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Background: The gold standard for gathering data from electronic health records 
(EHR) has been manual data extraction; however, this requires vast resources and 
personnel. Automation of this process reduces resource burdens and expands 
research opportunities.

Objective: This study aimed to determine the feasibility and reliability of automated 
data extraction in a large registry of adult COVID-19 patients.

Materials and methods: This observational study included data from sites 
participating in the SCCM Discovery VIRUS COVID-19 registry. Important 
demographic, comorbidity, and outcome variables were chosen for manual 
and automated extraction for the feasibility dataset. We quantified the degree of 
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agreement with Cohen’s kappa statistics for categorical variables. The sensitivity 
and specificity were also assessed. Correlations for continuous variables were 
assessed with Pearson’s correlation coefficient and Bland–Altman plots. The 
strength of agreement was defined as almost perfect (0.81–1.00), substantial 
(0.61–0.80), and moderate (0.41–0.60) based on kappa statistics. Pearson 
correlations were classified as trivial (0.00–0.30), low (0.30–0.50), moderate 
(0.50–0.70), high (0.70–0.90), and extremely high (0.90–1.00).

Measurements and main results: The cohort included 652 patients from 11 
sites. The agreement between manual and automated extraction for categorical 
variables was almost perfect in 13 (72.2%) variables (Race, Ethnicity, Sex, Coronary 
Artery Disease, Hypertension, Congestive Heart Failure, Asthma, Diabetes Mellitus, 
ICU admission rate, IMV rate, HFNC rate, ICU and Hospital Discharge Status), and 
substantial in five (27.8%) (COPD, CKD, Dyslipidemia/Hyperlipidemia, NIMV, and 
ECMO rate). The correlations were extremely high in three (42.9%) variables (age, 
weight, and hospital LOS) and high in four (57.1%) of the continuous variables 
(Height, Days to ICU admission, ICU LOS, and IMV days). The average sensitivity 
and specificity for the categorical data were 90.7 and 96.9%.

Conclusion and relevance: Our study confirms the feasibility and validity of an 
automated process to gather data from the EHR.

KEYWORDS

validation, data automation, electronic health records, COVID-19, VIRUS COVID-19 
registry

Introduction

The pandemic of the coronavirus disease 2019 (COVID-19) has 
created a need to develop research resources rapidly (1). In response to 
the global demand for robust multicenter clinical data regarding patient 
care and outcomes, the Society of Critical Care Medicine (SCCM) 
Discovery Viral Infection and Respiratory Illness Universal Study 
(VIRUS) COVID-19 registry was created early in the pandemic (2–4).

Due to the surging nature of pandemic waves, and the subsequent 
workload and staffing burdens, clinical researchers have encountered 
difficulty in engaging in rapid, reliable manual data extraction from 
the electronic health record (EHR) (5). Manual chart review is the 
gold standard method for gathering data for retrospective research 
studies (6, 7). This process, however, is time consuming and 
necessitates personnel resources not widely available at all institutions 
(8, 9). Prior to the pandemic, automated data extraction from the EHR 

utilizing direct database queries was shown to be faster and less error-
pone than manual data extraction (8, 10). Nonetheless, data quality 
challenges related to high complexity or fragmentation of data across 
many EHR systems make automated extraction vulnerable (11–14). 
Both manual and automatic extraction rely on the EHR, which is an 
artifact with its own biases, mistakes, and subjectivity (15–20).

Although previous research has looked at these notions, the best 
methods for obtaining data from EHR systems for research still need 
to be  discovered. In response, we  sought to assess the feasibility, 
reliability, and validity of an automated data extraction process using 
data for the VIRUS COVID-19 registry.

Methods

VIRUS COVID-19 registry

The SCCM Discovery VIRUS COVID-19 registry (Clinical Trials 
registration number: NCT04323787) is a multicenter, international 
database with over 80,000 patients from 306 health sites across 28 
countries (21). VIRUS COVID-19 registry is an ongoing prospective 
observational study that aims at real-time data gathering and analytics 
with a feedback loop to disseminate treatment and outcome 
knowledge to improve COVID-19 patient care (3). The Mayo Clinic 
Institutional Review Board authorized the SCCM Discovery VIRUS 
COVID-19 registry as exempt on March 23, 2020 (IRB number: 
20–002610). No informed consent was deemed necessary for the 
study subjects. The procedures were followed in accordance with the 
Helsinki Declaration of 2013 (22). Among the participating sites, 30 
individual centers are collaborating to rapidly develop tools and 
resources to optimize EHR data collection. These efforts are led by the 
VIRUS Practical EHR Export Pathways group (VIRUS-PEEP).

Abbreviations: CAD, Coronary artery disease; CHF, Congestive heart failure; CI, 

Confidence interval; CKD, Chronic kidney disease; COPD, Chronic obstructive 

pulmonary disease; CRF, Case report forms; DM, Diabetes mellitus; ECMO, 

Extracorporeal membrane oxygenation; EHR, Electronic health records; HFNC, 

High flow nasal canula; HTN, Hypertension; ICU, Intensive care unit; IMV, Invasive 

mechanical ventilation; IRB, Institutional review boards; LOS, Length of stay; NIMV, 

Non-invasive mechanical ventilation; PCC, Pearson interclass correlation 

coefficient; REDCap, Research electronic data capture software; SCCM, Society 

of critical care medicine; SD, Standard deviations; SE, Standard error; SFTP, Secure 

file transfer platform; SOP, Standard operating procedure; SQL, Sequential query 

language; VIRUS, Viral Infection and Respiratory Illness Universal Study; VIRUS-

PEEP, VIRUS Practical EHR Export Pathways group; WHO, World Health 

Organization; WHO-ISARIC, World Health Organization- International Severe 

Acute Respiratory And Emerging Infection Consortium.
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Data collection

The VIRUS COVID-19 registry has over 500 variables which 
represents the pandemic registry common data standards for critically 
ill patients adapted from the World Health Organization- International 
Severe Acute Respiratory and Emerging Infection Consortium 
(WHO-ISARIC) COVID-19 CRF v1.3 24 February 2020 (23). The 
VIRUS-PEEP validation cohort was developed in an iterative, 
consensus process by a group of VIRUS: COVID-19 registry primary 
investigators to explore the feasibility of an automation process at each 
site. The Validation cohort variable was internally validated with seven 
core VIRUS COVID-19 investigators and subsequently validated from 
VIRUS-PEEP leads site’s principal investigators. Because of the 
timeline, the cohort could not be externally validated. A purposeful 
representative sample of the 25 most clinically relevant variables from 
each category (Baseline demographic and clinical characteristics of 
patient and ICU and Hospital-related outcomes) were selected and 
prioritized for this study (4). We focused on demographic data (age, 
sex, race, ethnicity, height, weight), comorbidities (coronary artery 
disease (CAD), hypertension (HTN), congestive heart failure (CHF), 
chronic obstructive pulmonary disease (COPD), asthma, chronic 
kidney disease (CKD), diabetes mellitus (DM), dyslipidemia/
hyperlipidemia), and clinical outcomes (intensive care unit (ICU) 
admission, days to ICU admission, ICU length of stay (LOS), type to 
oxygenation requirement, extracorporeal membrane oxygenation 
(ECMO), ICU discharge status, hospital LOS, and in-hospital mortality).

To avoid data extraction errors, we  utilized precise variable 
definitions [VIRUS COVID-19 registry code book, cases report form 
(CRF), and Standard Operating Procedure (SOP)], which were already 
implemented in the registry and during the pilot phase of the 
automation implementation. Additionally, all manual and automation 
data extraction personnel were educated regarding the definitions and 
procedures needed to collect and report the data.

System description

De-identified data were collected through Research Electronic 
Data Capture software (REDCap, version 8.11.11, Vanderbilt 
University, Nashville, Tennessee) at Mayo Clinic, Rochester, MN, 
United States (24). The REDCap electronic data capture system is a 
secure, web-based application for research data capture that includes 
an intuitive interface for validated data entry; audit trails for tracking 
data manipulation and export procedures; automated export 
procedures for seamless data downloads to standard statistical 
packages; and provide a secure platform for importing data from 
external sources.

Manual abstraction

The VIRUS PEEP group has implemented a comprehensive 
process for data extraction, which involves training manual data 
extractors. These data extractors are trained to identify, abstract, and 
collect patient data according to the project’s SOP. During a patient’s 
hospitalization, extractors follow them until discharge, ensuring that 
all relevant information is collected. The CRF used in this process 
includes two main sections: demographics and outcomes, composed 
of categorical and continuous variables. Extractors answer a mix of 

binary (“yes” or “no”) and checkbox (“check all that apply”) questions 
in the nominal variable portions of the CRF. They are instructed to 
avoid free text and use the prespecified units for continuous variables. 
In any disagreement, a trainer is always available for guidance and 
correction. It’s important to note that the manual extractors are 
unaware of the automated data extraction results.

Automated extraction

A package of sequential query language (SQL) scripts for the “Epic 
Clarity” database was developed at one institution and shared through 
the SCCM’s Secure File Transfer Platform (SFTP) with participating 
sites. A second site offered peer coaching on the development and utility 
of end-user Epic™ reporting functions and how to adapt and modify 
the SQL scripts according to their EHR environment and security 
firewall. Other tools included R-Studio™ scripts, Microsoft Excel™ 
macros, STATA 16, and REDCap calculators for data quality checks at 
participating sites before data upload to VIRUS Registry REDCap. 
These tools were designed to aid in data extraction, data cleaning, and 
adherence to data quality rules as provided in VIRUS COVID-19 
Registry SOPs. Institutions participated in weekly conference calls to 
discuss challenges and share successes in implementing automated data 
abstraction; additionally, lessons learned from adapting the SQL scripts 
and other data quality tools to their EHR environments were shared 
between individual sites and members of the VIRUS PEEP group.

Statistical analysis

We summarized continuous variables of manual and 
automation process data using mean ± SD and calculated mean 
difference and SE by matched pair analysis. Pearson correlation 
coefficient (PCCs) and 95% confidence intervals (CI) were 
generated for continuous data as a measure of inter-class 
dependability (25). Pearson correlations were classified as trivial 
(0.00–0.30), low (0.30–0.50), moderate (0.50–0.70), high (0.70–
0.90), and extremely high (0.90–1.00) (26). Bland–Altman mean-
difference plots for continuous variables were also provided to aid 
in the understanding of agreement (27).

Percent agreements were determined for the data collected using 
each of the two extraction techniques in a categorical variable:

 

Number of patients categorized identically by both sources
To

     
ttal number of cases examined by both sources     

The total number of agreeing outcomes divided by the total 
number of results is the summary agreement for each variable. For 
categorical variables we  used Cohen’s kappa coefficient (28). 
We used the scale created by Landis et al. to establish the degree of 
agreement (29). This scale is divided by almost perfect (ϰ =0.81–
1.00), substantial (ϰ = 0.61–0.80), moderate (ϰ = 0.41–0.60), fair 
(ϰ = 0.21–0.40), slight (ϰ = 0.00–0.20), and poor (ϰ < 0.00). 
Additionally, the sensitivity and specificity were calculated by 
comparing the results of the automated data extractions method to 
the results of manual data extraction method (gold standard). The 
95% confidence intervals were calculated using an exact test for 
proportions. We used JMP statistical software version 16.2 for all 
data analysis.
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Results

Our cohort consisted of data from 652 patients from 11 sites 
(Figure 1). A total of 25 variables were collected for each patient for 
manual and automated methods. Of these 25 variables, 16 (64.0%) 
were nominal, 7 (28.0%) were continuous, and 2 (8.0%) were 
categorical variables.

Table  1 summarizes the continuous variables. The automated 
results for three variables (age, weight and hospital LOS) agreed 
“extremely high” (>90%) to the manual extraction results. The 
agreement was “high” (70–90%) for height, days to ICU admission, 
ICU LOS, and IMV days. Figure 2 presents the Bland–Altman plots 
for seven continuous variables.

Tables 2, 3 describe the ordinal and nominal variables. The 
agreement between manual and automated extraction was almost 
perfect in 13 (72.2%) of the studied variables, and substantial in five 
(27.8%). The comorbidity “dyslipidemia/hyperlipidemia” had the 
lowest degree of agreement (moderate 0.61); however, overall percent 
agreement was high (86.9%). The only variable that showed a Kappa 
Coefficient equal to 1 was “ICU-discharge status.” The average Kappa 
Coefficient was 0.81 for the eight comorbidities collected and was 

0.86 for outcomes variables, considered almost perfect. The 
automated electronic search strategy achieved an average sensitivity 
of 90.7% and a specificity of 96.9%. The sensitivity and specificity of 
each data-extraction method for all variables are presented in Table 3.

Discussion

The automated search strategy for EHR data extraction was highly 
feasible and reliable. Our investigation observed substantial and 
almost perfect agreement between automated and manual data 
extraction. There was almost perfect agreement in two-thirds of the 
categorical variables, and all continuous variables showed Extremely 
High or High agreement.

The results of our validation study are similar to other studies that 
validated and evaluated automated data (30–33). Singh et al. (31) 
developed several algorithm queries to identify every component of 
the Charlson Comorbidity Index and found median sensitivity and 
specificity of 98–100% and 98–100%, respectively. In the validation 
cohort, the sensitivity of the automated digital algorithm ranged from 
91 to 100%, and the specificity ranged from 98 to 100% compared to 

FIGURE 1

Study flowchart.
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ICD-9 codes. These results are comparable to our study as the 
comorbidities analyzed presented a sensitivity and specificity of 90.2 
and 96.8%, respectively. Our results are superior to the results of 

Schaerfer et al. (34), who found a sensitivity of 72% and a specificity 
of 95% for comorbidities (CHF, cerebral vascular disease, CKD, 
cancer, DM, human immunodeficiency virus, HTN) in patients with 

TABLE 1 Comparison of patients in automated versus manual reviews and measures of agreement for individual responses for continuous variables.

Variable name Automation
(Mean, SD)

Manual
(Mean, SD)

Mean 
difference 

(SE)

Pearson interclass 
correlation coefficient 

(PCC), 95% CI

Strength of 
agreement 
based on PCC

Age, N = 652 57.9 (21.9) 58.5 (19.9) −0.5 (0.3) 0.95 (0.94–0.96) Extremely High

Height, N = 632 167.6 (15.6) 167 (17.2) 0.6 (0.3) 0.89 (0.87–0.90) High

Weight, N = 632 87.2 (27) 88.4 (28.5) −1.2 (0.4) 0.94 (0.93–0.95) Extremely High

Hospital LOS, N = 540 9.0 (9.1) 9.0 (9) 0.1 (0.1) 0.97 (0.96–0.97) Extremely High

Days to ICU admission, N = 176 1.3 (3.3) 1.1 (2.6) 0.2 (0.1) 0.80 (0.74–0.85) High

ICU LOS, N = 168 7.5 (9.3) 9.0 (10.5) −1.5 (0.4) 0.88 (0.85–0.91) High

IMV Days, N = 71 9.7 (9.6) 11.6 (11.1) −1.9 (0.6) 0.88 (0.81–0.92) High

CI, Confidence interval; ICU, Intensive Care Unit; IMV, Invasive Mechanical Ventilation; LOS, Length of stay; PCC, Pearson Interclass Correlation Coefficient; SD, Standard deviation; SE, 
Standard error.

A B

C D

FIGURE 2 (Continued)
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TABLE 2 Comparison of patients in automated versus manual reviews and measures of agreement for individual responses for categorical (ordinal) 
variables.

Variable name Automated vs. manual, 
percent agreement

Kappa coefficient 
(95% CI, SE)

Strength of agreement 
based on Kappa coefficient

Race, N = 652

0.91 (0.88–0.93, 0.01) Almost perfect

White Caucasian 365/372 (98.1)

Black or African American 138/139 (99.3)

Others 111/141 (78.7)

Total 614/652 (94.2)

Ethnicity, N = 652

0.88 (0.84–0.93, 0.02) Almost perfect

Non-Hispanic 506/512 (98.8)

Hispanic 97/105 (92.4)

Unknown/Not applicable 23/35 (65.7)

Total 626/652 (96)

CI, Confidence interval; SE, Standard error.

E

G

F

FIGURE 2

Agreement between manual and PEEP (Bland–Altman plot). (A) Age. (B) Weight. (C) Height. (D) Hospital Length of Stay. (E) Days to ICU admission. 
(F) ICU Length of Stay. (G) IMV Days.
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TABLE 3 Comparison of patients in automated versus manual reviews and measures of agreement for individual responses for categorical (nominal) 
variables.

Variable name Percent 
agreement, 

automated vs. 
manual

Sensitivity Specificity Kappa coefficient 
(95% CI, SE)

Strength of 
agreement based 
on Kappa 
coefficient

Sex, N = 652 99.7 99.7 0.99 (0.99–1.0, 0) Almost perfect

Male 359/360 (99.7)

Female 291/292 (99.7)

Total 650/652 (99.7)

Coronary artery disease, N = 540 98.6 97.4 0.90 (0.85–0.96, 0.03) Almost perfect

Yes 73/74 (98.6)

No 454/466 (97.4)

Total 527/540 (97.6)

Hypertension, N = 540 92.0 93.5 0.85 (0.80–0.89, 0.02) Almost perfect

Yes 298/324 (92.0)

No 202/216 (93.5)

Total 500/540 (92.6)

Congestive heart failure, N = 540 88.0 97.8 0.82 (0.74–0.90, 0.04) Almost perfect

Yes 44/50 (88)

No 479/490 (97.8)

Total 523/540 (96.7)

Chronic obstructive pulmonary 

disease, N = 540

92.7 96.3 0.80 (0.72–0.88, 0.04) Substantial

Yes 51/55 (92.7)

No 467/485 (96.3)

Total 518/540 (95.9)

Asthma, N = 540 93.7 95.8 0.81 (0.73–0.88, 0.04) Almost perfect

Yes 59/63 (93.7)

No 457/477 (95.8)

Total 516/540 (95.6)

Chronic kidney disease, N = 540 81.2 96.2 0.79 (0.72–0.85, 0.03) Substantial

Yes 95/117 (81.2)

No 407/423 (96.2)

Total 502/540 (93)

Diabetes mellitus, N = 540 92.1 96.3 0.89 (0.85–0.93, 0.02) Almost perfect

Yes 176/191 (92.1)

No 336/349 (96.3)

Total 512/540 (94.8)

Dyslipidemia/Hyperlipidemia, 

N = 540

88.9 86.4 0.61 (0.53–0.69, 0.04) Substantial

Yes 80/90 (88.9)

No 389/450 (86.4)

Total 469/540 (86.9)

ICU admission rate, N = 611 90.3 95.2 0.86 (0.82–0.90, 0.02) Almost perfect

Yes 215/238 (90.3)

No 355/373 (95.2)

Total 570/611 (93.3)

(Continued)
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COVID-19 pneumonia using ICD-10 base-data comparing to manual 
data collection. We  also successfully compared seven continuous 
variables with three extremely high agreement and four high 
agreement in comparison to Brazeal et al. (35), who compared two 
variables (age and BMI) for manual versus automation in a study 
population comprised of patients with histologically confirmed 
advanced adenomatous colorectal polyp.

Manual data extractors can overcome diverse interface issues, read 
and analyze free text, and provide clinical judgment when retrieving and 
interpreting data; however, manual data extraction is limited to human 
resources and is prone to human error (7, 32, 36). In addition to requiring 
considerable amount of time, manual data extraction also necessitates 
qualified personnel (30, 33). During the COVID-19 pandemic, where 
real-time data is paramount, automated data has proven validity and 
efficacy, and may divert personnel to patient care and other vital tasks. 
Nonetheless, automated data is not flawless. A significant limitation is 
finding a unique algorithm that can be applied to every center. Variables 
collected as free text fields are another challenge for such validations. The 
automated VIRUS COVID-19 sites had reported over a large majority of 
variables collected using this method. Currently, more than 60,000 
patients and their data variables in the registry had been collected through 

efforts of the VIRUS-PEEP group, which has allowed for updates and 
complete data in the shortest possible time.

Challenges in automation

The environment for data collection is often a shared environment 
within an institution, and there are limitations on how much data may 
be extracted and processed in one job and how much post-abstraction 
processing is necessary. Microsoft SQL and TSQL solutions process 
substantial amounts of data from many different tables and can take a 
long time to run on large populations. There are clinical 
documentation differences between the various sites requiring 
additional coding when applying the data requirements and rules. 
Establishing logic for data elements within a given EHR can be time 
consuming up front, requiring close collaboration between clinician 
and analytics teams. Data may be stored differently between multiple 
medical centers in one institution, requiring processing to comply 
with data requirements for standardization. While sites can share 
coding experience in data abstraction between similar data storage 
structure, variable coding schemes pose challenges for direct 

TABLE 3 (Continued)

Variable name Percent 
agreement, 

automated vs. 
manual

Sensitivity Specificity Kappa coefficient 
(95% CI, SE)

Strength of 
agreement based 
on Kappa 
coefficient

IMV rate, N = 582 87.7 98 0.85 (0.79–0.92, 0.03) Almost perfect

Yes 64/73 (87.7)

No 499/509 (98)

Total 563/582 (96.7)

NIMV rate, N = 581 83.3 99.3 0.80 (0.66–0.95, 0.07) Substantial

Yes 15/18 (83.3)

No 559/563 (99.3)

Total 574/581 (98.3)

HFNC rate, N = 581 100 98.9 0.86 (0.75–0.97, 0.06) Almost perfect

Yes 19/19 (100)

No 556/562 (98.9)

Total 575/581 (99)

ECMO rate, N = 581 72.7 99.3 0.69 (0.47–0.91, 0.11) Substantial

Yes 8/11 (72.7)

No 566/570 (99.3)

Total 574/581 (98.8)

ICU discharge status, N = 172 100 100 1.0 (1–1, 0.0) Almost perfect

Death 9/9 (100)

Alive 163/163 (100)

Total 172/172 (100)

Hospital discharge status, 

N = 541

90 100 0.94 (0.88–1, 0.03) Almost perfect

Death 27/30 (90)

Alive 511/511 (100)

Total 538/541 (99.4)

CI, Confidence interval; ECMO, Extracorporeal membrane oxygenation; HFNC, High Flow Nasal Canula; ICU, Intensive Care Unit; IMV, Invasive Mechanical Ventilation; LOS, Length of 
stay; NIMV; Non-Invasive Mechanical Ventilation; PCC, Pearson Interclass Correlation Coefficient; SE, Standard Error.
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translation between sites. Lastly, one information technology 
employee often works on such projects with competing priorities.

Strengths and limitations

To our knowledge this is first multicenter study to evaluate the 
feasibility of automation process during COVID-19 pandemic. This 
automation process should be applicable to any EHR vendor (EHR type 
agnostic), and these purposeful sampled representative data points would 
be relevant to any other clinical study/trial, which is a major strength of 
this study. Nonparticipation of 19 sites out of 30 sites in the VIRUS-PEEP 
group, which leads to a possibility of selection bias, is a major limitation. 
The time constraints in the ongoing pandemic at participating sites were 
the reason behind this non-participation in the validation process. 
However, extracting data across 11 different centers is one of the strengths 
of this study; it could also highlight the variations in staff, procedures, and 
patients at these institutions. Although the SQL queries could be applicable 
in most sites, some sites required a new SQL tailored to their data 
architecture. One key limitation for our group was that all sites found a 
portion of data extraction that could not be automated, including variables 
which are described in narrative, such as, patient symptoms, estimated 
duration of onset of symptoms, and imaging interpretations. Another 
limitation is a notable discrepancy between manual and EMR extraction 
for important outcomes like ICU LOS and IMV days. The automation 
process relies on procedure order date (intubation/extubation) and ADT 
(hospital/ICU admission discharge transfer) order date and time and 
discontinuation date in EHR; however the manual extractor look for first-
time documented ICU or IMV in her, which probably could account for 
such notable discrepancy in outcomes like ICU LOS and IMV days. 
Transferring a patient to a location that was not a usual ICU due to 
COVID-19 surge may be another possible explanation for the observed 
lower sensitivity of ICU admission rate. Variation in creation of make-shift 
ICUs at different institution may have caused this discrepancy in 
automation of ICU admissions documentation. It partially explains the 
lower sensitivity and high specificity of ICU admission, IMV, NIMV, and 
ECMO rates by automation process. Another noticeable issue was that the 
manual data extraction was done in real time and automation was done 
when the patient was discharged and mainly relied on billing codes and 
manually verified data available in EHR.

Future direction

Future research on this topic could involve a thorough comparison 
of all patient records extracted using two methods: manual extraction 
and automated SQL queries. The data comparison could be done by 
aligning data points across a wide range of variables for each data 
extraction method and then statistically analyzing their consistency 
and discrepancies. This detailed comparison would verify the 
reliability of automated data extraction and provide insights into areas 
that could be improved for greater accuracy.

Conclusion

This study confirms the feasibility, reliability, and validity of an 
automated process to gather data from the EHR. The use of automated 
data is comparable to the gold standard. The utilization of automated 

data extraction provides additional solutions when a rapid and large 
volume of patient data needs to be extracted.
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