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Caveolin-1 (Cav-1) is an integral sca�olding membrane protein found in most cell

types. Cav-1 has been found to contribute significantly to ocular function, with

mutations of Cav-1 being associated with a genetic risk of glaucoma development.

Raised intraocular pressure (IOP) is a major modifiable risk factor for glaucoma. Cav-1

may be involved in both IOP-dependent and independent mechanisms involving

vascular dysregulation. Systemic vascular diseases including hypertension, diabetes

and hyperlipidaemia, have been shown to be associated with glaucoma development.

Cav-1 is closely interlinked with endothelial nitric oxide synthase pathways that

mediate vascular function and prevent cardiovascular diseases. Endothelial nitric

oxide synthase and endothelin-1 are key vasoactive molecules expressed in retinal

blood vessels that function to autoregulate ocular blood flow (OBF). Disruptions in

the homeostasis of OBF have led to a growing concept of impaired neurovascular

coupling in glaucoma. The imbalance between perfusion and neuronal stimulation

arising from Cav-1 depletion may result in relative ischemia of the optic nerve

head and glaucomatous injury. OBF is also governed by circadian variation in IOP

and systemic blood pressure (BP). Cav-1 has been shown to influence central BP

variability and other circadian rhythms such as the diurnal phagolysosomal digestion

of photoreceptor fragments and toxic substrates to maintain ocular health. Overall,

the vast implications of Cav-1 on various ocular mechanisms leading to glaucoma

suggest a potential for new therapeutics to enhance Cav-1 expression, which has

seen success in other neurodegenerative diseases.
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Caveolin-1 in vascular health

Caveolin-1 (Cav-1) is a major coat protein of caveolae, which are flask-shaped invaginations

of the plasma membrane ubiquitously found in various cell types, particularly adipocytes,

endothelial cells, epithelial cells and fibroblasts. Caveolae have been discovered to play roles in

lipid transportation (1), membrane traffic (2), and signal transduction (3). Although there are

three caveolin genes identified in mammals, namely Cav-1, -2, and -3, Cav-1 is notably essential

for caveolae formation and function (4, 5). Through a multitude of signaling cascades, Cav-1

has been implicated in cardiovascular disease, atherosclerosis, diabetes, cancer, and a variety

of degenerative muscular dystrophies (6). In the cardiovascular system, Cav-1 particularly

contributes to the functions of endothelial cells via interacting with endothelial nitric oxide

synthase (eNOS) and regulating the release of nitric oxide (NO) (7).
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Caveolin-1 involvement in glaucoma

While Cav-1 has been extensively studied in extra-ocular diseases,

its role in ocular function and diseases has only recently received

attention. Cav-1 is expressed abundantly in Muller glia, retinal and

choroidal vasculature, and retinal pigment epithelium (RPE) (8).

Mutations of Cav-1 gene are associated with an increased genetic

risk of primary open-angle glaucoma development across various

population cohorts (9–12).

Glaucoma is a neurodegenerative disease characterized by

progressive loss of retinal ganglion cells (RGC) and optic nerve

degeneration that results in irreversible visual field deficits. Raised

intraocular pressure (IOP) is a major modifiable risk factor for

glaucoma (13). The effect of Cav-1 deficiency on IOP homeostasis has

been evaluated in various pre-clinical studies, with Cav-1 deficient

mice displaying significantly higher IOP (14–16). A postulated

mechanism underlying ocular hypertension in Cav-1 deficiency is

the resultant overreactive eNOS signaling pathways. While NO is a

potent vasodilator and has a crucial role in lowering IOP, chronic

dysregulation of eNOSmay lead to outflow tract dysfunction. Indeed,

Cav-1 depletion has been independently associated with increased

conventional outflow resistance leading to decreased drainage of

aqueous humor from the anterior chamber (17). Additionally, new

findings have shed light on Cav-1 potential role as mechanosensors

in the Schlemm’s canal and trabecular meshwork that protects

against mechanical stress from IOP fluctuations (18). Cav-1 may

contribute to increased IOP and increase the susceptibility of the

optic nerve head (ONH) to cellular damage due to altered outflow

tract mechanoprotection.

Cav-1 has also been implicated in altering vascular function,

both systemically and within the eye. These alterations in vascular

profile may contribute to greater glaucoma risk, as described in

this mini-review.

The role of Cav-1 in mediating systemic
vascular risk factors for glaucoma

Various systemic vascular risk factors including hypertension

or hypotension, diabetes mellitus, hyperlipidaemia, atherosclerotic

diseases and migraine have been associated with glaucoma

development. Hypertension has a direct causative link to glaucoma

risk by means of increased ciliary blood flow and aqueous humor

production coupled with decrease outflow due to elevated episcleral

venous pressure (19). Hypotension is particularly associated

with normal-tension glaucoma since it lowers ocular perfusion

pressure (OPP), resulting in optic nerve ischemia and glaucomatous

degeneration (20). Circadian variation of blood pressure (BP) may

have a role in glaucoma development too. A meta-analysis in 2015

pooled evidence from epidemiological studies and established

nocturnal BP fall as a risk factor for progressive visual field losses

in glaucoma (21). In presence of the other vascular risk factors,

nocturnal dipping exacerbates poor optic nerve perfusion and

glaucomatous optic neuropathy (22). The association between

diabetes and glaucoma may be explained by a few key mechanisms.

Hyperglycaemia and dysregulation in lipid metabolism results

in oxidative stress, vascular dysregulation and eventual neuronal

injury (23–25). Hyperglycaemia of the aqueous humor also leads

to structural remodeling at the trabecular meshwork and impaired

aqueous humor outflow (26). Atherosclerotic diseases include a

spectrum of disease conditions from coronary artery disease to

peripheral vascular disease and stroke. The association between

atherosclerotic diseases and glaucoma has been extensively studied

(27–30), however current evidence is insufficient to support

a direct causal relationship between the two due to potential

confounding factors from the underlying pathophysiological

processes involved. Finally, migraine is associated with systemic

vasospasm causing relative ischemia, thereby increasing the risk of

glaucoma, particularly normal-tension glaucoma (31–33).

Many of the aforementioned systemic vascular risk factors

have been linked to Cav-1. From diabetes to lipid disorders and

pulmonary fibrosis, Cav-1 plays an integral role in maintaining

vascular homeostasis and controlling atherosclerosis formation

through lipoprotein trafficking across the vascular endothelium (34–

36). Central to this physiology is the regulatory setup of Cav-1/eNOS.

eNOS is constitutively expressed in vascular endothelium and

produces the vasodilatory gas NO which maintains endothelial

function and health (37). eNOS bounded to caveolae is rendered

inactive by its direct association with caveolin scaffolding domain

of Cav-1 (38). Cav-1 directly competes with calmodulin (an

activator of eNOS) for binding to the active site of eNOS (39).

Furthermore, Cav-1 also regulates eNOS expression levels by

inhibiting serine/threonine amino acid kinase Akt phosphorylation

of eNOS, thus governing the basal level of NO in endothelial

cells (40). While Cav-1 depletion is characterized by chronic

hyperactivation of eNOS, a decoupling of the de-inhibited eNOS

may occur, thus resulting in a decreased bioavailability of NO (41).

Reduced NO production is associated with vascular dysfunction and

cardiovascular mortality (42).

Cav-1 mediated regulation of ocular
blood flow via NO-dependent and
independent pathways

Autoregulation of ocular blood flow (OBF) in the retinal

vasculature enables a relatively stable supply of blood andmetabolites

despite fluctuation in OPP (43). OPP is calculated as derived from the

subtraction of IOP from mean arterial pressure (44). Variations in

mean arterial pressure and IOP results in corresponding variations

in OPP. Within a range of OPP, OBF remains constant due to

autoregulation of vascular tone in the retinal and ONH (45).

Two vasoactive factors, namely NO and ET-1, are crucial in the

autoregulatory mechanism (46). NO is a potent vasodilator released

by endothelial cells and acts on pericytes to cause vasodilation

(47). ET-1 is a potent vasoconstrictor that exerts its effect via ETA,

ETB1, and ETB2 receptors. ETA and ETB2 receptors are found

on vascular smooth muscle cells and causes vasoconstriction while

ETB1 is found on endothelial cells and cause vasodilation (48). The

counterregulatory effects of NO and ET-1 maintains an appropriate

vascular tone and constant blood flow to the ONH.

Impaired autoregulation is seen in glaucomatous optic

neuropathy. This arises from cellular dysfunction leading to an

imbalance of vasoactive factors and ischemia at the ONH (49, 50).

Numerous studies have shown that elevated levels of ET-1 are

associated with disease pathology (51–54). Blocking of ET-1

receptors in mice increased OBF and protects from glaucomatous
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injury (55). Alterations in NO signaling pathways either through

upregulation or downregulation are also implicated in glaucoma.

High NO may increase ocular perfusion but cause oxidative stress

and injury to neurons due to formation of reactive oxygen species

(56). Decreased NO levels are found in the aqueous humor of

glaucoma patients (57). Characteristic RGC loss and vascular

dysfunction seen in glaucoma are more prominent with decreased

NO production and impairment in its downstream NO-cGMP

signaling pathways (58).

ET-1 and NO dysregulation is partly mediated by Cav-1. The

effect of Cav-1 on NO homeostasis has been explained in the

previous section. An intrinsic regulatory interaction also exists

between Cav-1 and ET-1. Both the scaffolding domain and C-

terminal domain of Cav-1 can bind to ET receptors and this

localizes the complex to the caveolae membrane (59); it has

been suggested that compartmentalization of ETB receptor/Cav-1

complexes within caveolae ensures signal transduction and prevents

rapid endocytosis of the receptor (60). An early study demonstrated

that disruption of caveolae structure significantly diminishes

ET-1-induced phosphorylation of ERK 1/2 and subsequent signal

propagation (60). This interplay between Cav-1 and mediators of

vascular tone suggests the crucial role of Cav-1 in ocular vascular

health. Cav-1 deficiency is associated with vascular dysregulation

which may predispose to structural neuronal injury at the ONH in

the presence of existing stressors like IOP, thus exacerbating disease

progression (61).

Cav-1 depletion is also associated with disruptions in

blood-retinal barrier integrity and venous morphology, that

are independent of eNOS activity. Gu et al. have reported

hyperpermeability of the large branch retinal veins of the superficial

retina, and enlargement of retinal veins in Cav-1 knockout mice (62).

These alterations were found to be independent of NOS-expression

and activity. It is therefore possible that Cav-1 mediates vascular

dysfunction in the eye through both NO-dependent and independent

mechanisms, where the former regulates capillary dilation and the

latter stabilizes vessel wall integrity in retinal veins.

Neurovascular coupling in glaucoma

Neuronal activity is tightly matched to OBF in the eye in what

is termed as neurovascular coupling (NVC) (45). An increase in

neuronal stimulation is associated with a corresponding increase in

blood flow to meet the metabolic requirements of the retinal tissue.

This NVC response is mediated by the neurovascular unit which

comprises vascular cells, glial cells and neurons (63, 64). Defective

NVC has been described in primary open-angle glaucoma (65, 66).

In response to flicker-light stimulation, the increase in OBF in

glaucoma patients was found to be significantly lower than that of

healthy subjects (67). Various mechanisms may explain the defective

NVC response in glaucoma. Firstly, glaucoma is characterized by

RGC apoptosis due to various possible causes involving raised IOP,

oxidative stress and mitochondrial dysfunction—decreased neuronal

signaling from RGCs may drive reduced NVC (68–70). Secondly,

decreased gap junction expression in the retinal and ONH also affects

communication between cells of the neurovascular unit (71, 72).

Lastly, the integrity of retinal barrier is compromised due to the loss

of tight junctions (73), leading to both compromised blood supply

and transendothelial migration of inflammatory cells causing further

neuronal injury (74).

On the back of increasing evidence of Cav-1 involvement in

glaucoma, our own study in Cav-1 knockout mice showed defective

NVC at the ONH as assessed by laser speckle flowgraphy (16).

This is associated with changes in vessel morphology as well as a

decrease in electrophysiological function of RGCs (16). While the

temporal association has yet to be clearly-established, it is possible

that vascular dysfunction contributes to defective NVC which is

associated with early functional RGC injury before structural losses

are seen. Apart from its role inmediating vascular tone as described in

the previous sections, Cav-1 may influence microvascular structural

characteristics by downregulating vascular endothelial growth factor

(75). Defective Cav-1 promotes angiogenesis, but the excessive

vascular branching pattern may lead to poorer perfusion instead (76).

These findings support the theory that defective Cav-1 is associated

with vascular dysfunction and impaired NVC. However, the precise

involvement of glial cells or retinal microvasculature in regulating

the NVC process remains to be seen—particularly in the context

of glaucoma.

Cav-1 and disruption of circadian
rhythms

Numerous studies have shown that circadian variation in BP,

IOP, and OPP are risk factors for the development of glaucoma.

Progression of visual field loss in glaucoma patients has been

associated with a larger range of diurnal IOP fluctuations and

nocturnal pressure spikes (77–79). IOP tends to be higher at night due

to decreased aqueous humor drainage via the trabecular meshwork

and uveoscleral pathway (80). Similarly, diurnal variation in BP and

nocturnal dipping may contribute to glaucoma pathogenesis as well

(81, 82). Nocturnal BP reduction is attributed to a fall in sympathetic

tone with reduced circulating levels of catecholamines (83). OPP is

driven by a complex interplay between BP and IOP; fluctuations in

either will translate to variations in OPP (84). Abrupt variations in

OPP beyond the capacity of autoregulatory mechanisms may thus

cause unstable OBF (85, 86), triggering a sequence of ischemic and

reperfusion injury at the ONH.

Limited studies have described Cav-1 involvement in

circadian rhythms disruptions causing glaucoma development.

An experimental study by Desjardins et al. (87) showed that Cav-1

deficient mice exhibit decreased very low frequency BP variability.

Administration of caveolin scaffolding domain reversed this drop

in BP variability. The authors attributed this to the increased NO

production ex vivo arising from reduced allosteric inhibition by

Cav-1. While the bandwidth of spectral analysis cannot be directly

applicable to human, the study does provide invaluable insights

regarding the function of Cav-1 on NO production and control

of central BP variability. Another circadian rhythm implicated in

Cav-1 depletion is the diurnal pattern of renewal of photoreceptor

outer segment (88). RPE supports photoreceptors neurons via the

diurnal clearance of outer segment fragments (89). Cav-1 depletion

impairs phagolysosome degradation by reversing the diurnal activity

of enzymes in the RPE (88). Rod photoreceptor visual function is

found be decreased with Cav-1 knockout (8).

While the present evidence for cav-1 involvement in circadian

regulation remains scant, the unique role of Cav-1 in mediating

ocular perfusion via multiple pathways warrants further studies into

how circadian disruptions may influence Cav-1 function.
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Potential therapeutic targets

Current treatment for glaucoma relies heavily on ocular

hypotensive medications. Reduction in IOP has proven effective in

preventing and slowing disease progression (85). In addition to its

effectiveness, IOP-lowering medications exhibit minimal systemic

adverse effects and high rates of patient tolerability (90). However,

continued disease progression occurs in a small subset of patients

despite adequate IOP lowering (91, 92). Furthermore, a modest

proportion of patient experienced glaucomatous optic neuropathy

despite having normal IOP, in what is termed as normal-tension

glaucoma (93). This suggests that there are other IOP-independent

mechanisms that may contribute to glaucoma development (94).

The multiple roles of Cav-1 in modulating ocular health and

glaucoma risk suggest the potential for new therapeutic strategies

that increase Cav-1 expression or augment its downstream signaling.

While research on Cav-1 therapeutics remains in its infancy, success

with Cav-1 gene therapy for chronic diseases have been described

in few recent studies. Lin et al. demonstrated that electroporation-

mediated transfer of the Cav-1 gene protects against bleomycin-

induced pulmonary fibrosis in mouse lungs via downregulation of

inflammasome activity and reduction in monocyte recruitment and

circulating cytokines (95). The use of electroporation to deliver gene

targets is currently being explored in clinical trials for cancer and

vaccines (96). It thus remains to be seen if the promising outcomes

of Cav-1 gene therapy for idiopathic pulmonary fibrosis can be

replicated in humans as well. Cav-1 therapy has also been shown

to preserve or delay neurodegeneration in a preclinical model of

Alzheimer’s disease. Wang et al. showed that synapsin-promoted

Cav-1 gene therapy was able to maintain neuronal and synaptic

morphology and preserve hippocampal function such asmemory and

learning in mice with Alzheimer’s disease (97). Further translational

or clinical research may focus on whether the therapeutic potential of

Cav-1 can be exploited for neuroprotective effects in the human eye,

possibly averting RGC loss and glaucoma development.

Conclusions

Raised IOP has long been regarded as the only modifiable risk

factor for glaucoma. However, adequate IOP lowering with anti-

glaucoma medications may not always deter glaucoma progression.

Hence, other factors independent of IOP may be involved in the

complex pathogenesis of glaucoma. The “vascular theory” affecting

neuronal function has gained attention recently with new evidence

showing vascular dysregulation may precede RGC loss (98). Patients

with cardiovascular risk factors are at an increased risk of glaucoma.

Dysregulation of OBF due to altered levels of vasoactive substances

may lead to disruption in blood supply of the ONH. Impaired

NVC can also cause a mismatch of neuronal stimulation and ocular

perfusion. All these disturbances in vascular function may manifest

as altered vessel morphology and vascular dropout seen in early

glaucoma (99).

Cav-1 plays an important role in regulating various pathways

involved in the “vascular theory” of glaucoma. There is consistent

evidence describing the association between Cav-1 depletion

and systemic cardiovascular disease, impaired autoregulation and

defective NVC. While the underlying mechanism has not been fully

elucidated, understanding this crucial association may pave the way

for future therapeutics that focus on restoring vascular health to

avert glaucomatous degeneration. Cav-1 therapeutics have shown

promising outcomes for other disease, raising hopes that a similar

approach can be applied to glaucoma prevention. Future research

should focus on exploring the intricate interplay between Cav-1

and vascular dysregulation and exploiting the translative potential of

Cav-1 therapy for alternative glaucoma treatment.
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