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Introduction: It is critical to identify the stroke onset time of patients with acute

ischemic stroke (AIS) for the treatment of endovascular thrombectomy (EVT).

However, it is challenging to accurately ascertain this time for patients with

wake-up stroke (WUS). The current study aimed to construct a deep learning

approach based on computed tomography perfusion (CTP) or perfusion weighted

imaging (PWI) to identify a 6-h window for patients with AIS for the treatment of

EVT.

Methods: We collected data from 377 patients with AIS, who were examined by

CTP or PWI before making a treatment decision. Cerebral blood flow (CBF), time

to maximum peak (Tmax), and a region of interest (ROI) mask were preprocessed

from the CTP and PWI. We constructed the classifier based on a convolutional

neural network (CNN), which was trained by CBF, Tmax, and ROI masks to identify

patients with AIS within a 6-h window for the treatment of EVT. We compared

the classification performance among a CNN, support vector machine (SVM), and

random forest (RF) when trained by five di�erent types of ROI masks. To assess

the adaptability of the classifier of CNN for CTP and PWI, which were processed

respectively from CTP and PWI groups.

Results: Our results showed that the CNN classifier had a higher performance

with an area under the curve (AUC) of 0.935, which was significantly higher than

that of support vector machine (SVM) and random forest (RF) (p = 0.001 and p

= 0.001, respectively). For the CNN classifier trained by di�erent ROI masks, the

best performance was trained by CBF, Tmax, and ROI masks of Tmax > 6 s. No

significant di�erence was detected in the classification performance of the CNN

between CTP and PWI (0.902 vs. 0.928; p = 0.557).

Discussion: The CNN classifier trained by CBF, Tmax, and ROI masks of Tmax > 6 s

had good performance in identifying patients with AIS within a 6-h window for the

treatment of EVT. The current study indicates that the CNN model has potential

to be used to accurately estimate the stroke onset time of patients with WUS.
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Introduction

In the guidelines for the early management of patients

with acute ischemic stroke (AIS) published by the American

Heart Association/American Stroke Association (AHA/ASA)

in 2019, recombinant tissue-type plasminogen activator (rt-

PA) thrombolysis and endovascular thrombectomy (EVT) are

recommended to treat patients with AIS (1). Both of these are

performed mainly for patients within a specific window of time

from stroke onset, which are 4.5 h for rt-PA thrombolysis and

6-h for EVT. However, because 14–29.6% of patients with AIS

are attacked during their sleep, which is called wake-up stroke

(WUS) (2), their accurate stroke onset time cannot be ascertained

to calculate this window. This means that other examinations are

needed to estimate the stroke onset time of patients with WUS

before treatment of rt-PA thrombolysis or EVT.

In previous studies, multi-modality imaging has been shown to

have strong potential for accurately estimating the stroke onset time

(3–8). In rt-PA thrombolysis treatment, the imaging biomarker

of intensity mismatch between diffuse weighted imaging (DWI)

and fluid-attenuated inversion recovery (FLAIR) is used to detect

patients within a 4.5 h window (4), which means that the stroke

onset time of patients with an unknown time and with a DWI–

FLAIR mismatch biomarker is within a 4.5 h window for rt-PA

thrombolysis treatment. In order to further explore the relationship

between imaging biomarker and stroke onset time, Kong et al.

constructed a decoder–encoder network to extract features using

DWI, FLAIR, and time to maximum peak (Tmax) images, which

can classify patients within a 4.5 h window for rt-PA thrombolysis

treatment (8). This means that a machine learning classifier based

on an imaging biomarker can accurately estimate the stroke

onset time.

However, there is not a typical imaging biomarker to identify

a 6-h treatment window for EVT. Some potential imaging

biomarkers were found in previous works (9–12), such as a

reduction in cerebral blood flow (CBF) and a delayed Tmax. The

progression of AIS can be directly expressed by changes of an

infarct core and ischemic region (12–14). An infarct core and

penumbra region can be estimated using perfusion map images,

which include CBF, cerebral blood volume (CBV), mean transit

time (MTT), and Tmax. The infarct core is defined as the region

of CBF reductions to <30% compared contralateral hemispheres

(CBF < 30%) for computed tomography perfusion (CTP), or

apparent diffusion coefficient (ADC) values <620. The ischemic

region includes the infarct core and penumbra region, which is the

region of Tmax > 6 s (9). Furthermore, Olivot et al. (15) estimated

the benign hypoperfusion, ischemic, and infarct core regions only

by different Tmax thresholds, which are, respectively, >4, >6, and

>10 s. Thus, CBF and Tmax are significantly related to the stroke

onset time.

The present study sought to combine the deep learning

technique with perfusion map images (CBF and Tmax), which

was processed from CTP or perfusion weighted imaging (PWI), to

identify patients with AIS within a 6-h window for the treatment

of EVT. We constructed a classifier based on a convolutional

neural network (CNN), which was trained by CBF, Tmax, and

a region of interest (ROI) mask. Compared to previous studies,

to classify patients within a 4.5 h window for rt-PA thrombolysis

treatment, our method is able to identify them within a 6-h

window for the treatment of EVT. Meanwhile, our method has

stable performance for both CTP and PWI. It means that our

method enables compatible with both magnetic resonance (MR)

and computed tomography (CT) devices, rather than only MR

devices. Thus, our method has more potential to be used widely

in hospitals, especially primary hospitals.

Methods

Patients

The local institutional review board approved this retrospective

analysis, and the patient had signed the informed consent

form. Also, patient records and images (including the source

or raw imaging data) were anonymized before image analysis.

Anonymized data are available on reasonable request to the

corresponding author, and the data collected in the repository

will be made accessible to qualified researchers worldwide, based

on the recommendations of a scientific committee that will

evaluate proposed research projects. The confidentiality of patients’

information will be rigorously protected.

We recruited patients with AIS between April 2020 and

April 2021 from the eStroke China national thrombolytic

and thrombectomy imaging platform. Thirteen subcenters are

registered on the platform and upload CTP or PWI images

examined from patients with AIS before treatment to the eStroke

platform. In addition, clinical information, including age, sex,

national institute of health stroke scale (NIHSS), and exact stroke

onset time are recorded. In order to align the examination

performance among subcenters, we adjusted imaging protocols

based on different device types, which are summarized in Table 1.

To avoid the bias of the stroke onset time of patients with

AIS, the data were collected by neurologists with more than 5

years of clinical experience, and they were recorded fully on the

eStroke platform. Patients were recruited into this study based on

the following criteria: (1) AIS due to anterior circulation artery

(ACA) occlusion; (2) the recorded exact stroke onset time; (3) the

recorded time of initial pretreatment imaging; (4) examined CTP

or PWI before treatment; and (5) complete clinical information.

All patients were anonymously recruited, and they were informed

of and agreed to the study. The dataset will be released on the

website https://github.com/bianyueyan/CNN-EVT.

Experimental design

According to previous works, the stroke onset time is correlated

with CBF/ADC, Tmax, and changes in the benign hypoperfusion,

ischemic, and infarct core regions. These regions can be estimated

by different thresholds in CBF and Tmax (9, 15). Therefore, three

factors including CBF/ADC, Tmax and the region of diseased

hemispheres, are correlated with the identification of the stroke

onset time. In order to enable to be compatible with both CT and

MR examinations, we chose CBF, Tmax and the region of diseased

hemispheres as input images. In this study, we constructed three

types of classifiers, namely, support vectormachine (SVM), random
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TABLE 1 List of imaging protocols.

CTP protocols

Subcenter Slice thickness (mm) No. of slices Total coverage (mm, cc) kVp mAs

Center1 5 480 80 80 200

Center2 5 1,080 80 80 223

Center3 5 460 80 80 176

Center4 5 360 80 80 211

Center5 5 336 80 80 200

Center6 5 1,566 80 80 124

Center7 10 506 80 80 350

Center8 5 864 80 80 158

Center9 5 704 80 80 176

Center10 5 360 80 80 264

PWI protocols

Subcenter Slice thickness (mm) FOV (mm2) Bandwidth (kHz) TR/TE (ms) Acquisition
matrix

Center11 5 230× 230 28.3 1,590/32 128× 128

Center12 5 230× 230 31.2 1,500/19.2 96× 128

Center13 5 230× 230 29.4 1,740/32 128× 128

cc, craniocaudal; mAs, milliampere-seconds; kVp, kilovoltage peak; FOV, field of view; TR, repetition time; TE, echo time.

forest (RF), and CNN, to identify patients with AIS within a 6-h

window for the treatment of EVT. These classifiers were trained by

three channels of images. The first channel was CBF images, the

second was Tmax images, and the third was ROI mask, which was

one of the regions of CBF < 30%, Tmax > 4 s, Tmax > 6 s, Tmax

> 8 s, and Tmax > 10 s.

In order to compare the performance among the different

classifiers (SVM, RF, and CNN), each classifier was trained by three

channels of images, consisting of CBF, Tmax, and ROI masks of

Tmax> 6 s. Meanwhile, for observing the differences from the ROI

masks (CBF < 30%, Tmax > 4 s, Tmax > 6 s, Tmax > 8 s, and

Tmax > 10 s), the CNN classifier was trained by CBF, Tmax, and

each ROI mask. Through the above process, the classifier with the

best performance was selected. Finally, we trained the best classifier

using CBF, Tmax, and ROI mask, respectively, from CTP and PWI

to compare their agreement.

Image preprocessing

The CTP and PWI of patients with AIS were examined

before the treatment, and then intra-phase rigid registration was

performed to correct motion artifacts. After this, the images were

smoothed using a Gaussian filter with a kernel with a width of

2.5mm. In order to reduce disturbance of skull and cerebrospinal

fluid (CSF), the images were segmented using BET2 (16) and the

thresholding method, respectively, and then the ROI was selected

while the rest of the image was excluded. Perfusion parameter

maps, including CBF, CBV, MTT, and Tmax, were constructed by

block-circulant singular value decomposition (bSVD) provided by

the eStroke platform. Perfusion parameter maps were resampled

to the spacing of 1mm in the x, y, and z directions to reduce

the impact of image resolutions. The resampled images were

chosen as the analytical basis of feature extraction, training, and

testing datasets.

According to previous studies, ROI masks segmented by

different thresholds based on CBF and Tmax express the

progression of AIS, which are strongly related to the stroke onset

time (3–8). In order to compare their performances in estimating

the stroke onset time, we segmented the ROI masks by CBF< 30%,

Tmax > 4 s, Tmax > 6 s, Tmax > 8 s, and Tmax > 10 s.

Feature extraction

Features for training machine learning methods, including

SVM and RF, were generated based on CBF, Tmax images, and

ROI masks, which mainly included first-order descriptive statistics,

features of shape, gray level co-occurrencematrix (GLCM) features,

gray level dependance matrix (GLDM) features, and gray level size

zone matrix (GLSZM) features. All of the features are shown in

Table 2. They were extracted with the Radiomics module in the 3D

Slicer software, version 4.11 (NA-MIC, NAC, BIRN, NCIGT, and

the slicer community, USA). After extracting the initial features,

the principal component analysis (PCA) approach was applied to

reduce dimensionality and decrease the dependance on the number

of training data.

Classifier construction

We compared the performance of three types of classifiers,

namely, SVM, RF, and CNN in identifying a 6-h window for the
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TABLE 2 List of features.

Feature
class

No. of
features

Feature name

Shape 9 Maximum 2D diameter, maximum 3D,

diameter, mesh volume, minor axis length,

sphericity, surface area, surface volume ratio,

voxel volume

First order

descriptive

statistics

15 Energy, entropy, interquartile range, kurtosis,

maximum, mean absolute deviation, mean,

median, minimum, robust mean absolute

deviation, root mean squared, skewness, total

energy, uniformity, variance

GLCM 12 Autocorrelation, cluster prominence, cluster

shade, cluster tendency, contrast, correlation,

difference average, difference entropy,

difference variance, joint average, sum

entropy, sum squares

GLDM 5 Dependence entropy, dependence variance,

gray level non-uniformity, gray level

variance, high gray level emphasis

GLSZM 10 Gray level non-uniformity, gray level

non-uniformity normalized, gray level

variance, high gray level zone emphasis, large

area emphasis, large area high gray level

emphasis, large area low gray level emphasis,

low gray level zone emphasis

treatment of EVT. Briefly, SVM is a supervised machine learning

algorithm, mainly used to process classification and regression

tasks. The objective of SVM is to find a hyperplane in a N-

dimensional space that is defined by the number of features in

order to classify the dataset (17). RF is an ensemble learning

method that can operate a variety of tasks, including regression

and classification. It commonly constructs a multitude of decision

trees during the training time. In a classification task, RF creates

many decision trees on data samples, each of which votes based

upon the results of the prediction. Finally, the output of RF

means the class selected by the most trees (18). A CNN is a

feed-forward neural network, which is used to handle computer

vision tasks such as image classification, object detection, and image

recognition (19).

In this study, a CNN was constructed based on VGGNet with

2 convolutional blocks (20), which consisted of a structure of

eleven layers: an input layer, three convolutional layers, two batch

normalization layers, two rectified linear unit (ReLU) layers, a

max pooling layer, a fully connected layer, and a soft-max layer,

which are shown in Figure 1. According to the previous works,

the stroke onset time of patients with AIS was correlated with

the severity and range of CBF reduction and Tmax delay. Thus,

the input layer in our network was designed as a three-channel

layer, which included CBF, Tmax and ROI mask respectively. The

CBF and Tmax channels of the input layer can provide the detail

features about the severity of CBF reduction and Tmax delay,

and the ROI mask channel can present a weight map to express

the range of CBF reduction and Tmax delay. The input layer

was separated into blocks with the size of 64 × 64 × 64. The

convolutional layer contained 16 filters with a receptive field of 5×

FIGURE 1

The architecture of the CNN proposed to identify patients with AIS

within a 6-h window for the treatment of EVT.

5 × 5 voxels in a one-voxel stride sliding. The batch normalization

layer and ReLU layer which followed the convolutional layer,

batch-normalized and rectified the feature map. The max pooling

layer reduced the number of rectified features, and they were

flattened into a single linear vector by the fully connected layer.

Finally, the classification was processed in the soft-max layer.

Binary cross-entropy loss was used as loss function. Comparing

VGGNet with 2 convolutional blocks, the input layer in our

network included three channels, and each channel was 3D images.

Apart from that, we removed a max-pooling layer in the first

convolutional block in order to decrease the loss of the detail

features. All classifiers were trained by fivefold cross-validation to

avoid overfitting bias.

Statistical analysis

We computed the receiver operating characteristic (ROC)

curve and the area under the ROC curve (AUC), which can

compare the ability of all classifiers to identify patients with

AIS within a 6-h window. To determine the significance of

differences among classifiers in the task of identification, we used

the DeLong test to compare the AUCs of the classifiers (21).

We also computed patient-wise accuracy, sensitivity, specificity,

and precision for each classifier. SPSS version 22.0 (IBM,

USA) and GraphPad Prism version 6.0 (GraphPad, USA)

powered all of the statistical computations, with significance set

at p < 0.05.
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TABLE 3 Patient characteristics.

Characteristics Values

No. of patients 377

Age (year) 66.0± 11.9

Male sex∗ 263 (69.8)

Stroke onset time (h) 6.7± 5.7

NIHSS on admission 11.5± 7.2

∗Data are the number (percentage) of patients. Except where indicated, data are mean± SD.

TABLE 4 The patient characteristics in the training and testing datasets.

Patient
characteristics

Training
dataset

Testing
dataset

P-value

Age (year) 66.81± 11.63 68.06± 11.64 0.3737

Sex (female/male) 98/223 16/40 0.8454

NIHSS on admission 12.08± 7.13 11.00± 7.51 0.4152

Stroke onset time (h) 5.87± 5.46 5.98± 4.60 0.0552

Results

Patient characteristics

We recruited 2,500 patients from the eStroke platform; 426

were excluded due to loss of original data, and 922 were excluded

because of poor image quality, such as motion artifacts during

scanning. Additionally, 775 with an onset time exceeding 24 h were

excluded. Finally, a total of 377 patients (263 men and 114 women;

mean age = 66.0 ± 11.9 years) were included in this study. The

stroke onset time was 6.7 ± 5.7 h (range = 0–24 h). All patients

had ACA occlusion. The patients’ baseline and NIHSS are listed in

Table 3.

Training and testing dataset analysis

Training and testing datasets were selected randomly, which

were grouped by the onset time of stroke. Table 4 shows the patient

characteristics in the training and testing datasets. All p-values for

each patient characteristic between the training and testing datasets

were estimated. We observed that all p-values were higher than

0.05, which means that there were no significant differences in each

patient characteristic between the training and testing datasets.

Performance analysis of the classifiers

Figure 2 shows the ROC curves of the classifiers (SVM, RF,

and CNN) for identifying patients with AIS within a 6-h treatment

window for EVT. All of the AUCs of the classifiers were higher

than 0.76, which was the highest AUC for identifying patients with

AIS within a 4.5 h window for rt-PA thrombolysis treatment in a

previous study (8). The AUC of RF was the lowest at 0.775 (0.732–

0.818), while the AUC of the CNN was the highest at 0.935 (0.893–

0.975). The AUC of the CNN was significantly higher than that of

FIGURE 2

ROC curves of the classifiers, including CNN, SVM, and RF.

TABLE 5 The AUCs of classifiers of the identification of patients with AIS

within a 6- and 4.5-h window.

Classifier Identifying patients
within 4.5-h
window

Identifying
patients within
6-h window

Ho et al. (7) Kong et al. (8) CBF + Tmax + ROI

RF 0.624 0.690 0.775 (0.732–0.818)

SVM 0.669 0.746 0.788 (0.746–0.830)

CNN – – 0.935 (0.893–0.975)

Bold indicated the highest AUC for a given classifier.

the SVM (p= 0.001) and RF (p= 0.001). The AUCs of the classifiers

compared with the previous work are depicted in Table 5.

Performance analysis of the ROI masks

The CNN classifier was trained by CBF, Tmax, and each ROI

mask (respectively, CBF < 30%, Tmax > 4 s, Tmax > 6 s, Tmax

> 8 s, and Tmax > 10 s), each ROC curve of which is shown in

Figure 3. The AUC of Tmax> 6 s was the maximum value (AUC=

0.935), which was significantly higher than that of Tmax > 8 s and

Tmax > 10 s (p = 0.017 and p = 0.002, respectively). Although the

AUC of Tmax > 6 s was higher than that of Tmax > 4 s, there was

no significant difference between them (p= 0.285). Comparing the

ROI masks segmented by Tmax, the AUC of CBF < 30% was only

0.796 (0.723–0.867).

Performance analysis of scanning devices

We separated the training dataset into two groups (CTP and

PWI), and the CNN classifier was trained by CBF, Tmax, and ROI

mask of Tmax > 6 s in each group. Figure 4 shows the ROC curves
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FIGURE 3

ROC curves of the CNN trained by CBF, Tmax, and each ROI mask.

FIGURE 4

ROC curves of the classifiers of the CNN trained by CBF, Tmax, and

ROI masks of Tmax > 6 s in the CT and MR groups.

of two groups. The AUCs of the two groups were higher than 0.9,

and there was no significant difference between them (p= 0.557).

Examples of identification

Figure 5 shows four examples for identifying patients with AIS

within a 6-h window for the treatment of EVT using our method.

The classifier was CNN-trained by CBF, Tmax, and ROI masks

of Tmax > 6 s. The results of the classifier identification were

matched with the ground truth, which was the accurate stroke

onset time of patients. DWI and FLAIR are listed in Figure 5 for

comparison with a previous study (8), which detected patients

with AIS within a 4.5 h window for rt-PA thrombolysis treatment

using the machine learning method and the imaging biomarker of

DWI–FLAIR mismatch.

Discussion

In this study, we proposed to use a CNN framework based on

a perfusion map (CBF and Tmax) to identify patients with AIS

within a 6-h window for the treatment of EVT. We compared the

performance of each classifier (SVM, RF, and CNN) and differences

from each ROI mask (CBF < 30%, Tmax > 4 s, Tmax > 6 s, Tmax

> 8 s, and Tmax> 10 s). Our results showed that the CNN classifier

trained by CBF, Tmax, and ROI masks of Tmax > 6 s had a higher

performance in terms of identification within a 6-h window. Apart

from this, our method had stable performance for both CTP and

PWI, which means that the proposed method has higher potential

to be used widely in stroke centers.

In a previous study, the progression of AIS could be directly

expressed by changes in the infarct core and ischemic region (12–

14). Thomalla et al. proposed that DWI–FLAIR mismatch can

be deemed an imaging biomarker for identifying patients with

AIS within a 4.5 h treatment window for rt-PA thrombolysis (4).

Meanwhile, in the study of DIFFUSE 3, the infarct core and

penumbra region could be estimated using CBF and Tmax (8).

Because DWI, FLAIR, and Tmax are related to the progression of

AIS, Kong at el. constructed a decoder–encoder network trained

by DWI, FLAIR, and Tmax to identify patients with AIS within a

4.5 h window for rt-PA thrombolysis treatment (8). In fact, Kong’s

decoder–encoder network has the potential to detect this within a

6-h treatment window. However, because this network was trained

only by MR examination, it was hard to be widely used in hospitals,

especially primary hospitals. Thus, in order to be used for both CT

and MR examination, we chose CBF and Tmax as two of the three

channels of input images of classifiers instead of DWI and FLAIR,

and we pulled ROI masks into the third channel of input images

because their changes were correlated with the progression of AIS.

This means that our method has more potential to be performed in

primary hospitals.

In identifying patients with AIS within a 4.5 h window for rt-

PA thrombolysis treatment, the AUC of the best classifier was 0.780

(8). The best classifier in this study was the CNN trained by CBF,

Tmax, and ROI masks of Tmax > 6 s. The AUC of our method

was 0.935, which is much higher than that of previous works. The

reason is that the progression of AIS over time mainly influences

cerebrovascular hemodynamic changes (9–11). For instance, in

Figure 5, changes in CBF and Tmax had a significant relationship

with the stroke onset time among patients A, B, C, and D. Although

patient D was attacked by a stroke for 10.1 h, the intensity between

DWI and FLAIR was not mismatched, which would have been

misestimated in previous works. Apart from this, our results

showed that the CNN has a stronger ability to capture hidden

features and signal changes from CBF and Tmax, compared to

machine learning methods such as SVM and RF. Moreover, by

comparing the performance of classifiers trained by different ROI

masks, our results showed that the AUC of Tmax > 6 s was the

highest in all ROI masks, although it was not significantly higher

than that of Tmax > 4 s (p = 0.285). According to a previous
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FIGURE 5

Examples of the identification of patients with AIS within a 6-h window for the treatment of EVT using the CNN classifier trained by CBF, Tmax, and

ROI masks of Tmax > 6 s. The green region in the third column is the mask of Tmax > 6 s. The stroke onset times of patients (A, B) were, respectively,

4.2 and 5.3 h, which was identified within a 6-h time window for the treatment of EVT by the classifier. For patients (C, D), their stroke onset time was

7.0 and 10.1 h, respectively, which was identified without a 6-h window by the classifier.

work (9), the region of Tmax > 6 s includes an infarct core and

penumbra, while the regions of CBF < 30% and Tmax > 10 s only

include an infarct core, and the region of Tmax > 8 s includes an

infarct core and a part of penumbra. For the region of Tmax > 4 s,

it includes benign hypoperfusion, an infarct core and penumbra,

which should include more features than that of Tmax > 6 s, but

the benign hypoperfusion in the region of Tmax > 4 s is always

misestimated because of personalizing. For example, Tmax values

in the deep area of white matter without lesions are commonly

more than 4 s for patients with AIS. Therefore, we recommend the

CNN classifier trained by CBF, Tmax, and ROI masks of Tmax >

6 s rather than Tmax > 4 s.

This study has some methodological limitations that need to

be addressed. First, the sample size was relatively lower than that

of other studies based on deep learning algorithms. However,

data were collected from 13 centers, with eight types of CT and

MR scanners, uniformly distributed between 0 and 24 h from the

stroke onset time. Thus, the sample size was enough to support

the training of the CNN model in this study. Second, data were

collected retrospectively, and some inaccurate information was

involved. In fact, a prospective study to evaluate the performance

of our method in clinical use is a future avenue for investigation,

but it does not enable to assume the clinical potential of this study.

In the future, a larger, randomized, and prospective study will be

designed to evaluate the performance of this method.

Conclusion

In this study, a CNN classifier trained by CBF, Tmax, and

ROI masks of Tmax > 6 s, has good performance to identify

patients with AIS within a 6-h window for the treatment of

EVT. Comparing with existing works to classify patients within

a 4.5-h window for the treatment of rt-PA thrombolysis, to

the best of our knowledge, this is the first work to assist

the treatment of EVT. Meanwhile, our method performs the

identifying task using CBF and Tmax, which can be acquired

by CTP or PWI. It means that our method is compatible with

both CT and MR devices, while previous works only support

MR devices because their inputs rely on DWI and FLAIR

images which are examined only by MR devices. Commonly,

CT examination is faster than MR, which benefits to bring the

patients out of danger. Therefore, it has the potential to be widely

used to accurately estimate the stroke onset time of patients

with WUS.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding authors.

Frontiers inMedicine 07 frontiersin.org

https://doi.org/10.3389/fmed.2023.1085437
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Gao et al. 10.3389/fmed.2023.1085437

Ethics statement

Ethical review and approval was not required for the

study on human participants in accordance with the local

legislation and institutional requirements. Written informed

consent from the [patients/ participants OR patients/participants

legal guardian/next of kin] was not required to participate in

this study in accordance with the national legislation and the

institutional requirements.

Author contributions

HG and YB designed the study. HG, YC, and JW collected the

data. HG, YB, and HY were involved in the interpretation of data.

YB, HZ, and GC analyzed and visualized the data. HG and YB

drafted the manuscript. QY and LW revised the manuscript. All

authors read and approved the final manuscript.

Funding

This work was partially supported by grants from the

Capital’s Funds for Health Improvement and Research (CHF), and

Beijing Hospitals Authority’s Ascent Plan, and Clinical Research

Incubation Project, Beijing Chao-Yang Hospital, Capital Medical

University (CYF202213), and National Natural Science Foundation

of China (82171396 and 81820108014), and National Key Research

and Development Project (2018YFE0114400).

Conflict of interest

GC was employed by Neusoft Medical System Co., Haidian,

Beijing, China.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K,
et al. Guidelines for the early management of patients with acute ischemic stroke: 2019
update to the 2018 guidelines for the early management of acute ischemic stroke: a
guideline for healthcare professionals from the American Heart Association/American
Stroke Association. J Stroke. (2019) 50:e344–418. doi: 10.1161/STR.0000000000
000211

2. Elfil M, Eldokkmak M, Baratloo A, Ahmed N, Koo BB. Pathophysiologic
mechanisms, neuroimaging and treatment in wake-up stroke. CNS Spect. (2019)
25:460–7. doi: 10.1017/S1092852919001354

3. Lee H, Lee E-J, Ham S, Lee H-B, Lee JS, Kwon SU, et al. Machine
learning approach to identify stroke within 45 h. J Stroke. (2020) 51:860–
6. doi: 10.1161/STROKEAHA.119.027611

4. Stoessl AJ, Martin WW, Mckeown MJ, Sossi V. Dwi-flair mismatch for the
identification of patients with acute ischaemic stroke within 4–5 h of symptom
onset (pre-flair): a multicentre observational study. J Lancet Neurol. (2011) 10:951–2.
doi: 10.1016/S1474-4422(11)70192-2

5. Zhu H, Jiang L, Zhang H, Luo L, Chen Y, Chen Y. An automatic machine learning
approach for ischemic stroke onset time identification based on dwi and flair imaging.
NeuroImage Clin. (2021) 31:102744. doi: 10.1016/j.nicl.2021.102744

6. Zhang Y-Q, Liu A-F, Man F-Y, Zhang Y-Y, Li C, Liu Y-E, et al. Mri radiomic
features-based machine learning approach to classify ischemic stroke onset time. J
Neurol. (2021) 2021:1–11. doi: 10.1007/s00415-021-10638-y

7. Ho KC, Speier W, El-Saden S, Arnold CW, editors. Classifying acute ischemic
stroke onset time using deep imaging features. In: AMIA Annual Symposium
Proceedings. Bethesda: American Medical Informatics Association (2017).

8. Ho KC, Speier W, Zhang H, Scalzo F, El-Saden S, Arnold CW, et al. machine
learning approach for classifying ischemic stroke onset time from imaging. IEEE Trans
Med Imag. (2019) 38:1666–76. doi: 10.1109/TMI.2019.2901445

9. Albers GW, Lansberg MG, Kemp S, Tsai JP, Lavori P, Christensen S, et al.
A Multicenter Randomized Controlled Trial of Endovascular Therapy Following
Imaging Evaluation for Ischemic Stroke (Defuse 3). London: SAGE Publications Sage
(2017). doi: 10.1177/1747493017701147

10. Jovin TG, Saver JL, Ribo M, Perreira V, Furlan A, Bonafe A, et al. Diffusion-
weighted imaging or computerized tomography perfusion assessment with clinical
mismatch in the triage of wake up and late presenting strokes undergoing

neurointervention with trevo (dawn) trial methods. Int J Stroke Off J Int Stroke Soc.
(2017) 2017:1747493017710341. doi: 10.1177/1747493017710341

11. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, et al.
Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J
Med. (2015) 372:1009–18. doi: 10.1056/NEJMoa1414792

12. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al.
Thrombectomy 6–24 h after stroke with a mismatch between deficit and infarct. J N
Engl J Med. (2018) 378:11–21. doi: 10.1056/NEJMoa1706442

13. Wouters A, Dupont P, Norrving B, Laage R, Thomalla G, Albers GW,
et al. Prediction of stroke onset is improved by relative fluid-attenuated inversion
recovery and perfusion imaging compared to the visual diffusion-weighted
imaging/fluid-attenuated inversion recovery mismatch. Stroke. (2016) 47:2559–
64. doi: 10.1161/STROKEAHA.116.013903

14. Campbell B, Christensen S, Levi CR, Desmond PM, Donnan GA, Davis SM,
et al. Comparison of computed tomography perfusion and magnetic resonance
imaging perfusion-diffusion mismatch in ischemic stroke. Stroke. (2012) 43:2648–
53. doi: 10.1161/STROKEAHA.112.660548

15. Olivot J-M, Mlynash M, Thijs VN, Kemp S, Lansberg MG, Wechsler L, et al.
Optimal tmax threshold for predicting penumbral tissue in acute stroke. J Stroke. (2009)
40:469–75. doi: 10.1161/STROKEAHA.108.526954

16. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens
TE, Johansen-Berg H, et al. Advances in functional and structural
Mr image analysis and implementation as Fsl. Neuroimage. (2004)
23:S208–S19. doi: 10.1016/j.neuroimage.2004.07.051

17. Cortes C, Vapnik V. Support-vector networks.Mach Learn. (1995) 20:721–8.

18. Breiman L. Random forests. Mach Learn. (2001) 45:5–
32. doi: 10.1023/A:1010933404324

19. Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. J Physiol. (1962) 160:106.

20. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale
image recognition. J arXiv preprint arXiv. (2014).

21. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two
or more correlated receiver operating characteristic curves: a nonparametric approach.
J Biomet. (1988) 1988:837–45.

Frontiers inMedicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2023.1085437
https://doi.org/10.1161/STR.0000000000000211
https://doi.org/10.1017/S1092852919001354
https://doi.org/10.1161/STROKEAHA.119.027611
https://doi.org/10.1016/S1474-4422(11)70192-2
https://doi.org/10.1016/j.nicl.2021.102744
https://doi.org/10.1007/s00415-021-10638-y
https://doi.org/10.1109/TMI.2019.2901445
https://doi.org/10.1177/1747493017701147
https://doi.org/10.1177/1747493017710341
https://doi.org/10.1056/NEJMoa1414792
https://doi.org/10.1056/NEJMoa1706442
https://doi.org/10.1161/STROKEAHA.116.013903
https://doi.org/10.1161/STROKEAHA.112.660548
https://doi.org/10.1161/STROKEAHA.108.526954
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1023/A:1010933404324
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

	Identifying patients with acute ischemic stroke within a 6-h window for the treatment of endovascular thrombectomy using deep learning and perfusion imaging
	Introduction
	Methods
	Patients
	Experimental design
	Image preprocessing
	Feature extraction
	Classifier construction
	Statistical analysis

	Results
	Patient characteristics
	Training and testing dataset analysis
	Performance analysis of the classifiers
	Performance analysis of the ROI masks
	Performance analysis of scanning devices
	Examples of identification

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


