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For those born with cystic fibrosis (CF), hyper-concentrated mucus with a 
dysfunctional structure significantly impacts CF airways, providing a perfect 
environment for bacterial colonization and subsequent chronic infection. 
Early treatment with antibiotics limits the prevalence of bacterial pathogens 
but permanently alters the CF airway microenvironment, resulting in antibiotic 
resistance and other long-term consequences. With little investment into new 
traditional antibiotics, safe and effective alternative therapeutic options are urgently 
needed. One gathering significant traction is bacteriophage (phage) therapy. 
However, little is known about which phages are effective for respiratory infections, 
the dynamics involved between phage(s) and the host airway, and associated by-
products, including mucus. Work utilizing gut cell models suggest that phages 
adhere to mucus components, reducing microbial colonization and providing 
non-host-derived immune protection. Thus, phages retained in the CF mucus layer 
result from the positive selection that enables them to remain in the mucus layer. 
Phages bind weakly to mucus components, slowing down the diffusion motion 
and increasing their chance of encountering bacterial species for subsequent 
infection. Adherence of phage to mucus could also facilitate phage enrichment and 
persistence within the microenvironment, resulting in a potent phage phenotype or 
vice versa. However, how the CF microenvironment responds to phage and impacts 
phage functionality remains unknown. This review discusses CF associated lung 
diseases, the impact of CF mucus, and chronic bacterial infection. It then discusses 
the therapeutic potential of phages, their dynamic relationship with mucus and 
whether this may enhance or hinder airway bacterial infections in CF.
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Introduction

Antimicrobial resistance (AMR) has a tremendous healthcare burden. It is estimated to 
account for over 10 million deaths (1) at an annual healthcare cost of $400 million in Australia 
alone by 2050 (2). Unfortunately, individuals with chronic conditions, including cystic fibrosis 
(CF), are likely to experience more severe consequences of AMR. Therapies such as antibiotics 
are essential for chronic bacterial eradication; however, their repeated and semi-continuous 
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consumption is likely a key driver of AMR, especially in the CF 
population. Disappointingly, the discovery pipeline into the 
production of novel antibiotics is waning, and current innovation has 
not kept up with evolving resistance. The arrival of CFTR modulators 
has substantially improved the lung function of individuals with CF, 
but the benefit for inflammation and infection remains inconclusive 
(3). Therefore, there is still a great need for therapeutics that can 
complement CFTR modulators and reduce chronic bacterial infection.

Bacteriophage (phage) therapy has been proposed to tackle chronic 
bacterial infections in CF (4–6). Phages are found ubiquitously in the 
body and the natural environment and show strong potential for 
clinical use (7–9). Those applicable for therapy are typically lytic phages 
that recognize and bind to specific bacterial cell surface receptors (10, 
11). Several clinical cases have demonstrated a reduction in bacterial 
density and clinical improvement when bacterial infections have been 
treated with phage (12–16). However, the full impact of phage therapy 
on pulmonary infection in CF is yet to be fully appreciated. Many 
unanswered questions include determining the best administration 
route, concomitant use of antibiotics or mucolytic agents, length of the 
treatment period, and phage formulation. Furthermore, additional 
basic research is needed to predict these parameters and accurately 
measure host immune responses.

In young children with CF, mucus flakes present very early in life 
(17) and are associated with inflammation and airway luminal hypoxia 
without bacterial infection and structural lung disease (18). The 
resultant mucus flakes create a microenvironment favorable for 
bacterial colonization (17, 19). The mucus layer is an essential entity 
facilitating phage diffusion across the mucosal surface, and recent 
evidence in the gut suggests that they can bind to parts of mucus, 
improving their bactericidal activity (11). Knowing that mucus and its 
structure in CF are distinctly unique, little is known about how this 
would impact phage functionality. In this review, we  explore the 
clinical features of CF disease, antibiotic choice, and the underlying 
drivers of MDR. We  summarize treatment options and provide 
evidence as to why phage therapy may be crucial for infection control 
in this population. We explore the feasibility and benefit of phage 
therapy in treating chronic infection in CF, including investigating 
phage behavior and efficacy in the CF lung microenvironment.

Cystic fibrosis

CF lung disease and what do we know 
about CF mucus?

Cystic Fibrosis is an autosomal recessive genetic disease that 
markedly impacts multiple mucosal surfaces, particularly the pancreatic 
ducts, intestinal mucosa and airway epithelium. The mutation of the 
cystic fibrosis transmembrane conductance regulator (CFTR) gene on 
chromosome 7 (7q31.2) results in defective chloride transport across 
the apical surface of the epithelial (20–22). Impaired ion transport, 
imbalanced water flow in the CF airway surface liquid volume, and 
airway dehydration prevent adequate cough clearance via the 
mucociliary escalator (23). There are also higher concentrations of 
mucins in the lungs of those with CF and elevated osmotic pressure of 
the mucus layers, which subsequently triggers thick, dense mucus 
production and drives muco-inflammatory airway obstruction (24–27). 
Recently, mucin content analysis in bronchoalveolar lavage fluid (BALf) 

of children with CF revealed both elevated mucin concentration and 
increased mucus burden typified by “mucus flakes” (17) which were 
associated with inflammation and airway luminal hypoxia (17, 18). The 
impact of dysfunctional mucus in CF on inhaled therapeutic agents 
such as antibiotics and chemical compounds has also been investigated 
(28, 29). Specifically, macromolecules (mucins and DNA) in CF mucus 
increased its viscosity and impeded the diffusion of therapeutic agents 
such as antibiotics (30). Furthermore, high salt concentrations and low 
oxygen levels have been shown to reduce antibiotic effectiveness (31, 
32). Knowing this effect raises the question of whether the CF mucus 
could affect other treatment approaches, including phage.

Chronic bacterial infections and associated 
treatment regimens in CF

A hallmark of CF lung disease includes hyper-inflammatory 
responses to early-life colonization and infection events that continue 
over life to develop into chronic inflammation (33–35). The 
acquisition of bacterial pathogens in CF airways appears to be an 
age-dependent sequence (Figure 1) (36). Bacterial-induced pulmonary 
exacerbations in infants and children with CF are often associated 
with Haemophilus influenzae, Staphylococcus aureus, and Streptococcus 
pneumoniae (37). As disease progresses with age, the CF airway 
becomes more susceptible to gram-negative bacteria, particularly 
Pseudomonas aeruginosa, which is highly associated with chronic 
airway inflammation (Figure  1) (38–41). In adults with CF, most 
pulmonary exacerbations are independent of new bacterial strain 
acquisition (38) or increases in the airway density of P. aeruginosa 
(40). Other less common pathogens include Streptococcus pneumoniae, 
Stenotrophomonas maltophilia, Moraxella catarrhalis, methicillin-
resistant Staphylococcus aureus (MRSA), Burkholderia cepacia complex 
(BCC), Achromobacter xylosoxidans, and nontuberculous 
mycobacteria (NTM) (42–46). Selection criteria, including the 
delivery method (e.g., intravenous or inhalation) and treatment 
duration, also influence which type of antibiotic could be chosen for 
CF pulmonary infections. For example, inhalation therapy is 
advantageous since it can directly target the lower respiratory tract 
and site of infection with higher doses of antibiotics and exhibits 
reduced systemic toxicity and side effects (32, 47). Administration of 
inhaled antibiotics, including tobramycin, colistin, aztreonam lysine 
and levofloxacin are now commonly used to manage infections in CF 
(48–50) and others, such as ceftaroline and vancomycin, have been 
assessed for their ability to eradicate specific infections including 
MRSA (51). In Australia, CF physicians typically select inhaled 
tobramycin or colistin as a secondary antibiotic in combination with 
a primary intravenous antibiotic such as ceftazidime (Figure 1) (52). 
Although prolonged use of inhaled antibiotics has not been reported 
for newly acquired multidrug-resistant bacterial strains, the long-term 
clinical impacts of high-dose antibiotics on the perturbation of airway 
microbes are still unknown. Antibiotic susceptibility profiles of 
various CF pathogens are also summarized in Figure 1 (53–58). The 
extensive consumption of antibiotics has resulted in increased isolated 
MDR pathogens. Indeed, polymicrobial interaction between 
P. aeruginosa and S. aureus has resulted in tobramycin resistance in 
isolates recovered from children with CF (59). The development of 
resistance towards the last-line option, colistin, in isolates derived 
from individuals with CF is particularly concerning (60–63).
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Alternative treatments and phage therapy

Antibiotic resistance has become a global issue, and the prescription 
of antibiotics by physicians has increased by 10 times in response to the 
expectation of patients (67). Long-term use of antibiotics and dosing of 
these drugs have become a major concern in CF, leading to the 
emergence of resistance over time. Alternative treatment methods have 
been and are currently being explored to address this, including targeting 
bacterial virulence and resistance (66). Anti-virulence compounds such 
as quorum sensing inhibitors (67, 68) and iron chelation (71, 72) 
successfully prevented bacterial aggregate, inhibited biofilm formation, 

reduced pathogenicity, and increased susceptibility to traditional 
antimicrobials. Strategies targeting resistance have included investigating 
efflux pump inhibitors (73, 74), anti-sense oligomers (75, 76), 
immunotherapy (77), host defence peptides (78, 79) and bacteriophages 
(4). Many of these strategies are still in the exploration and validation 
phases and are years off from translating to clinical care practice. The 
vital need for swift translation of alternative therapy into clinical use has 
identified phage therapy as the top candidate due to its successful use in 
humans when approved on compassionate grounds.

Phage therapy is highly applicable in CF, where most healthcare 
costs are associated with recurrent hospital visits due to chronic 

FIGURE 1

According to the Australian Cystic Fibrosis Data Registry 2020 (ACFDR 2020) (64), common microorganisms found in the respiratory tracts of 
individuals with CF, including the most common pathogen in early childhood S. aureus, and the most common pathogens in adulthood P. aeruginosa. 
Currie and colleagues reported the selection of intravenous primary and secondary inhaled or intravenous antibiotics by pediatrics or adult physicians 
across multiple CF centers in Australia (52). The susceptibility of a few common antibiotics (CAZ = ceftazimide; PIP/TAZ = piperacillin-tazobactam; 
TOB = tobramycin; COL = colistin; MER = meropenem; CIP = ciprofloxacin; VAN = vancomycin) of the common pathogens recovered from CF lung (60–
63). √ indicates susceptibility, +/− indicates partial susceptibility, − indicates resistant and NR indicates not reported. For example, S. aureus typically 
exhibits multi-drug resistance, across most antibiotics including macrolides (55, 65). Furthermore, the MRSA strain confers resistance to β-lactams, 
quinolones and aminoglycosides (55, 65). The prominent CF pathogen, P. aeruginosa, also is developing broad spectrum resistance and other less 
common pathogens, including BCC, are resistant to most of the β-lactams, aminoglycosides, and cationic antimicrobial peptides (66). Created with 
BioRender.com.
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bacterial infections (80). It holds many advantages over conventional 
antibiotic treatments used in CF, including shorter treatment periods 
(81–83), bacterial specificity (84), potent efficacy (85) and low toxicity 
(86). In the last 5 years, phage therapy has successfully been used to 
treat more than 30 individuals with CF (Supplementary Table S1) 
against various infections, including P. aeruginosa, S. aureus, B. dolosa, 
and M. abscessus. Phages were used singularly or in combination with 
other phages, typically called phage cocktails (Supplementary Table S1). 
Various treatment administration routes were also observed, including 
intravenous injection, oral or inhalation. Of significance were the 
reported improved clinical benefits (including a reduction in sputum 
and cough and improved lung function) but, more importantly, 
infection eradication. Furthermore, phage therapy was well tolerated, 
with no adverse events reported. Of these cases, the largest involved 
20 patients (primarily individuals with CF), where mycobacterial 
infections were successfully treated with phage (87). Patients were 
well-tolerated with treatment, and phage resistance was not observed 
(87). Recently, a multi-center clinical trial was successfully conducted 
assessing the safety, tolerability, pharmacokinetics, and 
pharmacodynamics of a multi-phage candidate in people with CF 
suffering chronic P. aeruginosa pulmonary infections (88). 
Encouragingly, results showed that the formulation was well tolerated, 
was effectively delivered to the site of infection, and reduced bacterial 
load in participants (88).

Airway mucus and CF

Normal airway mucus is a soft hydrogel composed of 90-95% 
water, mucus lipids and mucus proteins (such as glycoproteins) and 
~1–5% high-molecular-weight mucins (89). Mucus forms a protective 
layer above the airway epithelium to trap airborne particles, including 
pathogens. Under normal circumstances, cell surface glycosylation is 
attributed to the gene expression of glycosyltransferases, as these 
enzymes are involved in the biosynthesis of glycan products (90, 91). 
The O-linked glycosylation is when glycans (carbohydrates/
oligosaccharides) are added to mucins. A previous study by our group 
has demonstrated distinct mucins and glycosyltransferase profiles 
before and after rhinovirus infection (92). Not only did the expression 
of mucins vary between primary cells from CF and non-CF 
individuals, but the glycosyltransferases which form the eight core 
types of mucin O-glycans were also differentially expressed. These 
glycosyltransferases, including galactose, N-acetylglucosamine, fucose 
and terminal sialic acid or sulphate, form the various glycan moieties 
on the mucosal surface (93). The dysregulated mucin production 
suggests that other regulatory mechanisms, such as appropriate mucin 
packaging and secretion, might compromise CF cells (92). These 
variations are also linked to increased bacterial infection and 
inflammation due to the altered biomolecular properties of CF mucus 
(17, 94). Whether applying phage therapy to treat chronic infection in 
CF could further alter the glycosyltransferases profile of CF mucus 
requires a thorough understanding of the phage behavior and efficacy 
in the CF airway.

Before clinical translation, safety and efficacy assessment in vivo 
needs to be addressed, and small animal models have been typically 
used in this setting (95, 96). A systematic review assessing phage 
efficacy in various in vivo infection models showed significantly 
improved survival with treatment and reduced bacterial tissue 

burden (97). In addition, animal models have been used to 
effectively assess phage-antibiotic interactions (98) and the 
development of phage resistance (99). Furthermore, when 
combined with mathematical modelling, they have been used to 
quantify the dose and route of phage administration to fully capture 
phage efficacy, bacterial kinetics, and animal outcomes. The authors 
suggested that when accounting for host immune responses 
(mucins, cytokine, immune cells), this model could characterize the 
synergism between phages and the host innate immune system on 
bacteria elimination (100). In the setting of CF, animal models, 
including βENaC-Tg mice, CF pigs, CFTR rats, and ferrets, have all 
shed light on the early onset and progression of lung disease (101–
105). However, these models have several limitations, including that 
CF pigs lack effective host defence mechanisms against bacterial 
pathogens. The CF ferrets model develop severe CF-like lung 
disease rapidly despite antibiotic prophylaxis and exhibits 
spontaneous lung infection which requires ongoing high levels of 
care (102, 103). With no single animal model completely 
recapitulating progressive CF lung disease, assessing phage efficacy 
in this setting may prove challenging (106).

One alternative is (107) primary airway epithelial cells obtained 
from paediatric CF airways that can be  established in vitro and 
subsequently infected with pathogens and/or phages. Work conducted 
has shown little impact on to host airway, with no viability loss or 
significant inflammatory responses to phage reported (108). However, 
primary monolayer cultures do not fully reflect the CF mucosal 
epithelium. In order to more accurately recapitulate the in vivo CF 
airway, a more sophisticated proxy should be employed. Specifically, 
airway cells established at air-liquid interface (ALI) undergo 
differentiation and polarization, forming a mixed population of 
epithelial cells (ciliated, basal, goblet cells) to mimic the in vivo 
condition (109, 110). Importantly, since these models also contain 
goblet cells that produce mucus, it enables researchers to investigate 
the interplay between phage, mucus and pathogens and how the 
unique mucus properties seen in CF affect these relationships.

The interplay between CF mucus, 
pathogens and phage

The defective airway physiology of CF impairs mucociliary 
clearance, triggers thick, dense mucus production, promotes the 
establishment of microbes and affects host immune responses to 
infection and inflammation. In these environments, including the CF 
airway, bacteria live in aggregates forming clusters of communities 
suspended within the airway mucus and its self-secreted protein, called 
biofilms (53, 111). Although an ideal phage formulation to treat CF lung 
infection and penetrate biofilms is yet to be identified, phage cocktails 
targeting different receptors have effectively reduced the emergence of 
bacteriophage insensitive mutants (BIMs) (112). Others have also 
shown that concomitant treatment of phages and antibiotics (also 
termed phage-antibiotic synergy; PAS) results in synergistic efficacy and 
reduced antibiotic resistance (56, 57, 113). Several case studies have 
reported favorable outcomes of phage-antibiotic treatments in various 
scenarios (13, 14, 98, 114–116) Specifically and pertinent to this review, 
an adult with CF suffering a multi-drug resistance P. aeruginosa 
infection was successfully treated with a combination of a multi-phage 
cocktail and ciprofloxacin andpiperacillin–tazobactam (14).
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Despite this, phage activity is often limited by biofilm formation 
due to the impermeability of the biofilm matrix, preventing phages 
from reaching their receptors on the bacteria cell membrane. However, 
certain phages encode capsular depolymerase, which binds and breaks 
down the polysaccharide layer of bacteria for binding of phages to the 
receptors on bacteria surface (117) or degradation of 
exopolysaccharides which enable biofilm penetration, and hence is 
subsequently bactericidal (117–119). However, the effects of CF 
mucus on phage-bacteria/biofilm activity in the CF airway are still 
largely unknown and require investigation.

In response to phage, several bacterial defence mechanisms are 
activated, including modification of surface receptors (120, 121), 
prevention of phage DNA injection into bacteria cells (122), cleavage 
of phage DNA (123, 124), and finally, suicidal induction of infected 
bacterial cells (125, 126). However, whether CF mucus facilitates 
phage resistance while treating a chronic bacterial infection in CF lung 
is currently unknown. A recent study has provided some insight into 
this (130). Specifically, the authors demonstrated that the co-existence 
of a fish pathogen Flavobacterium columnare and their virulent phage 
in the presence of mucin lead to a significant increase in phage 
resistance, particularly CRISPR-Cas (an adaptive immune system that 

recognizes phage genomes) (127). The presence of static CF mucus 
flakes in the human lung creates a low-oxygen environment with an 
accompanying anaerobic layer (128). Although this may facilitate 
bacterial attachment, it could stimulate biofilm growth with the 
generation of dormant persister cells in its deeper layers, inhibiting 
phage propagation since nutrient resources are scarce.

The potential impact of CF mucus on 
phage therapy

The type of phages within CF lungs appears more similar, mainly 
derived from the pathogens that persist in the CF airways for longer, 
compared to a more diverse phage population in healthy airways (129) 
(Figure 2). However, very limited studies have reported the phage-
mucus interactions in the airway and the potential impacts of phage 
efficacy on respiratory bacterial infection. Recent evidence suggests 
that phages can bind to aspects of normal mucus that improve their 
bactericidal activity (11). However, little is known about how the CF 
mucus impacts phage functionality (Figure 2). Phage glycan-binding 
proteins bind to the bacterial surface for infection, while glycan ligands 

FIGURE 2

Schematic representation of the tripartite (phage-bacteria-epithelial cells) of CF epithelium is characterized by low airway surface liquid and thick and 
dense mucus containing mucus flakes and hyperconcentrated mucins. In CF, commensal bacteria and phage communities are dysregulated following 
long-term pathogenic chronic bacterial infection with dominant species and limited phages. (1) In addition, glycans that form mucins can also regulate 
the adhesion of P. aeruginosa. It is unknown if CF mucus flakes constitute a different glycan profile which could stimulate biofilm formation. (2) Phages 
can adhere to mucin directly; it is unknown how or if phages bind to CF mucus flakes directly and if their capsid proteins are subseqeuntly altered. 
Adherence of phage to CF mucus may facilitate phage enrichment and persistence within the microenvironment, resulting in a potent phage 
phenotype or vice versa. (3) Previous studies identified that certain phages, but not all, bind to mucins and diminish bacterial killing activity. Of concern, 
it is unknown if the binding activity of phages to mucin is a generic feature or size and structure dependent. (4) Importantly, if CF mucus results in the 
emergence of phage resistance which contradicts the theory of virulence enhancement by mucus, other therapeutic strategies might need to 
be applied in conjunction with the proposed phage therapy in CF. Created with BioRender.com.
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on the surrounding environment, including those on mucins, are 
modified to promote phage retention in the gastrointestinal tracts 
(130). Barr et al. (131) have demonstrated the binding of a coliphage 
to mucin through the Ig-like domains in its capsid proteins called T4 
Hoc protein (131). This binding increased the retention of T4 in the 
environment, allowing more interaction between phage and E. coli and 
serving as a critical regulator for phage-mediated bacterial lysis (132). 
Other work in non-respiratory research has shown that phages 
adhering to mucin have enhanced virulence toward bacteria (11, 133), 
empowering the chances of phage encountering bacterial hosts and 
providing additional mucosal immunity protection. Almeida et al. 
(133) demonstrated using a natural infection system that tailed phages 
with Ig-like domains in the phage capsids preferentially bind to mucin-
containing agar. Phage concentration was previously found to 
be 4.4-fold higher within the mucus layer and associated with phage 
enrichment (134). Phages adhere to mucus glycans through weak 
binding interactions with the capsid proteins (127). This binding 
mechanism enables the subdiffusive motion of phages within mucosal 
surfaces, providing notably enhanced encounter rates with bacterial 
hosts (131, 135). These benefits allow mucus-adherent phage to 
propagate throughout the mucus layer, forming a non-host-derived 
layer of immunity. In addition, the direct evolutionary benefits of 
phage binding to the mucosal surface are the increased cost of bacterial 
virulence and modifications of bacterial phenotype to be  more 
susceptible to phage infections in Flavobacterium columnare and 
Aeromonas sp. (133).

In contrast, Green et al. (136) found that incubating certain phages 
with porcine intestinal mucins reduced or inhibited bacterial killing. 
The bactericidal activity was restored after adding the mucolytic agent 
N-acetyl cysteine (NAC). Nevertheless, the same study identified a 
novel phage ES17, whose bactericidal activity was enhanced by 
binding to human heparan sulfated proteoglycans in mucus, forming 
a protective layer on the intestinal epithelium (136). In the CF airway, 
it is unknown how or if phages bind to CF mucus or the airway glycans 
directly and if phage binding enhances the bactericidal activity and 
virulence or vice versa, as observed in the gut lines previously.

In addition to regulating phages, glycans that form mucins can 
also regulate the physiology P. aeruginosa, including virulence and 
adhesion (137). A recent in vitro study found that P. aeruginosa 
induces contractions of luminal mucus, which accelerates bacterial 
aggregation and biofilm formation. This study showed that the host 
mucus production protects epithelium from acute virulence yet 
provides a breeding ground for biofilm and chronic infections (138). 
In the scenario of CF, dysregulated mucin production may enhance 
biofilm formation on the mucosal surface, however, it may counteract 
the positive interaction of mucus and phages on bactericidal activity. 
Future research addressing whether mucus increases or decreases the 
chance of phages and bacterial interaction, virulence, and enhancing 
phage resistance within the mucus layers may be key to successful 
phage therapy in CF.

The mucin content assessment in BALf of young children with CF 
has shown both elevated mucin concentration and the presence of 
mucus flakes evident very early in life (17). Mucus and mucin 
polymers, including MUC5AC, MUC2 and MUC5B, have been found 
to substantially diminish the activity of polymyxin and fluoroquinolone 
antibiotics against P. aeruginosa (139). However, what remains 
unknown is whether phages bind to CF mucus directly and if their 
capsid proteins are resultingly altered. The consideration here is 

whether this mucus will alter the glycan residues on mucin, affecting 
bacteria binding and modifying the efficacy of phage therapy. Would 
it be possible for this inhibition to also allow for increased predation 
as the bacteria move within the mucin microenvironment? Future 
work should assess if CF mucus can create an antimicrobial layer that 
reduces bacterial attachment and lessens epithelial cell death, as 
observed in a gut cell model (11). Furthermore, investigations are 
warranted to investigate whether phages retained in the CF mucus 
layer facilitate phage enrichment and persistence within the 
microenvironment, resulting in a potent phage phenotype or vice versa.

Conclusion

In summary, AMR in CF has long-term clinical consequences, 
and the hyper-concentrated mucus with a dysfunctional structure 
strikingly impacts CF airways, providing the right environment for 
chronic bacterial infections. With little investment in discovering 
new antibiotics, assessing the implementation of phage therapy as an 
alternative therapeutic strategy for AMR pulmonary infections is 
critical. This may include using 3D airway cultures to examine phage 
tropism for CF pathogens and determine the impact of phage therapy 
on bacterial biofilm penetration. In addition, research is needed to 
elucidate the interactive relationships between phage, CF pathogens 
and the host airway epithelium, including impacts of the dehydrated 
mucus typical of the CF airway. Furthermore, a recent study suggests 
that phage may be able to infect a much broader repertoire of bacteria 
beyond a single species (140). This raises the question of whether 
they also cause microbiome dysbiosis in the lung by infecting the 
resident commensal population. All these necessary research pieces 
must be conducted to understand the translational implications of 
such a therapy in CF. Many unanswered questions include 
determining the best administration route, concomitant use of 
antibiotics or mucolytic agents, length of the treatment period, and 
phage formulation. Furthermore, additional basic research is needed 
to predict these parameters and accurately measure host 
immune responses.
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