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Introduction: Early diagnosis of Parkinson’s disease (PD) is important to identify 
treatments to slow neurodegeneration. People who develop PD often have 
symptoms before the disease manifests and may be coded as diagnoses in the 
electronic health record (EHR).

Methods: To predict PD diagnosis, we embedded EHR data of patients onto a 
biomedical knowledge graph called Scalable Precision medicine Open Knowledge 
Engine (SPOKE) and created patient embedding vectors. We trained and validated 
a classifier using these vectors from 3,004 PD patients, restricting records to 1, 3, 
and 5 years before diagnosis, and 457,197 non-PD group.

Results: The classifier predicted PD diagnosis with moderate accuracy 
(AUC = 0.77 ± 0.06, 0.74 ± 0.05, 0.72 ± 0.05 at 1, 3, and 5 years) and performed 
better than other benchmark methods. Nodes in the SPOKE graph, among cases, 
revealed novel associations, while SPOKE patient vectors revealed the basis for 
individual risk classification.

Discussion: The proposed method was able to explain the clinical predictions 
using the knowledge graph, thereby making the predictions clinically interpretable. 
Through enriching EHR data with biomedical associations, SPOKE may be a cost-
efficient and personalized way to predict PD diagnosis years before its occurrence.
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1. Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative condition that affects 2–3% of 
people over 65 years old (1) and is the most rapidly increasing neurological disorder worldwide 
(2). To date, no intervention has been proven to slow disease progression in PD (3). A major 
barrier to discovering effective therapies may be that patients are not diagnosed with PD until 
motor symptoms, such as tremor and bradykinesia, manifest (4). But these symptoms only arise 
after ~50% of the neurons in the substantia nigra, the main brainstem area affected in PD, have 
already been lost (5). Diagnosing people earlier (i.e., before they develop frank motor 
symptoms), has been proposed as a necessary step to effective testing and implementation of 
disease-modifying treatments (6).
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A window of opportunity to diagnose people with PD earlier lies 
in the prodromal stage: a period of time prior to development of 
motor symptoms when early pathological changes lead to numerous 
other symptoms, such as autonomic, sleep, and mood problems (7). 
These symptoms bring people to the attention of physicians and are 
coded as diagnoses in the electronic health record (EHR), raising the 
possibility that the medical chart can be used to identify people in this 
early stage. While a single diagnosis may be common in an older 
population and not specific, the presence of multiple relevant 
diagnoses simultaneously can be used to identify people who are at 
risk of developing PD (8, 9). Indeed, algorithms that combine 
information from the EHR have been reported to help identify people 
at risk of PD (10–12). However, these models have largely been driven 
by motor conditions, indicating that a patient may already have PD 
and substantial central neurodegeneration. Patients likely meet 
diagnostic criteria for PD well before a code appears in the medical 
record, leading to a median delay of around 1 year between the 
presence of PD and the recording in the EHR (13). Constructing 
predictive models based on codes that are present years prior to the 
appearance of a PD diagnostic code could further the utility of these 
models for targeting patients that may benefit from interventions. 
Additionally, broadening the EHR variables incorporated into the 
model beyond diagnoses may improve their predictive power and 
allow for discovery of novel biomedical relationships.

In this project, we applied machine learning (ML) techniques to 
diagnosis, medication, and laboratory codes from the de-identified EHR 
data of the University of California San Francisco Medical Center 
(UCSF) to determine whether a diagnosis of PD could be predicted years 
before the clinical diagnosis. Because these EHR codes are primarily used 
for billing purposes, a hypothesis-free ML may generate spurious results 
that reflect coding habits or practices specific to an institution that are 
less likely to be  applicable to other practice settings and are not 
biologically meaningful (14). To bring meaningful biological associations 
into the context, we mapped these EHR concepts onto a heterogeneous 
biomedical knowledge network  - the Scalable Precision medicine 
Oriented Knowledge Engine (SPOKE)  - that combines over 30 
biologically relevant public databases and describes meaningful 
associations between nodes such as disease, genes, drugs, protein etc., 
(15, 16). We  hypothesized that incorporation of such biomedical 
associations could enrich the clinical data and aid in identifying people 
with PD years before the actual diagnosis arose in the EHR.

2. Materials and methods

2.1. Patient selection

We used de-identified EHR data of patients who visited UCSF 
between 2010 and 2020. Patient cohort selection was performed 
based on the protocol described in (16) (Supplementary methods). 
Two patient cohorts (i.e., PD and non-PD) were created based on 
the presence of diagnostic codes indicative of PD in their EHR 
diagnosis table (Figure  1; Supplementary Table S1). To avoid 
inclusion of patients with neuroleptic-induced parkinsonism, a 
common misdiagnosis, patients on neuroleptic medications 
(Supplementary Table S2) within 6 months before their first PD 
diagnosis were excluded (Figure  1A). We  restricted the entire 
population to 40 years of age or older, to minimize the inclusion of 
people with rare genetic forms of PD who may have patterns of onset 

different than sporadic PD. Implementing this age criteria also avoids 
overrepresentation of younger controls, which would lead to 
conditions associated with aging appearing to be associated with PD 
development. The index date for PD was defined as the first entry  
of a PD code or, for patients started on medications for PD 
(Supplementary Table S3) prior to the appearance of the EHR code, 
the date this medication was started. In order to build a classifier that 
would identify people at risk of PD in the general population, 
we trained the model for each time period using a case:control ratio 
based on the age-adjusted prevalence of PD, i.e., 572:100,000 among 
people of age 45 and over (17), which closely matches the age 
threshold in this study. Further, we  categorized the EHR data of 
selected patient cohorts into three pre-diagnostic time periods that 
included data present one (−1), three (−3) and five (−5) years prior 
to their index date (Figure 2; Supplementary methods).

2.2. Patient embedding vectors

After patient selection, we created knowledge graph (SPOKE) 
based embedding vectors for these patients (15, 16). This was 
achieved by connecting EHR concepts (diagnosis, medication and 
lab test) to nodes in the SPOKE knowledge graph using Unified 
Medical Language System’s (UMLS) Metathesaurus mappings. 
After making these connections, as previously described in (15), a 
modified version of topic-sensitive PageRank algorithm (18) was 
implemented to generate a vector that describes importance of 
each node in the graph relative to the EHR variable of interest. This 
vector was called as Propagate SPOKE Entry Vector (PSEV) (15). 
PSEV can be treated as a network level embedding vector for a 
clinical concept and it can be  created for any EHR concept 
corresponding to a cohort of patients (for, e.g., Parkinson’s disease). 
To create embedding at an individual patient level, PSEVs 
corresponding to the EHR variables of a patient are added and 
normalized (16) (Figure 3; Supplementary methods). Each element 
in the resulting vector corresponded to a SPOKE node and 
determined the relevance of that node for the patient. Hence, 
we called the resulting representation as patient SPOKEsig (short 
for SPOKE signature) (16).

2.3. SPOKEsig feature analysis

To explore the individual features of SPOKEsig representations, 
we compared each feature node between PD and non-PD cohorts for 
each time period. We used Mann–Whitney U rank test to compare the 
distributions of values at each SPOKE feature node. We then repeated 
this analysis for all three time periods to determine how this 
comparison changed across the pre-diagnostic time frame.

2.4. Training and testing of random forest 
classifier

Random forest classifier was used to classify patients as PD or 
non-PD in each time period. Patient SPOKEsigs in a time period 
were first split into train and test datasets in 80:20 ratio, respectively. 
Training data was used to train the classifier and testing data was 
used to evaluate the performance of the classifier. To reduce the bias 
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from an imbalanced dataset (i.e., more non-PD samples than PD 
samples) while training the classifier, PD samples were weighted 
more heavily than the non-PD samples based on their distribution 
in the training data of a given time period. Classifiers were trained 
in an online batch wise fashion and by using parallelization to 
optimize memory and training time, respectively. Area under the 
curve (AUC) was used as the performance metric of the classifier. 
The testing phase of the model, after training, was done by 
bootstrapping the test data. Bootstrapping was done by running 
model predictions 100 times, each time on a randomly selected 
patient set (with 50 patients including both classes) with replacement 
from the test dataset. This generated a set of ROC curves and a 
distribution of AUC scores for the model in each time period. A 95% 
bootstrap confidence interval (CI) was then computed by taking the 
2.5th and 97.5th percentiles of the AUC distribution for each time 
period. Finally, we compared the performance of the random forest 
classifier with a logistic regression model to account for any 
algorithm-specific differences in predicting PD using SPOKEsig 
vectors (see Supplementary methods).

2.5. Comparative analysis

2.5.1. Raw EHR data
For comparative analysis, we performed predictions for PD using  

raw EHR data (i.e., without SPOKE enrichment). We created binary 
representation vectors of patients using their EHR chart from each time 
period (Supplementary methods). For a fair comparison with SPOKE, 
we  restricted EHR concepts to those mappable to SPOKE nodes 
(Supplementary Table S8). We further trained a random forest classifier 
with these raw EHR representations and compared its predictive 
performance with the SPOKE method (Supplementary methods).

2.5.2. MDS criteria
SPOKE-based prediction results were compared with analysis of 

EHR data according to the proposed research criteria for prodromal 
PD developed by the International Parkinson and Movement Disorder 
Society (MDS) (8, 9). The MDS method estimates a likelihood ratio 
for future PD diagnosis based on the presence or absence of numerous 
risk and prodromal markers that are supported by the literature. Using 

FIGURE 1

Flowchart of population selection for PD (A) and non-PD (B) cohort. It starts from UCSF OMOP database followed by criteria for patient selection, 
number of patients included/excluded based on the selection criteria at each stage. Each shape in the diagram corresponds to the standard flowchart 
symbol. Cylindrical shape depicts a database. Diamond shape depicts a decision/criteria which can have yes and no branches. Parallelogram shape 
depicts an input or output of a process. Rectangle shape depicts a process or action that is taken based on a criteria or input data.
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the likelihood ratio and prior probability (based on patient’s age) 
we then computed the patient’s posterior probability for prodromal 
PD. This prediction was further compared with the SPOKE method 
using AUC bootstrap analysis (Supplementary methods).

2.5.3. Clinician review
SPOKE-based prediction results were also compared with the 

review of de-identified EHR data by a movement disorders neurologist 
specialized in the diagnosis and therapeutics of PD and other movement 
related disorders. The neurologist reviewed the EHR chart of hundred 
unique patients in each time period and classified them as either 
prodromal PD or not (Supplementary methods). These predictions 
were further compared with the SPOKE based predictions for the same 
patients using AUC bootstrap analysis (Supplementary methods).

3. Results

3.1. Patient data

We identified 3,046 patients with a diagnosis of PD (Figure 1A) 
and then selected 985,392 individuals without any diagnosis of PD 
(Figure  1B). We  then restricted this population to only include 
patients who were at least 40 years old (n = 3,004 for PD and 
n = 457,197 for non-PD, Figure 1). Finally, as people may meet criteria 
for PD before it is coded in the EHR (13) and we sought to target a 
prodromal population, we restricted our analysis to EHR information 
one, three, and 5 years prior to the appearance of the first PD-related 
diagnostic code or medication (referred to as −1, −3, and −5 time 
periods; Figure 2; Supplementary Tables S4, S5).

3.2. SPOKEsig feature analysis

Comparison of SPOKEsigs between PD and non-PD cohorts 
revealed a number of relevant differences (Figures 4A–D). Despite not 

being explicitly coded in the EHR, the PD node (i.e., the biomedical 
concept from SPOKE knowledge graph) had a significantly higher 
value in the PD population compared to non-PD population across 
all three time periods (Figure 4A). Additionally, other related disease 
(i.e., Cognitive disorder, Figure 4B) and symptom (i.e., Tremor and 
Gait Apraxia, Figures  4C,D) nodes showed higher values in PD 
compared to non-PD groups. On the other hand, values for disease 
and symptom nodes not related to PD were not significantly different 
between the two cohorts (Figures 4E–H).

3.3. Patient classification using random 
forest classifier

Prediction performance of random forest classifier, i.e., AUC score, 
to distinguish between PD and non-PD patients based on pre-diagnostic 
data of each time period is shown in Figure 5. Average AUC scores of the 
classifiers increased from −5 to −3 and −1 time periods (Table 1).

Analyzing the top input feature nodes, we found that several nodes 
related to PD were among the top  15 disease (Figures  5C,G,K) and 
symptom (Figures 5D,H,L) nodes in the periods closer to the index date, 
even though the PD diagnosis was not present in the medical record. For 
example, in the −1 period, nodes with high predictive power included 
various types of PD (as described in the Disease Ontology), REM sleep 
behavior disorder (a condition that is highly predictive of PD), tremor and 
gait apraxia (symptoms common in PD; Figures 5C,D). Unlike periods 
−1 and −3, no explicit PD nodes were identified for period−5 (Figure 5K), 
though several symptoms relevant to the pre-diagnostic stages of PD were 
identified (e.g., dysphonia, polyuria, chronic pain, lethargy; Figure 5L). In 
addition to clinical feature nodes like disease and symptom, several gene 
nodes related to PD appeared in the top tier (>90th percentile of feature 
score distribution). Genes related to PD such as GBA (99.2 percentile 
score), LRRK2 (98.6 percentile score), PINK1 (97.3 percentile score), 
ATP13A2 (97.2 percentile score), VPS35 (96.3 percentile score), and 
PARK7 (94 percentile score) served as critical features for the classifier  
in detecting prodromal PD patients in −1 time period (see 

FIGURE 2

Schema of time periods selected for analysis. t0 represents the index date. For people with PD (blue lines), t0 is defined as the first PD-related diagnostic 
code in the electronic health record (EHR) or first use of PD-related medication. Solid blue dots represent subsequent diagnostic codes of PD and the 
solid black dot represents the last visit in the EHR. For people with PD, at least two diagnostic codes were required, and the difference between t0 and 
another diagnostic code (△t) had to be at least 6 months. For people without PD (green lines), t0 was set to 6 months (△t) before their last visit (solid 
black dot). For our predictive models, we conducted three separate analyses, restricting EHR data to anything present before 1, 3, and 5 years prior to 
index date. The number of patients in each analysis group is provided to the left of each line (prior to application of the 40 year old age threshold).
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Supplementary Table S7 for a list of top biological nodes across all time 
periods). Taken together, these results highlight the increasing flow of 
PD-related information in the SPOKE embeddings of PD patients as time 
to their diagnosis approaches.

We also compared the predictive performance of random forest 
classifier with a logistic regression model using the same patient test 
data at −1 time period. We found that predictive performances of both 
classifiers were not significantly different on the given test data (random 
forest AUC = 0.77 ± 0.06, logistic regression AUC = 0.77 ± 0.062, 

Kolmogorov–Smirnov test value of p = 0.97, Kolmogorov–Smirnov 
statistic = 0.07, N = 100, Supplementary Figure S1).

3.4. Comparative analysis

3.4.1. Raw EHR data
We compared the performance of both raw EHR and SPOKE-

based classifications and found that across all three time periods, 

FIGURE 4

SPOKEsig feature analysis. Examples shown include disease and symptom features related (A–D) and not related (E–H) to PD. Blue bars represent feature 
significance between PD versus non-PD populations across pre-diagnosis time periods (x-axis). The red dotted line shows the threshold level of 
significance (p = 0.05). A rank is assigned to features based on their significance values (shown in parentheses as rank/total count of that feature in SPOKE).

FIGURE 3

Schema of patient SPOKEsig generation. Diagnostic codes, prescribed medications, and laboratory test values are taken from the electronic health 
record (EHR, left side of image) and translated into codes readable by SPOKE. Integration of these concepts into SPOKE creates Propagated SPOKE 
Entry Vectors (PSEVs), which are then added together to create the SPOKEsig vector for each patient. The SPOKEsig of a patient represents a network 
of SPOKE nodes (right side of the figure; color represents node type), where each SPOKEsig value represents the relevance of the corresponding node 
in the network for that patient. Therefore, an element (or feature) in the SPOKEsig vector corresponds to a node in the SPOKE knowledge graph and 
the value depicts the weight of that node.
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SPOKE-based classifier was more accurate than a classifier limited to 
raw EHR data in predicting PD diagnosis (Figure 6; Table 2).

3.4.2. MDS criteria
This comparative analysis was done on 37,233, 21,730 and 11,299 

unique patients with MDS markers among our originally selected 
cohort in −1, −3 and −5 periods, respectively, (Supplementary methods). 
We found that SPOKE performance was higher than MDS criteria using 
EHR data in predicting PD across all three time periods (Figure 7; 
Table 3).

3.4.3. Clinician review
We had a movement disorders clinician (EGB) review the EHR data 

of patients to which SPOKE had access and predict if the patients would 
be diagnosed with PD or not (Methods and Supplementary methods). 
Comparative analysis showed that SPOKE method had higher 
prediction performance than clinician review of the EHR data in 

predicting which patients would develop PD using pre-diagnosis data 
across all three time periods (Figure 8; Table 4).

3.5. Patient specific Parkinson Disease 
network from SPOKE

To further explore the predictive factors underlying the SPOKE-
based method, patient specific networks were constructed 
(Supplementary methods) for a PD patient that was correctly classified by 
both SPOKE and clinician review (Figure 9A) and another PD patient 
that was correctly classified by SPOKE but not by clinician review 
(Figure 9B) in −1 time period. Both patient networks showed enriched 
connectivity that PD node (center node in both networks) made between 
biological (for, e.g., genes) and clinical (for, e.g., disease) nodes in 
SPOKE. These connections could possibly enrich the EHR data of a 
patient by providing additional biological information relevant to PD 
through the SPOKEsig vector, thereby enhancing the disease predictivity.

4. Discussion

SPOKE-based models (SPOKEsigs) predicted PD diagnosis with 
moderate accuracy that increased in performance as time to diagnosis 
approached. The better performance proximate to diagnosis could 
be in part because of the larger sample size, but also likely due to more 

FIGURE 5

PD prediction using SPOKE based model. Each row in the figure corresponds to a single time period, i.e., EHR data from at least 1 (A–D), 3 (E–H) and 5 
(I–L) years prior to index date. (A,E,I) show ROC performance curves of random forest classifiers across respective time periods, with red curve 
depicting the average ROC curve, gray shade showing ± standard deviation, and blue dotted line representing the random guess curve. Average AUC of 
each ROC curve is shown at the top of each box. (B,F,J) show AUC distributions of classifiers across respective time periods. Vertical red dotted lines 
indicate 95% confidence interval of each AUC distribution. (C,G,K) show top 15 disease nodes, and (D,H,L) show top 15 symptom nodes, for patient 
classification across respective time periods, with word size proportional to feature importance.

TABLE 1 Classifier AUC performance across pre-diagnosis time periods.

Year AUC (μ ± σ) 95% bootstrap 
confidence interval

−1 0.77 ± 0.06 (0.62, 0.87)

−3 0.74 ± 0.05 (0.64, 0.84)

−5 0.72 ± 0.05 (0.62, 0.81)
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PD-relevant information being taken into account. These results 
potentially reflect the presence of recognizable prodromal symptoms 
in the years prior to diagnosis that become more numerous and likely 
more specific as diagnosis nears (1, 8, 9). This interpretation is 
supported by the feature scores of input nodes where non-motor 
symptoms (asthenia or generalized weakness, orthostatic intolerance, 
polyuria, lethargy) are more relevant early and motor symptoms 
(dysphonia, gait changes, and tremor) arise more proximate to 
diagnosis (Figures 5D,H,L) as reported in prodromal PD (19).

Using knowledge networks that associate EHR data to other 
biomedical information, the SPOKE model can access concepts that 
are not explicitly coded in the EHR such as biological information and 
hence enriches the clinical data. This enrichment explains the 
appearance of PD as a relevant node despite the exclusion of the PD 
diagnostic code from the dataset. This approach also identified 
molecular and genetic pathways that are highly represented in the 
pre-diagnostic years of PD and may be used to generate hypotheses  
of the varying biological processes that occur as prodromal PD 
progresses (Supplementary Table S7). For instance, OR56A4 – a gene 
encoding an olfactory receptor – was highly relevant in detecting PD 
patients even 5 years prior to diagnosis. Impaired olfaction occurs 
years prior to motor symptoms in PD (20), and the nasopharynx has 
been proposed as a possible site where environmental toxicants trigger 

abnormal protein aggregation that then spreads to other brain 
structures (21). In later years, genes related to mitochondrial 
dysfunction (APOOL) and immune dysregulation (FGFR1OP2) 
become more relevant, processes which may underly the cellular 
damage seen in the substantia nigra during these time periods (22). 
Genes such as GBA, LRRK2, PINK1, ATP13A2, VPS35, and PARK7 
have been reported to have associations with PD (23) and they turned 
out as critical genes (i.e., high feature importance scores) in this 
modelling approach for classifying patients in −1 time period. While 
these associations need rigorous evaluation and testing, they highlight 
the potential of SPOKE to propose biological targets for biomarkers 
and therapeutics.

Enrichment of EHR data may explain the higher predictive ability 
of SPOKE compared to other methods of prediction, such as 
prediction using raw EHR data (Figure 6), MDS criteria (Figure 7) and 
clinician review (Figure 8). Notably, both MDS criteria and clinical 
judgment require more information (e.g., a detailed history, clinical 
exam, or biologic studies), which may be available in the full medical 
chart but not in de-identified codes. While SPOKE may not truly 
be more accurate than these two methods (i.e., MDS and clinician 
review), the ability of SPOKE to improve predictive accuracy with 
such sparse information, using much less cost and time than these 
methods, emphasizes its possible role as a screening tool.

We found that using logistic regression to build the SPOKE 
classifier was no more accurate than random forest. Previous studies 
have shown that a random forest model could reduce data overfitting 
owing to its ensemble architecture and could capture non-linear 
relationships in the data (24–26). Additionally, random forest models 
have shown improved interpretability and performance in prior 
analyses (16, 27). These characteristics could facilitate scalability to 
larger datasets and ensure that disparate types of data inherent to the 
SPOKE model are adequately integrated. We  therefore chose the 
random forest model over logistic regression model in this study.

There have been previous efforts to identify people in the 
pre-diagnostic stages of PD using diagnostic and procedure codes  

FIGURE 6

Comparative analysis of PD prediction between SPOKE and raw EHR data. Distributions of classification AUC scores between SPOKE (blue) and raw 
EHR (green) across −1, −3 and −5 year time periods are shown in (A–C) respectively. Vertical red dashed line indicates an AUC score of 0.5 which 
corresponds to random guessing. (D) shows a bar graph with mean and standard deviation of AUC distributions for SPOKE (blue) and raw EHR (green) 
across time periods shown along the x-axis. Asterisks in the graph indicate p value significance of ≤0.0001.

TABLE 2 SPOKE versus raw EHR performance comparison across pre-
diagnosis time periods.

Year SPOKE 
AUC 
(μ ± σ)

raw 
EHR 
AUC 
(μ ± σ)

p value 
(t-test, 
N = 100)

SPOKE 
AUC 

95% CI

raw 
EHR 
AUC 

95% CI

−1 0.74 ± 0.07 0.67 ± 0.06 3.4*10−12 (0.57, 0.86) (0.51, 0.78)

−3 0.7 ± 0.04 0.63 ± 0.04 2.4*10−24 (0.61, 0.78) (0.55, 0.7)

−5 0.66 ± 0.07 0.56 ± 0.05 1.5*10−24 (0.54, 0.77) (0.46, 0.66)
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(10, 11). Despite their predictive value, they included data up until the 
time that PD related codes appeared in the medical chart leaving the 
possibility that patients already had manifest PD that had not yet been 
coded. Our inability to validate diagnostic date in our study leaves 
open a similar possibility, but restricting our model to information 
that was present years before a diagnostic code and the fact that motor 
symptoms were less prominent in these time periods suggest we may 
be identifying people at an earlier stage. Even at earlier stage (i.e., 
5 years prior to diagnosis), our model maintained moderate predictive 
value than other benchmark methods suggesting that enriching EHR 
data with a biomedical knowledge network, and incorporating a 
broader scope of data such as diagnosis, medications and laboratory 
tests, may allow for earlier detection of PD, even before motor 
symptoms strongly manifest.

There have been previous efforts to create patient representation 
vectors that were highly predictive (28–32). However, they were 
abstract latent vectors that cannot be easily interpreted into clinical 
terms, which may ultimately limit clinician adoption to inform 
medical decisions (33). A unique value of SPOKE based patient 
representation is that it is non-abstract and explainable in nature. Each 
feature in this vector represents a meaningful biomedical concept 
from the network (Figure 9), making the vector clinically interpretable.

The predictive ability of the SPOKE based model in this project 
needs to be interpreted in the context of several limitations. Since the 
present analysis was done on a completely de-identified dataset, 

diagnosis and index date of diagnosis could not be properly verified. 
We used stringent criteria to account for this limitation, attempting  
to avoid common pitfalls such as miscoding or drug-induced 
parkinsonism. It has been previously reported that PD onset and the 
first diagnostic code could have a median delay of 1 year (34). To 
account for this delay, we restricted our analysis to time periods at 
least 1 year prior to the entry of a diagnostic code. Patients may have 
received care outside of the UCSF medical system; not having this 
information available may again have reduced the predictive accuracy 
of our model. Another limitation is that we have not yet externally 
validated the SPOKE model. Testing the SPOKE model on a separate 
dataset will support its generalizability and is an important future 
direction, though the internal validity demonstrated in this work is 
encouraging. Finally, some clinical variables in a patient’s EHR would 
not map to any SPOKE nodes (Supplementary Table S8); expanding 
SPOKE to include nodes for all EHR variables will be a future goal to 
enhance the performance of the SPOKE model further.

Despite these limitations, the SPOKE model has the potential to 
enrich the EHR to identify people at risk of developing PD for more 
intense clinical evaluation. Future studies can evaluate whether the 
SPOKE model can distinguish between parkinsonian syndromes 
(35) - challenging to determine from the EHR alone (36) - or predict 
outcomes related to PD, such as fractures, falls, or dementia. 
Additionally, future work will use SPOKE to identify people that can 
undergo more intensive evaluation to estimate PD risk using clinical 

FIGURE 7

Comparative analysis of PD prediction between SPOKE and MDS criteria. Distributions of classification AUC scores between SPOKE (blue) and MDS 
prodromal criteria (green) across −1, −3 and −5 year time periods are shown in (A–C) respectively. Vertical red dashed line indicates an AUC score of 
0.5 which corresponds to random guessing. (D) shows a bar graph with mean and standard deviation of AUC distributions for SPOKE (blue) and MDS 
(green) across time periods shown along the x-axis. Asterisks in the graph indicate p value significance of ≤0.0001.

TABLE 3 SPOKE versus MDS performance comparison across pre-diagnosis time periods.

Year SPOKE AUC (μ ± σ) MDS AUC (μ ± σ) p value (t-test, 
N = 100)

SPOKE AUC 95% 
CI

MDS AUC 95% CI

−1 0.71 ± 0.08 0.63 ± 0.08 8.5*10−10 (0.53, 0.84) (0.49, 0.79)

−3 0.67 ± 0.07 0.57 ± 0.07 5.1*10−22 (0.56, 0.79) (0.46, 0.72)

−5 0.69 ± 0.06 0.62 ± 0.05 4.1*10−15 (0.58, 0.79) (0.52, 0.7)
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and biomarker assessments, such as smell test or imaging of striatal 
dopamine transporter binding (37). As EHR databases expand to 
include non-traditional information streams (e.g., sensor data (38), 

mobile health monitoring (39) and patient reported outcomes (40)), 
integration with an extensive biomedical knowledge network may not 
only improve the SPOKE model further, but also provide a crucial 

FIGURE 8

Comparative analysis of PD prediction between SPOKE and clinician review of EHR data. Distributions of classification AUC scores between SPOKE 
(blue) and clinician review (green) across −1, −3 and −5 year time periods are shown in (A–C) respectively. Vertical red dashed line indicates an AUC 
score of 0.5 which corresponds to random guessing. (D) shows a bar graph with mean and standard deviation of AUC distributions for SPOKE (blue) 
and clinician (green) across time periods shown along the x-axis. Asterisks in the graph indicate p value significance of ≤0.0001.

TABLE 4 SPOKE versus clinician performance comparison across pre-diagnosis time periods.

Year SPOKE AUC (μ ± σ) Clinician AUC 
(μ ± σ)

p value (t-test, 
N = 100)

SPOKE AUC 95% CI Clinician AUC 
95% CI

−1 0.72 ± 0.03 0.55 ± 0.02 4.2*10−101 (0.65, 0.78) (0.5, 0.59)

−3 0.68 ± 0.08 0.63 ± 0.05 4.1*10−08 (0.5, 0.83) (0.52, 0.71)

−5 0.68 ± 0.06 0.51 ± 0.04 9.8*10−60 (0.54, 0.79) (0.44, 0.57)

FIGURE 9

PD patient specific networks from SPOKE (A) corresponds to a patient correctly diagnosed by both clinician and SPOKE model. (B) corresponds to a 
patient correctly diagnosed only by SPOKE model. Triangle shaped nodes represent clinical concepts present in patient’s EHR chart and hence the 
entry points to SPOKE. Circle shaped nodes are the non-entry points. Nodes are connected by edges whose names are shown in the figure. To reduce 
the complexity of the network (B), certain nodes and edges are grayed out based on manual inspection. Legend shows the color code for each node 
type in the network.
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strategy to avoid overload (41) and facilitate clinical prediction, 
further enabling preventive healthcare.

5. Conclusion

We showed the application of a biomedical knowledge graph 
(SPOKE) in enriching the EHR data of patients for an early prediction 
of PD in a clinically interpretable fashion. This method showed higher 
predictive performance than other benchmark methods applied to EHR 
data. We finally showed how biological and clinical information from 
SPOKE could enhance the PD prediction using patient specific networks. 
Taken together, the proposed method is an explainable predictive 
approach for PD detection that could complement clinical 
decision making.
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