinated 
gases as contrast agents (210, 211). Unlike HP-MRI, hyperpolarization 
of 19F is not required prior to imaging and dedicated 19F hardware, 
while preferred, is not essential. Extensive signal averaging to improve 
image quality is also possible (212).

19F gases are typically inhaled as a normoxic mixture, with 
perfluoropropane (PFP; C3F8) (210) and sulfur hexafluoride (SF6) 
(211) the most commonly used gases. Unlike HP-MRI, image 
acquisition typically occurs after steady state equilibrium of 19F has 
been reached. This is often achieved by having the subject continuously 
breath from a large volume Tedlar bag, e.g., 5 L of a mixture of 79% 
PFP and 21% O2 until the bag is empty. Following this, the subject 
inhales from a separate Tedlar bag containing 1 L of the same PFP-O2 
mixture (213), with images acquired during a 10–15 s breath-hold. 
Although image acquisition is also possible without the wash-in 
period, i.e., subject only inhales a single breath of 1 L PFP-O2 mixture, 
the resultant images are often of lower quality (214).

A homogeneous ventilation pattern is classically seen in healthy 
subjects (210, 214), with ventilation defects and increased ventilation 
heterogeneity observed in those with CF (215, 216), asthma (210), 
COPD (210, 217) and post lung transplantation (210). Furthermore, 
preliminary data suggests a strong correlation between 19F-MRI VDP 
and FEV1 in a cohort of COPD subjects (217). Intra-and inter-session 
reproducibility has also been demonstrated (218, 219).

19F-MRI is well suited to study wash-in and wash-out kinetics as 
its MR signal recovers quickly and free-breathing can be performed 
with normoxic gas mixtures. These properties enable the quantification 
of regional (215, 220, 221) and collateral ventilation in subjects with 
lung disease (222). 19F has also recently been used to assess lung 
ventilation and perfusion (223, 224), with VQ-mismatches identified 
in subjects with COPD (225, 226).

Studies comparing 19F-MRI with HP-MRI are limited. A preliminary 
study involving 5 healthy volunteers showed that VV, VDV and VDP 
measurements were similar using either 19F-MRI or HP-3He-MRI despite 
19F images being of much poorer resolution (227). In contrast, a separate 
study of 3 healthy volunteers comparing 19F-MRI with HP-129Xe-MRI 
reported a lower VV% and CV in 19F measurements when compared to 
129Xe, with the differences attributed to the lower observed signal with 19F 
(228). More recently, McCallister et al. showed that while both 19F-MRI 
and HP-129Xe-MRI were able to identify ventilation abnormalities in a 
small cohort of mild CF patients, these abnormalities were not entirely 
congruent, suggesting the added utility of 19F-MRI in identifying “slowly 
ventilated regions,” and how VDP obtained from each technique may not 
be equivalent (229).

Oxygen-enhanced MRI

Oxygen alters the T1-weighted signal intensity of the pulmonary 
blood circulation (14, 230, 231), permitting indirect imaging of the 

lungs. During tidal breathing, a series of T1-weighted images are 
acquired using a conventional MRI scanner during both normoxic 
and pure oxygen conditions (232, 233), with output data represented 
as T1 maps or quantified as relative enhancement ratio or oxygen 
transfer function (OTF) (Figure  4) (235). Using these metrics, 
individuals with CF and COPD were found to exhibit a 
heterogeneous reduction in T1 relaxation time compared to healthy 
individuals (233, 236, 237). In subjects with asthma, oxygen-
enhanced MRI (OE-MRI) was sensitive to airway inflammation 
(238), disease severity, and showed good 1-month reproducibility 
and intra-observer agreement (239). Differences in T1 signal 
intensity changes were also noted in subjects with a variety of 
pulmonary diseases including ILD (240).

OE-MRI is able to detect the therapeutic effect of bronchodilators 
and inhaled corticosteroids in individuals with COPD (241), and been 
found to be comparable to quantitative CT in assessing pulmonary 
function loss and disease severity in individuals with COPD (242, 
243), asthma (244) and connective tissue disease-ILD (245). Moreover, 
in subjects undergoing lung volume reduction surgery, OE-MRI was 
shown to be at least equivalent, if not superior to multidetector CT 
and SPECT in the evaluation of post-operative clinical outcomes 
(246). OTF has also been proposed as a potential early marker of 
chronic lung allograft dysfunction (247). Despite underestimating 
VDP, OE-MRI was reported to correlate well with 3He VDP (248). VQ 
assessment using OE-MRI has also been described (14, 249).

Free-breathing proton MRI

The development of proton MRI functional lung imaging was 
driven by the need for a more accessible method of assessing lung 
function that did not involve complex experimental set-up, or 
additional costly equipment such as dedicated transmit-receiver coils 
and multi-nuclear capable MRI scanners.

Early researchers showed that it is possible to image the lung using 
MRI (without any additional special equipment or contrast agents) if a fast 
acquisition sequence is combined with a low magnetic field and non-rigid 
image registration. By applying simple signal subtraction, regional lung 
ventilation could be quantified, and ventilation maps generated (250).

Fourier-decomposition MRI (FD-MRI) is an innovative approach 
that permits the simultaneous imaging of lung ventilation and 
perfusion (15). FD-MRI works on the principle that changes in lung 
density during the respiratory and cardiac cycle create an oscillation 
in the MR signal that is converted into ventilation and perfusion-
weighted maps by Fourier transformation (250, 251). As with all 
proton MRI lung imaging techniques, successful FD-MRI relies on the 
use of low TE sequences (below 1 msec) to reduce signal decay, and 
non-rigid image registration to compensate for the changes in the 
shape of the lungs throughout the respiratory cycle (15).

FD-MRI is able to identify ventilation defects in subjects with 
asthma and COPD, with FD-MRI VDP correlating strongly with 3He 
MRI VDP (252, 253). FD-MRI VDP was also found to decrease post 
salbutamol and increase after inhaled methacholine in asthmatics 
(253), and correlated well with pulmonary function test and CT 
measurements in those with COPD (252). A strong correlation 
between FD-derived fractional ventilation and 19F washout has also 
been described (254), and reproducibility previously established (255).

Phase-resolved functional lung MRI (PREFUL) is another unique 
approach that shares similarities to FD-MRI (16), with both methods 
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providing an indirect quantification of ventilation and perfusion based 
on oscillations of the MR signal intensity within the lungs of a freely 
breathing subject. Whereas FD-MRI uses only the signal change 
amplitude to quantify these measures, PREFUL also considers the 
phase-component and hence the name “phase-resolved” functional 
lung imaging. The result is a set of phase-resolved ventilation and 
perfusion cycles with an increased temporal resolution compared to 
conventional FD-MRI.

Several ventilation and perfusion parameters can be derived from 
PREFUL ventilation and perfusion maps. These include regional 
ventilation, ventilation derived by cross-correlation, VDP, perfusion 
(arbitrary units), quantified perfusion, perfusion defect percentages 
and VQ match maps (16, 256–258).

In the feasibility trial, PREFUL was able to distinguish healthy 
individuals from those with lung disease (16). COPD patients were 
subsequently showed to have an increased number of ventilation and 
perfusion defects, greater ventilation heterogeneity, and higher VQ 
mismatch compared to healthy volunteers (258, 259). PREFUL was 
also able to discriminate healthy CF patients from those experiencing 
an exacerbation (260), and track changes in regional ventilation 
following treatment (259, 261). PREFUL derived regional flow volume 
loops also showed increased sensitivity to early stages of chronic lung 
allograft dysfunction (CLAD) in subjects post lung transplantation 
(257), and was predictive of CLAD related death or transplant loss in 
a large prospective cohort (262). In contrast, conventional flow 
volume parameters failed to show any significant difference between 
healthy lung transplants and early-stage CLAD (263). Likewise, 
PREFUL has been successfully used to study post-treatment changes 
in those with COPD (Figure 5) (259) and chronic thromboembolic 
pulmonary hypertension (CTEPH) (265), and show good agreement 
when compared to SPECT, dynamic contrast-enhanced-MRI, and 
129Xe MRI (260, 266–268).

The described techniques have so far been limited to 2D imaging 
although 3D modalities such as 3D PREFUL (269) and SENCEFUL 
(270) have recently been developed, and show promise. For instance, 

early 3D PREFUL data suggests a strong correlation between 3D 
ventilation parameters and spirometric measurements (269, 271). 
Additionally, repeatability of this method has also been demonstrated 
(258, 271). As these methods are in the early phases of development, 
further research is needed before they can be  translated to 
clinical practice.

Without detracting too much from the focus of this review, 
PREFUL derived perfusion measures have been used to study a variety 
of cohorts including healthy subjects and those with COPD, CTEPH 
and CF (16, 256, 258, 272, 273). Validation against dynamic contrast-
enhanced MRI (256, 273, 274), and repeatability have also been 
demonstrated (258).

Conclusion and outlook

In this review, we discuss four unique methods of functional lung 
imaging using MRI: (1) HP-MRI; (2) 19F-MRI; (3) OE-MRI; (4) 
FD-MRI and PREFUL. HP-MRI is a well-established, safe and 
tolerable method for assessing lung function that is considered the 
functional lung MRI reference standard. By directly visualizing and 
quantifying the inhaled gas distribution, HP-MRI provides a direct 
assessment of lung ventilation in contrast to OE-MRI, FD-MRI and 
PREFUL. HP-MRI has exhibited immense potential in (i) phenotyping 
disease, (ii) assessing treatment response, (iii) early detection, and (iv) 
longitudinal monitoring. The high sensitivity (55, 275–277) and 
repeatability of HP-MRI biomarkers may enable future clinical trials 
to be  undertaken with smaller sample sizes (125, 171). Emerging 
evidence also support its role in guiding bronchial thermoplasty (278, 
279) and placement of endobronchial valves (280, 281). While 
diffusion-weighted and gas-exchange imaging are at an earlier stage 
of development, we believe they will develop into its full potential over 
time. Standardization of scanning protocols is essential before multi-
center trials can be conducted, with guidance provided by the 129Xe 
MRI Clinical Trials Consortium (282). While 129Xe MRI has been 
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FIGURE 4

Oxygen-enhanced MRI T1 maps of a healthy volunteer (A) and a patient with cystic fibrosis (CF) (B) after inhalation of 21 and 100% oxygen. The third 
column shows the corresponding difference maps: While a homogenous reduction of T1(100% O2) in comparison with T1(21% O2) is found for the 
healthy volunteer (C), some regions of the CF patient (D) show no or only small changes. Assuming that this effect can be mainly ascribed to reduced 
regional oxygen supply, the difference map can be interpreted as a surrogate for ventilation. Adapted with permission from (234).
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approved for routine clinical use in the United Kingdom since 2015 
(283), it remained limited to clinical research in the United States up 
until December 2022 when it received United States Food and Drug 
Administration approval for use in ventilation imaging (33). These 
represent important milestones in its broader adoption. The fact that 
a typical 129Xe MRI examination can be  easily undertaken within 
5–15 min allows for seamless integration into current imaging 
workflows, although the high setup cost (due to expensive polarizers, 
dedicated coils and xenon gas), complex imaging protocol, and need 
for skilled personnel (to run the polarizer, administer the xenon gas 
and acquire images) has limited its use to dedicated research institutes 
and may pose barriers to future uptake. While the development of a 
portable 129Xe hyperpolarizer shows promise as a cost-effective 
platform for wider clinical dissemination of 129Xe MRI (284), 
additional unanswered questions remain about how such a service will 
be funded, where they will be located, which patient groups should 
be referred, what constitutes normal values, and in what format results 
will be conveyed to referring clinicians. Looking ahead, 129Xe MRI 
may be used to distinguish a range of cardiopulmonary disorders (186, 
189, 190) by analyzing cardiogenic signal oscillations arising from 
129Xe dissolved in the pulmonary circulation (81). The complementary 
use of other imaging modalities may likewise create powerful 
diagnostic tools to enhance our understanding of various lung diseases 
such as COVID-19 (201, 203, 285).

19F-MRI has been touted as a possible alternative to HP-MRI given 
it also provides a direct measure of ventilation but at a lower 
operational cost – expensive polarizers are not required and 
fluorinated gases are less costly than HP-gases. Furthermore, due to 
its rapid signal recovery and ease of administration as normoxic gas 
mixtures, 19F-MRI excels in multi-breath imaging and the study of 

wash-in and wash-out kinetics. Despite these advantages, the wider 
adoption of 19F-MRI has been hindered by several factors. Firstly, 19F-
MRI is currently restricted to ventilation imaging (286–290), with 19F 
lung diffusion weighted MRI still in the pre-clinical phase (288–290). 
Secondly, ongoing technical advances focusing on optimizing image 
acquisition, image quality and improving signal-to-noise ratio is 
required. Thirdly, rigorous reproducibility and validation studies in 
various patient groups are lacking, and would be needed to build up 
the evidence base for its use. Lastly, in this era of climate change, one 
must acknowledge that inert fluorinated gases, which are also utilized 
in many other industries, are potent greenhouse gases with long 
lifetimes (291). While the contribution from 19F-MRI is likely to 
be small, efforts to capture and recycle exhaled 19F gases, similar to 
those available for HP gases, should be pursued (292). As 19F-MRI 
technology advances, there is strong potential for its wider clinical use.

OE-MRI also suffers from poor image and spatial resolution. 
More importantly, interpretation of results can be challenging due to 
the influence of supplemental oxygen on pulmonary physiology, and 
the difficulty in teasing out which of ventilation, perfusion, or 
diffusion is responsible for the signal changes (237, 293). Long 
acquisition times are also problematic, and substantial work is still 
required to define its role in pulmonary functional imaging.

FD-MRI and PREFUL offer a promising, cost attractive, and 
patient friendly alternative to functional lung imaging as imaging can 
be undertaken on a standard MRI scanner without the need for any 
additional costly equipment, or breath-holding maneuvers that are 
often challenging for patients with lung disease (272). The short 
scanning time of a couple of minutes is also beneficial for less 
cooperative patients such as children (294). These attributes have 
enabled PREFUL to be successfully employed in the assessment of 

FIGURE 5

Coronal and sagittal fractional ventilation and perfusion-weighted maps of a patient with chronic obstructive pulmonary disease obtained with a free-
breathing, contrast agent-free method (PREFUL) pre-and post-14 days of inhaler treatment (264). Please note the visible improvements (arrowheads) 
in perfusion and ventilation after treatment and the possibility for a pixelwise ventilation-perfusion assessment. Adapted with permission from (234).
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healthy, and premature infants with bronchopulmonary dysplasia, 
without the need for procedural sedation (295, 296). Compared to 
HP-MRI and 19F-MRI, FD-MRI and PREFUL provide an indirect 
assessment of ventilation. Although ventilation biomarkers derived 
from these methods appear to show less sensitivity to diseased states, 
there is overall good agreement with HP-MRI (253, 260, 261, 268). 
Free-breathing MRI also has the advantage of producing detailed 
perfusion maps (273, 297, 298), a feature that is lacking with the other 
modalities. While image acquisition with free-breathing MRI is 
relatively easy, considerable post-processing analyses is required to 
generate regional functional maps. Despite this, among all the other 
described techniques, free-breathing MRI has possibly the lowest 
barrier to entry. This will be a major advantage in its scalability and 
transition to the clinic. A summary of the key differences between 
these techniques can be found in Table 2.

Compared to other functional imaging techniques such as CT, VQ 
and SPECT, the biggest advantage of the abovementioned 
MRI-techniques is that they are all free from ionizing radiation. This 
make these methods friendly for use in vulnerable populations such 
as children and pregnant women, as well as in longitudinal studies 
where repeated imaging is required. Moreover, there is now a growing 
body of evidence that these functional MRI techniques are more 
sensitive than current clinical endpoints such as spirometry, and may 
one day be used in its place.

In conclusion, novel MRI approaches to functional lung imaging 
offer a range of powerful and creative tools to interrogate lung 
function in ways that surpass current clinical methods. Despite being 
at different stages of maturity, these techniques all show tremendous 
potential in helping us better understand the structure–function 
relationships in a variety of lung diseases.
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TABLE 2 Summary of the key differences between techniques.

HP-MRI 19F-MRI OE-MRI FD-MRI/PREFUL

Implementation

  Set-up cost ++++ +++ + +

  Skilled personnel ++++ +++ + +

  Post-processing ++++ ++++ ++++ ++++

Aspects of lung function assessed

  Ventilation Yes Yes Yes* Yes*

  Microstructure Yes No No No

  Gas exchange Yes No Possibly† No

  Perfusion No No Possibly† Yes

Patient factors

  Breath-hold requirement Yes‡ Yes‡ No No

  Scanning time + ++ +++ +

  Ionizing radiation No No No No

Image resolution

  Spatial resolution ++++ +++ + +++

  Temporal resolution NA NA + ++++

19F, fluorine-19; FD, Fourier decomposition; HP, hyperpolarized gas; MRI, magnetic resonance imaging; OE, oxygen-enhanced; PREFUL, phased-resolved functional lung. 
*These methods can only provide an indirect measure of ventilation.
†Signal derived from OE-MRI represents a combination of ventilation, diffusion and perfusion.
‡Limited or no breath hold may be possible with dynamic ventilation.
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