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Hookworm disease is a major global public health concern, annually a�ecting

500–700 million of the world’s poorest people. The World Health Organization

is targeting the elimination of hookworm as a public health problem by 2030

using a strategy of mass drug administration (MDA) to at-risk human populations.

However, in Southeast Asia and the Pacific the zoonotic hookworm species,

Ancylostoma ceylanicum, is endemic in dogs and commonly infects people. This

presents a potential impediment to the e�ectiveness of MDA that targets only

humans. Here, we develop a novel multi-host (dog and human) transmission

model of A. ceylanicum and compare the e�ectiveness of human-only and “One

Health” (human plus dog) MDA strategies under a range of eco-epidemiological

assumptions. We show that One Health interventions—targeting both dogs

and humans—could suppress prevalence in humans to ≤ 1% by the end of

2030, even with only modest coverage (25–50%) of the animal reservoir. With

increasing coverage, One Health interventions may even interrupt transmission.

We discuss key unresolved questions on the eco-epidemiology of A. ceylanicum,

the challenges of deliveringMDA to animal reservoirs, and the growing importance

of One Health interventions to human public health.
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1. Introduction

Hookworms are one of the three major soil-transmitted helminths (STHs)—alongside

roundworms and whipworms—that collectively affect more than 2 billion people globally,

causing significant morbidity (1). Hookworms alone were associated with approximately 1

million disability adjusted life years in 2019, the highest health burden of the three STHs (2).

Like Ascaris lumbricoides (roundworm) and Trichuris trichiura (whipworm), hookworms

are targeted by the World Health Organization (WHO) for elimination as a public health

problem by 2030 using a strategy of so-called preventive chemotherapy (3). This entails

annual or biannual mass administration of anthelmintics to at-risk populations, principally

children and women of reproductive age who are at greatest risk of significant morbidity (1).
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In Africa and the Americas, hookworm disease is

predominantly caused by the anthroponotic species Necator

americanus and Ancylostoma duodenale [but see (4)].

Therefore—in the absence of significant exogenous sources

of infection—repeated treatment of human populations at

sufficient frequency, coverage and adherence can, in theory,

engender elimination (5–7). However, in Southeast Asia and the

Pacific, the zoonotic species Ancylostoma ceylanicum—which

globally infects approximately 100 million people—is the second

most common cause of hookworm infection in humans (8–10).

Dogs and cats are the main animal hosts of A. ceylanicum, and

provide a substantial reservoir of infection to humans (11–

13). The presence of a large untreated reservoir of infection

presents a serious challenge to the elimination of hookworms

in these regions and an impediment to reaching the WHO 2030

goals.

Numerous authors have advocated the use of a “One

Health” approach to tackle A. ceylanicum hookworm (9–11,

14, 15) and indeed the WHO 2030 road map acknowledges

the importance of One Health for other NTDs such as rabies,

taeniasis, and cystic echinococcosis (1). Such an approach would

likely involve expansion of mass drug administration (MDA)

to domestic and stray cat and dog populations in settings

where A. ceylanicum is endemic (15), similar to proposals to

tackle zoonotic schistosomiasis in Africa by treating livestock

(16, 17) and the existing strategy in China where animals

are recognized as key to eliminating Schistosoma japonicum

(18). Although there exist a number of highly efficacious

treatment options for hookworm in cats and dogs—including

“spot-on” topical treatments (19–21)—there is currently no

empirical evidence on the likely effectiveness of a One Health

approach.

In this paper, we develop a novel multi-host transmission

dynamics model to compare the effectiveness of a One Health

intervention strategy (that targets treatment of both humans and

animals) with the current human-only MDA strategy. Motivated

by settings in Southeast Asia, where dogs are a major source

of A. ceylanicum infection (11–13), we consider a range of eco-

epidemiological conditions with humans as either “maintenance”

hosts—capable of sustaining transmission in the absence of

dogs—or non-maintenance, spillover hosts (22). We simulate

the impact of MDA starting in 2023 through 2030, aligning to

the WHO’s elimination timeline (1), quantifying effectiveness in

terms of reductions in infection prevalence, and the probability of

interrupting transmission.

2. Materials and methods

2.1. Multi-host transmission dynamics
model

Here, we describe the salient features of the multi-

host mathematical transmission model developed for

this analysis. A complete derivation is given in the

Supplementary material section 1.1 and parameter definitions

and values are given in Table 1. Briefly, the rate of change in the

mean number of hookworms in host i at time t,Wi(t), is given by

dWi(t)

dt
=

∑

j

(µW + µj)Rei,jWj(t)− (µW + µi)Wi(t), (1)

where µW is the per capita mortality rate of adult hookworms

(such that 1/µW is the life expectancy; assumed equal in both

hosts),µi andµj are the mortality rates of hosts i and j, respectively,

and Rei,j are components of the effective reproduction number, Re,

describing transmission in (recipient) host i from (donor) host j

(i.e., where i = j corresponds to transmission between the same

host species—“intra-species”—and i 6= j to transmission between

different host species—“inter-species”). The components Rei,j are

given by

Rei,j = R0i,j�
(

Wj(t), kj(t), b
)

8
(

Wj(t), kj(t)
)

, (2)

where �(·) and 8(·) denote (constraining) density-dependent

fecundity (23, 24, 27) and (facilitating)mating probability functions

(28, 29), respectively (see Supplementary material section 1.2).

Note that parameter kj(t)—which (inversely) quantifies the degree

of aggregation (overdispersion) of hookworms in host j (23)—is

dynamic and increases after each treatment round due to imperfect

adherence (30) (see Supplementary material section 1.3). The basic

reproduction number, R0, is given by the dominant eigenvalue of

the so-called Kmatrix of intra- and inter-species components, R0i,j
(31, 32). We parameterize matrix K as

K =

[

ω1,1R0
(

ω1,1ω2,2R0
2
)ω1,2

(

ω1,1ω2,2R0
2
)ω2,1

ω2,2R0

]

(3)

where ω1,1 = 1 − ω2,2 is the proportion of total transmission

(i.e., proportion of R0) attributable to host 1 and ω2,1 = 1 − ω1,2

controls the proportion of inter-species transmission attributable to

host 1 (which is a function of R0; see Figure 1).

2.2. Infection prevalence

The prevalence of infection is derived from assuming a negative

binomial distribution of hookworms among hosts (23, 33), such

that

Pi(t) = 1−
(

1+Wi(t)/ki(t)
)−ki(t). (4)

Note that we assume implicitly that prevalence is measured

using a perfect diagnostic (i.e., 100% sensitivity and specificity). The

“apparent” prevalence would be affected by imperfect sensitivity

and specificity, although for PCR, both have been reported as very

high (34, 35).

2.3. Parameter sampling

We considered R0, ω1,1(= 1 − ω2,2), ω2,1(= 1 − ω1,2),

k∗1 , and k∗2 (where k∗i is the degree of overdispersion at

endemic equilibrium; see Supplementary material section 1.3) as

likely highly variable among different endemic settings. We

therefore sampled 10, 000 parameter sets from independent
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TABLE 1 Parameter definitions and values.

Parameter Definition Value Reference

R0 Basic reproduction number; average number of adult female Ancylostoma ceylanicum produced by a single

female worm in the absence of density dependencies

U[1, 8] This work

ω1,1 Proportion of total transmission (R0) attributable to host 1 (dogs) U[0.5, 1] This work

ω2,1 Weighting parameter controlling the proportion of inter-species transmission attributable to host 1 (dogs) U[0.5, 1] This work

k∗1 Overdispersion of hookworms among host 1 (dogs) at endemic equilibrium U[0.1, 1] This work

k∗2 Overdispersion of hookworms among host 2 (humans) at endemic equilibrium U[0.1, 1] This work

µ1 Per capita mortality rate of host 1 (dogs) 1/5 yr−1

µ2 Per capita mortality rate of host 2 (humans) 1/50 yr−1

µW Per capita mortality rate of adult hookworms 2/3 yr−1 (23)

µL Per capita mortality rate of hookworm larvae 2 yr−1 (23)

b Severity of density-dependent constraints on hookworm fecundity 0.245 (24)

ǫ1 Efficacy of spot-on formulation of imidacloprid and moxidectin (Advocate R©) in host 1 (dogs) 100% (19)

ǫ2 Efficacy of single oral dose aldendazole in host 2 (humans) 90% (25)

c1 Coverage of mass drug administration in host 1 (dogs) 25%, 50% and 75% This work

c2 Coverage of mass drug administration in host 2 (humans) 75% (26)

FIGURE 1

Transmission dynamics model schematic. The mean number of Ancylostoma ceylanicum hookworms at time t in host 1 (dogs) and host 2 (humans)

is denoted W1(t) and W2(t), respectively, and the mean density of larvae in the environment by L(t). Transmission among and between dogs and

humans is coupled by a single shared environment. Intra-species transmission is defined by the reproduction numbers R01,1 and R02,2, respectively

(solid arrows). The proportion of total transmission—defined by R0—that is attributable to dogs is given by ω1,1 = (1−ω2,2). Inter-species transmission

in dogs from humans is defined by R01,2 and in humans from dogs by R02,1 (broken lines). The proportion of inter-species transmission attributable

to dogs is proportional to R0 for ω2,1 = 1− ω1,2 = 0.5 and proportional to R02 for ω2,1 = 1.

uniform distributions using a Latin hypercube approach (36). We

restricted the sampling to settings where R0 > 1 [although

note that because hookworms are obligate sexually reproducing

parasites, R0 = 1 is not a threshold for persistence (37),

and therefore some of the parameter sets did not yield stable

endemic equilibrium] and where dogs contribute a majority to

both total transmission and inter-species transmission (i.e., ω1,1 ∈

[0.5, 1] and ω2,1 ∈ [0.5, 1]; see Figure 1). The overdispersion
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FIGURE 2

Endemic prevalence of Ancylostoma ceylanicum in dogs and humans simulated from the multi-host transmission dynamics model. Variation in

prevalence (A) was generated by random sampling of parameters governing the basic reproduction number, R0, the contribution of dogs to total and

inter-species transmission, ω1,1 and ω2,1, and the degree of parasite aggregation among hosts, k∗1 and k∗2. The strength of association between

infection prevalence in humans (B) and dogs (C) and parameters R0, ω1,1, ω2,1, k
∗
1, and k∗2 is quantified by the partial rank correlation coe�cient, PRCC

(38). The simulated endemic state is characterized by the distribution of R01,1, R01,2, R02,1, and R02,2 (D).

parameters k∗i were sampled from plausible ranges (23, 33)

(Table 1).

2.4. Modeling interventions

We simulated human-only and human plus dog “One Health”

MDA strategies for the 10,000 parameter sets reaching stable

endemic equilibrium. For simplicity, we considered only settings

without prior intervention (i.e., at endemic equilibrium). We

simulated annual MDA for endemic prevalence in humans ≥

20% and biannual MDA for prevalence ≥ 50% (26) starting

in 2023 with a final treatment in 2030 (i.e., 8 or 16 annual or

biannual rounds, respectively). We assumed that dogs were treated

with a spot-on anthelminthic with ǫ1 = 100% efficacy (e.g.,

imidacloprid and moxidectin) (19) and humans with a single oral

dose of albendazole, with efficacy ǫ2 = 90% (25). Coverage in

dogs, c1, was varied between 25% and 75% and for humans, we

assumed a coverage of c2 = 75%. We modeled treatment as

killing instantaneously a proportion ciǫi of adult hookworms. Note

that the model is not age-structured and thus does not capture

age-associated variation in infection and transmission and that

c2 = 75% should be considered as a nominally “high” coverage,

but is not directly comparable to the 75% target coverage for at-risk

groups (children aged 1–14 years and women 15–45 years) set by

the WHO (26).

3. Results

3.1. Endemic settings

We used our transmission dynamics model (see section 2.1

and the schematic in Figure 1) to simulate a variety of endemic

settings by random sampling of parameters governing the intensity

of transmission—defined by the basic reproduction number, R0—

the contribution of dogs to total and inter-species transmission

(determined by parameters ω1,1 and ω2,1) and the degree of

parasite aggregation among hosts (k∗1 and k∗2 ; see also Table 1).

We considered only settings where dogs are majority contributors

to total transmission (i.e., R01,1 > R02,2) and inter-species

transmission (which is a non-linear function of R0; Figure 2), and

we restricted R0 < 8. These relaxed parameter restrictions resulted
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FIGURE 3

Dynamics of Anyclostoma ceylanicum infection prevalence during 8 years of human-only mass drug administration (MDA) simulated using the

multi-host transmission dynamics model. For illustration, parameter sets were selected that gave an endemic prevalence in humans of 25–30% (A)

and 60–65% (C). The solid colored lines indicate the median prevalence of infection (from the sampled parameter sets) in dogs and humans (as

indicated) during annual (A) or biannual (C) MDA at 75% coverage and the lighter shaded areas indicate the extent of the 5th and 95th percentiles.

The associated e�ective reproduction numbers, Re, are shown in (B) and (D), the solid line indicating the median and the shaded gray area the 5th

and 95th percentiles. Below the threshold Re = 1, transmission is interrupted and the parasite population tends to elimination.

in the endemic prevalence in dogs ranging from 26 to 99% and in

humans from < 1 to 100% (Figure 2A).

High prevalence in humans is driven principally by a high R0,

and a low degree of parasite aggregation (higher k∗2 , Figure 2B;

see also Section 2.2). Low prevalence is driven by an increased

contribution of dogs to transmission (higher ω1,1) and, to a lesser

extent, by a decline in parasite aggregation among dogs (higher k∗1)

which lessens the severity of constraints on hookworm fecundity.

Like in humans, prevalence in dogs is driven predominantly

by R0 and the degree of parasite aggregation, k∗1 (Figure 2C).

Less important is their contribution to total and inter-species

transmission, ω1,1 and ω2,1, since in all settings dogs are assumed to

be majority contributors to R0. The degree of parasite aggregation

among humans, k∗2 , also has limited impact on prevalence in dogs

due to the restrictions imposed on human to dog transmission (i.e.,

a minimum of 50% of inter-species transmission is assumed to be

attributable to dogs; see Figure 1).

Overall, the simulated endemic settings capture a broad array

of eco-epidemiological conditions. These range from dogs and

humans both as “maintenance hosts”—generally defined byR01,1 >

1 and R02,2 > 1 (22, 39), although note that R0 = 1 is

not a threshold of persistence for dioecious sexually reproducing

macroparasites (37)—to dogs as sole maintenance hosts with

infection in humans driven by zoonotic “spillover”—generally

defined by R01,1 > 1 and R02,2 < 1 (Figure 2D). In particular,

because parameter ω2,1 > 0.5 permitted a disproportionate

contribution of dogs to inter-species transmission (Figure 1), it was

possible to capture significant spillover in humans even in low-

intensity transmission settings. Hence, certain parameter sets can

yield extremely low endemic prevalence in humans (Figure 2A).

3.2. Infection dynamics during
interventions

We applied the current WHO guidelines on initiating MDA,

simulating annual treatment in settings with an endemic prevalence

in humans ≥ 20% and biannual treatment for prevalence ≥

50% (26). We modeled only the prevalence of A. ceylanicum and

therefore, in reality, MDA could be indicated when the prevalence

of A. ceylanicum is < 20% in settings where other STH species

are endemic. We also set the coverage of treatment in humans to

the nominal target value of 75% (1) set by the WHO and thus the

dynamics elicited by human-only (or the human component of One

Health) MDA strategies can be viewed as a “best case” scenario.

In human-only treatment strategies, the prevalence dynamics

often reach a “pseudo-equilibrium,” whereby transmission is
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FIGURE 4

Dynamics of Anyclostoma ceylanicum infection prevalence during 8 years of “One Health” (dog plus human) mass drug administration (MDA)

simulated using the multi-host transmission dynamics model. For illustration, parameter sets were selected that gave an endemic prevalence in

humans of 25–30% (A) and 60–5% (C). The solid colored lines indicate the median prevalence of infection (from the sampled parameter sets) in

dogs and humans (as indicated) during annual (A) or biannual (C) MDA at 75% coverage in humans and 50% cover in dogs. The lighter shaded areas

indicate the extent of the 5th and 95th percentiles. The associated e�ective reproduction numbers, Re, are shown in (B) and (D), the solid line

indicating the median and the shaded gray area the 5th and 95th percentiles. Below the threshold Re = 1, transmission is interrupted and the parasite

population tends to elimination.

suppressed but relatively stable for both annual (Figure 3A) and

biannual (Figure 3C) MDA. In these circumstances—where the

effective reproduction number, Re > 1 (Figures 3B, D)—stopping

MDA would result in resurgence.

When a One Health strategy is implemented and MDA is

extended to include dogs (assumed to be delivered at the same

frequency as indicated for humans), prevalence in both dogs

and humans declines progressively toward 2030 (Figures 4A, C)

and, on average, Re is suppressed below 1 (Figures 4B, D)

indicating interruption of transmission. Note that scenarios in

which only dogs are treated were not considered here but

would likely—depending on the intensity of intra- and inter-

species transmission—suppress prevalencemore rapidly in humans

than seen in dogs for the corresponding human-only treatment

strategies shown in Figure 3.

3.3. E�ectiveness of One Health
interventions

The implementation of a One Health MDA strategy has a

significantly greater effect on suppressing the prevalence of A.

ceylanicum hookworm in humans (and in dogs) by the end of

2030 compared to human-only MDA (Figures 5A, B). In particular,

reaching a coverage of more than 50% in dogs suppresses the

prevalence in humans to below 1% in a majority of scenarios

(Figure 5C). Moreover, reaching 75% coverage in dogs yielded high

(≥ 75%) chances of interrupting transmission and achieving local

elimination (Figure 5D).

4. Discussion

Ancylostoma ceylanicum is the second most common cause

of hookworm infection in Southeast Asia and the Pacific (8–

10), with substantial reservoirs of infection in dogs and cats

(11, 12). Here, we have modeled the potential effectiveness of a

One health intervention strategy that expands MDA beyond only

humans to also target the zoonotic reservoir of infection. Reflecting

the uncertain epidemiology of A. ceylanicum, we simulated a

broad range of plausible eco-epidemiological settings involving

a single animal reservoir (here, dogs, which are major source

of A. ceylanicum infection in some regions of Southeast Asia).

We show that even modest MDA coverage (between 25% and

50%, assuming perfect adherence and drug efficacy) of the animal

host may substantially improve effectiveness compared to current

human-only strategies. Even in highly endemic treatment-naive
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FIGURE 5

E�ectiveness of 8 years of human-only or “One Health” (human plus dog) mass drug administration (MDA) against Ancylostoma ceylanicum.

Boxplots show the prevalence of A. ceylanicum in humans (A) and dogs (B) at endemic equilibrium in 2022 and after 8 years of MDA at the end of

2030. Human-only MDA is indicated by a coverage in dogs of 0% (lightest color), with the coverage in dogs for One Health MDA varied between 25%

and 75% as indicated. The bottom panels show the percentage of parameter sets yielding a prevalence < 1% in humans (C) or interruption of

transmission [elimination; Re < 1; (D)] by 2030 against the endemic prevalence in 2022. MDA was not simulated for an endemic prevalence in

humans of < 20%.

settings, 50% MDA coverage is likely to suppress the prevalence

of A. ceylanicum to < 1% by 2030 and may also achieve local

elimination of transmission.

Our results indicate that One Health interventions will be

essential to reaching the WHO 2030 elimination goals (1) in

many settings where A. ceylanicum is endemic (9–11, 14, 15). It

is noteworthy that the current WHO elimination goals do not

mention A. ceylanicum (rather, just the the two most globally

common species A. duodenale and N. americanus) (1). This may

reflect a recognition of the likely limitations of human-only MDA

where A. ceylanicum is endemic or a simple oversight of the

emerging importance of zoonotic hookworm in the Asia-Pacific

region. Irrespective, our results show clearly that—even with

optimistic assumptions of human MDA coverage—the prevalence

of A. ceylanicum hookworm may remain stubbornly high by 2030

without a One Health approach.

Intuitively, it is unsurprising that where A. ceylanicum

is endemic—and animals (dogs) are the dominant driver of

transmission, as modeled here—targeting only humans is unlikely

to be an effective intervention. Likewise, for hookworm in

general, it is unsurprising that treating only school-age children

is a sub-optimal strategy because of the typical age-infection

profiles that continue to increase into adulthood (40). Modeling

provides a formal quantitative framework with which to compare

these assertions with alternatives [such as treating humans and

animals, or treating whole communities rather than only school-

age children (41–43)]. Hence, it is important that our results are

viewed as illustrating the need and the potential effectiveness of

One Health interventions, not as predictions. Indeed, we have

deliberately used a highly simplifiedmodeling framework (e.g., host

demographic structure is omitted; only a single animal reservoir

is considered) both to enhance analytical tractability and to avoid

over-interpretation of the results.

There currently remains too much of the eco-epidemiology

of A. ceylanicum that is unknown to entertain more predictive

modeling approaches. In particular, we are unaware of any studies

that have attempted to quantify the relative contribution of humans

and animal hosts to transmission [such as those for zoonotic

schistosomiasis (44, 45)], although the few studies collecting

data from humans and animals in the same epidemiological

setting suggest that human-to-human transmission is likely

substantially less common than animal-to-human transmission
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(11, 12). Moreover, estimates of infection intensity—critical

to understanding intra- and inter-species dynamics—have only

relatively recently been developed, using quantitative PCR

techniques that can be calibrated to more traditional parasitological

measures (i.e., egg counts) to assist with interpretation (46–49),

including the calculation of drug efficacy (15). Indeed, we could not

model egg counts here [or the prevalence of “moderate” or “high”

intensity infection (1, 26)] because of these unknowns.

The inability to model explicitly quantities relating to the

elimination of hookworm as a public health problem [i.e,

prevalence of “moderate” or “heavy” infections < 2% (1)] meant

that we could not evaluate the likelihood of One Health MDA

strategies reaching this goal. Nevertheless—and irrespective of

whether this goal is feasible where A. ceylanicum is endemic—

resurgence is a risk in any settings where transmission is not

interrupted (50, 51). The challenge posed by untreated zoonotic

reservoirs is analogous to the question of whether treating only

at-risk human population groups (i.e., children and women of

childbearing age) will be sufficient to achieve sustained elimination

of STHs more generally (41, 42). While treating only at-risk groups

may be sufficient to drive prevalence to very low levels by 2030,

modeling has shown that stopping intervention will risk resurgence

in many endemic settings (50, 51). Hence, it has been argued that

without wider community coverage aimed at breaking transmission

(6, 7, 42), sustained elimination could require continuation of

intervention (i.e., MDA) almost indefinitely. Our results concord

with this assertion; without One Health interventions that go

beyond human hosts, sustained elimination of A. ceylanicum is

unlikely.

The use of modeling to demonstrate the potential effectiveness

of One Health interventions where A. ceylanicum is endemic is,

of course, much easier than the myriad complexities associated

with implementation. First, while beingmost common in Southeast

Asia and the Pacific, the geographic extent of A. ceylanicum

continues to expand with the increasing use of molecular methods

that distinguish hookworm species. Indeed, A. ceylanicum has

recently been identified for the first time in the Americas (52, 53).

Second, diagnosis and geographical mapping relies on molecular

PCR methods which are more costly and resource-intensive

than traditional parasitological methods. Third, although topical

(spot-on) anthelminthic formulations—which would be a highly

practicable mode of treatment—are highly efficacious (19–21),

they are also expensive, intended for the commercial market of

pet owners. Hence, the implementation of MDA in impoverished

communities would require low-cost procurement or donation.

It is also important to reiterate that themodeling presented here

considers only settings where there is a single animal reservoir of

infection that is relatively straightforward to target for intervention

(MDA). Yet A. ceylanicum can be common among both dogs

and cats (12). Consequently, the implementation of an effective

One Health intervention would require identification of the main

animal reservoirs of infection that contribute substantially to

human infection. This would incur further resource overheads and

logistical complexity to implementation. Indeed, if in our modeling

framework we included both dogs and cats as equally contributing

to infection in humans, but only the former were targeted for

MDA, the effectiveness (and likely also the cost-effectiveness) of

the intervention in reducing human infection would be greatly

diminished. However, in a recent study performed across eight

countries in Asia, hookworms were significantly higher in dogs

than in cats, with implementation of educational programs deemed

crucial for the control of zoonotic infections of companion animals

in Asia (54). While MDA is the cornerstone of the WHO’s strategy

to eliminating STHs, other approaches such as improved water

and sanitation (WASH), education and awareness, infrastructure

development, and food safety are also advocated as complementary

activities (1). Additionally, treatment of animals, vaccination, and

animal husbandry and management practices (all under a One

Health umbrella) are also specifically supported by the WHO

in the context of other NTDs such as rabies, taeniasis, and

echinococcosis. Hence, while the implementation of a One Health

approach to tackle A. ceylanicum hookworm would undoubtedly

present challenges, similar approaches are not without precedent

for other NTDs.

5. Conclusions

Although A. ceylanicum has been recognized as a multi-

host parasite since 1913, it has only been in the past decade

that it has been recognized as of significant public health

importance (4). This period has seen a great expansion in the

use of molecular approaches that have blurred the lines of

host specificity in other helminth species, including schistosomes

(44, 55), and other STHs (56, 57). It is thus unquestionable

that One Health approaches to tackling these neglected diseases

will be increasingly emphasized as inroads are made into the

human reservoirs of infection while animal reservoirs remain

largely unchecked. We have shown that a One Health MDA

strategy could be highly effective against A. ceylanicum hookworm

in endemic regions of Southeast Asia and beyond and will

be essential for sustained elimination and reaching the WHO

2030 goals. While there remain challenges to implementation—

as well as significant gaps in knowledge on the eco-epidemiology

of zoonotic hookworms—this work illustrates the potentially

substantial impact of a One Health approach to improving human

public health.
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