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Background: The automatic analysis of medical images has the potential improve 
diagnostic accuracy while reducing the strain on clinicians. Current methods 
analyzing 3D-like imaging data, such as computerized tomography imaging, often 
treat each image slice as individual slices. This may not be able to appropriately 
model the relationship between slices.

Methods: Our proposed method utilizes a mixed-effects model within the deep 
learning framework to model the relationship between slices. We  externally 
validated this method on a data set taken from a different country and compared 
our results against other proposed methods. We  evaluated the discrimination, 
calibration, and clinical usefulness of our model using a range of measures. Finally, 
we carried out a sensitivity analysis to demonstrate our methods robustness to 
noise and missing data.

Results: In the external geographic validation set our model showed excellent 
performance with an AUROC of 0.930 (95%CI: 0.914, 0.947), with a sensitivity 
and specificity, PPV, and NPV of 0.778 (0.720, 0.828), 0.882 (0.853, 0.908), 0.744 
(0.686, 0.797), and 0.900 (0.872, 0.924) at the 0.5 probability cut-off point. Our 
model also maintained good calibration in the external validation dataset, while 
other methods showed poor calibration.

Conclusion: Deep learning can reduce stress on healthcare systems by 
automatically screening CT imaging for COVID-19. Our method showed 
improved generalizability in external validation compared to previous published 
methods. However, deep learning models must be robustly assessed using various 
performance measures and externally validated in each setting. In addition, best 
practice guidelines for developing and reporting predictive models are vital for 
the safe adoption of such models.
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1. Background

Coronavirus disease 2019 (COVID-19) is an infectious respiratory 
disease caused by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2). Virus clinical presentation ranges from mild cold-like 
symptoms to severe viral pneumonia, which can be fatal (1). While 
some countries have achieved relative control through lockdowns, 
future outbreaks and new strains are expected to continue, with many 
experts believing the virus is here to stay (2). Detection and isolation 
is the most effective way to prevent further spread of the virus. Even 
with effective vaccines becoming widely available, with the threat of 
continued waves and new potentially vaccine-resistant variants, it is 
vital to further develop diagnostic tools for COVID-19. These tools 
will likely also apply to future outbreaks of other similar diseases as 
well as common diseases such as pneumonia.

The diagnosis of COVID-19 is usually determined by Reverse 
Transcription Polymerase Chain Reaction (RT-PCR), but this is far 
from being a gold standard. A negative test does not necessarily 
indicate a negative diagnosis, with one recent review finding that 
RT-PCR has a real-world sensitivity of around 70% and a specificity 
of 95% (3). Furthermore, an individual patient data systematic review 
(4) found that RT-PCR often fails to detect COVID-19, and early 
sampling is key to reducing false negatives. Therefore, these tests are 
often more helpful to rule in COVID-19 rather than ruling out. If a 
patient presents with symptoms of COVID-19, but an RT-PCR test is 
negative, then further tests are often required (1). Consecutive 
negative tests with at least a one-day gap are recommended; however, 
this still does not guarantee that the patient is negative for COVID-19 
(5). Computed tomography (CT) can play a significant role in 
diagnosing COVID-19 (6). Given the excessive number of COVID-19 
cases worldwide and the strain on resources expected, automated 
diagnosis might reduce the burden on reporting radiologists.

CT images are made up of many slices, creating a three 
dimensional (3D)-like structure. Previous approaches, such as those 
used by Li et al. (7) and Bai et al. (8) treat the image as separate slices 
and use a pooling layer to concatenate the slices. An alternative 
approach assumes the slices form a 3D structure and use a 3D CNN, 
such as that proposed in CoviNet (9). A fundamental limitation of 
these methods is the need for the same number of slices as their 
inputs, but the number of slices often varies between different CT 
volumes. Instead, we propose using a novel mixed-effects layer to 
consider the relationship between slices in each scan. Mixed-effects 
models are commonly used in traditional statistics (10, 11), but 
we believe this is the first time that mixed-effects models have been 
utilized in such a way. It has been observed that some lobes of the lung 
are more often affected by COVID-19 than others (12, 13) with lower 
lobe distribution being a prominent feature of COVID-19 (14), the 
fixed-effects take this into account by considering where each slice is 
located within the scan.

Deep learning has shown great potential in the automatic 
classification of disease, often achieving expert-level performance. 
Such models could screen and monitor COVID-19 by automatically 
analyzing routinely collected CT images. As observed by Wynants 
et al. (15) and Roberts et al. (16) many models are already developed 
to diagnose COVID-19, which often obtain excellent discriminative 
performance; however, very few of these models, if any, are suitable 
for clinical use, mainly due to a lack of robust analysis and reporting. 
These models often suffer from common pitfalls, making them 

unsuitable for broader adoption. Roberts et al. (16) identified three 
common areas in which models often fail these are: (1) a lack of 
adequately documented methods for reproducibility, (2) failure to 
follow established guidelines and best practices for the development 
of deep learning models, and (3) an absence of external validation 
displaying the model’s applicability to a broader range of data outside 
of the study sample. Failure to address these pitfalls leads to profoundly 
flawed and biased models, making them unsuitable for deployment.

In this work, we aim to address the problems associated with 
previous models by following guidelines for the reporting (17, 18) and 
development (19) of prediction models to ensure that we  have 
rigorous documentation allowing the methods developed here to 
be replicated. In addition, we will make code and the trained model 
publicly available at: github.com/JTBridge/ME-COVID19 to promote 
reproducible research and facilitate adoption. Finally, we use a second 
dataset from a country other than the development dataset to 
externally validate the model and report a range of performance 
measures evaluating the model’s discrimination, calibration, and 
clinical usefulness.

Hence, our main aim is to develop a mixed-effects deep learning 
model to accurately classify images as healthy or COVID-19, following 
best practice guidelines. Our secondary aim is to show how deep 
learning predictive algorithms can satisfy current best practice 
guidelines to create reproducible and less biased models.

2. Methods

Our proposed method consists of a feature extractor and a 
two-stage generalized linear mixed-effects model (GLMM) (20), with 
all parameters estimated within the deep learning framework using 
backpropagation. First, a series of CT slices forming a CT volume is 
input to the model. In our work, we use 20 slices. Next, a convolutional 
neural network (CNN) extracts relevant features from the model and 
creates a feature vector for each CT slice. Then, a mixed-effects layer 
concatenates the feature vectors into a single vector. Finally, a fully 
connected layer followed by a sigmoid activation gives a probability of 
COVID-19 for the whole volume. The mixed effects and fully 
connected layer with sigmoid activation are analogous to a linear 
GLMM in traditional statistics. The overall framework is shown in 
Figure 1.

2.1. Feature extractor

For the feature extractor, we use a CNN. In this work, we chose 
InceptionV3 (21) as it is relatively efficient and commonly used. 
InceptionV3 outputs a feature vector of length 2048. To reduce the 
time needed to reach convergence, we  pretrained the CNN on 
ImageNet (22). A CNN is used for each slice, with shared weights 
between CNNs; this reduces the memory footprint of the model. 
Following the CNN, we used a global average pooling layer to reduce 
each image to a feature vector for each slice. We then added a dropout 
of 0.6 to improve generalizability to unseen images. We  form the 
feature vectors into a matrix of shape 20 2 048× , . Although we used 
InceptionV3 (21) here, other networks would also work and may 
provide better performance on other similar tasks. We then need to 
concatenate these feature vectors into a single feature vector for the 
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whole volume; normally, pooling is used, in our work we propose 
using a mixed-effects models.

2.2. Mixed-effects network

We propose utilizing a novel mixed-effects layer to model the 
relationship between slices. Mixed-effects models are a statistical 
model consisting of a fixed-effects part and a random-effects part. The 
fixed-effects part models the relationship within the CT slice; the 
random effects can model the spatial correlation between CT slices 
within the same image (11). For volumetric data, the number of slices 
may differ significantly due to various factors such as imaging protocol 
and the size of the patient. Some CT volumes in the dataset may have 
fewer images than the model is designed to use, which leads to missing 
data. The number of slices depends upon many factors including the 
scanning protocol and the size of the patient. Mixed-effects models 
can deal with missing data provided the data are missing at random 
(23). It is likely that the data here is missing at random, although not 
completely at random. The mixed-effects model is given by

 Y X Z ei i i i= + +α β

where Y X Z ei i i i, , , are vectors of outcomes, fixed effects design 
matrix of shape slices features× , random effects design matrix of 
shape slices slices× , and vector of error unknown random errors of 
the ith patient of shape slices, respectively, and α β,  are fixed and 
random effects parameters, both of length features and slices, 
respectively. In our work, we have 20 slices and 2048 features and use 

the identity matric for the random effects design matrix. The values in 
the random effects design matric can be  changed to reflect a 
non-uniform distance between slices. We assume that the random 
effects β  are normally distributed with mean 0 and variance G

 β ∼ ( )N G0, .

We also assume independence between the random effects and 
the error term.

The fixed effects design matrix, X , is made up of the feature 
vectors output from the feature extraction network. For the random 
effects design matrix, Z , we use an identity matrix with the same size 
as the number of slices; in our experiments, this is 20. The design 
matrix is then given by
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This matrix easily generalizes to any number of slices. If the 
distance between slices is not uniform, the values can be  altered 
accordingly. We  assumed no particular correlation matrix. 
We  included the fixed and random intercept in the model. All 
parameters for the mixed-effects layer were initialized using the 
Gaussian distribution with mean 0 and standard deviation 0.05.

FIGURE 1

Diagram of the overall framework. Twenty slices are chosen from a CT volume. Each slice is fed into a CNN with shared weights, which outputs a 
feature vector of length 2048 for each image. The feature vectors form a 20-by-2048 fixed effects matrix, X, for the GMM model with a random-
effects matrix, Z, consisting of an identity matrix. A mixed-effects model is used to model the relationship between slices. Finally, a fully connected 
layer and sigmoid activation return a probability of the diagnosis.
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A type of mixed-effects modeling has previously been combined 
with deep learning for gaze estimation (24). However, their mixed-
effects method is very different from our proposed method; they used 
the same design matrix for fixed and random effects. In addition, they 
also estimated random-effects parameters with an expectation–
maximization algorithm, which was separate from the fixed effects 
estimation, which used deep learning. In our work, we utilize a spatial 
design matrix to model the spatial relationship between slices and 
estimate parameters within the deep learning framework using 
backpropagation without the need for multiple stages.

2.3. Loss function

As the parameters in the model are all estimated using 
backpropagation, we must ensure that the assumption of normally 
distributed random effects parameters with mean zero is valid. 
We achieve this by introducing a loss function for the random effects 
parameters, which enforces a mean, skewness, and excess kurtosis of 
0. We  measure skewness using the adjusted Fisher–Pearson 
standardized moment coefficient
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where n  is the length of β , β  is the mean of β  and [ ]E ⋅  is the 
expectation function. The Gaussian distribution has a kurtosis of 3; 
therefore, the excess kurtosis is given by the kurtosis minus 3. This 
formula for this random-effects parameters loss function which 
we aim to minimize, is then given by

 L E Skew Kurtrandom = ( ) + ( ) + ( ) −β β β 3 .

For the classification, we  use the Brier Score (25) as the loss 
function, which is given by

 
L
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N
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where N  is the total number of samples, pi  is the predicted 
probability of sample i and oi is the observed outcome of sample i. The 
Brier score is the same as the mean squared error of the 
predicted probability.

We chose to use the Brier Score over the more commonly used 
binary cross-entropy because it can be  decomposed into two 

components: refinement and calibration. Calibration is often 
overlooked in deep learning models but is vital to assess the safety of 
any prediction model. The refinement component combines the 
model’s resolution and uncertainty and measures the model’s 
discrimination. The calibration component can be used as a measure 
of the model calibration. Therefore, the Brier Score can be used to 
optimize both the discrimination and calibration of the model. The 
overall loss function is given by

 L L LBrier random= + .

A scaling factor could be introduced to weight one part of the loss 
function as more important than the other; however, we give both 
parts of the loss function equal weighting in our work.

We also transformed the labels as suggested by Platt (26) to reduce 
overfitting. The negative and positive labels become
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respectively, where N− and N+ are the total number of negative 
and positive cases in the training set. This is similar to label smoothing 
as commonly used in deep learning, but the new targets are chosen by 
applying Bayes’ Rule to the out-of-sample data to prevent overfitting.

2.4. Classification layer

The output of the mixed-effects layer is a single vector, which is 
the same length as the number of slices used. For example, in our 
work, we had a vector of length 20. Furthermore, we used a fully 
connected layer with sigmoid activation to obtain a probability of the 
scan showing COVID-19; the sigmoid activation is analogous to the 
logistic link function in traditional statistics. Finally, we added an L1 
regularization term of 0.1 and an L2 regularization term of 0.01 to the 
kernel to reduce overfitting.

2.5. Model performance

Many deep learning models focus on assessing discriminative 
performance only, using measures such as the area under the receiver 
operating characteristic curve (AUROC), sensitivity, and specificity. 
To better understand the model performance and impact, we report 
performance measures in three broad areas: discrimination, 
calibration, and clinical usefulness (27). Discrimination assesses how 
well a model can discriminate between healthy and COVID-19 
positive patients. Models with excellent discriminative performance 
can still produce unreliable results, with vastly overestimated 
probabilities regardless of the true diagnosis (28). Model calibration 
is often overlooked and rarely reported in deep learning, if at all; 
however, poorly calibrated models can be  misleading and lead to 
dangerous clinical decisions (28). Calibration can be assessed using 
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four levels, with each level indicating better calibration than the last 
(29). The fourth and most stringent level (strong calibration) requires 
the correct model to be known, which in turn requires predictors to 
be non-continuous, and an infinite amount of data to be used and is 
therefore considered utopic. We consider the third level (moderate 
calibration) using calibration curves. Moderate calibration will ensure 
that the model is at least not clinically harmful. Finally, measures of 
clinical usefulness assess the clinical consequences of the decision and 
acknowledge that a false positive may be more or less severe than a 
false negative.

Firstly, the discriminative performance is assessed using AUROC 
using the pROC package in R (30), with confidence intervals 
constructed using DeLong’s (31) method. For sensitivity, specificity, 
positive predictive value (PPV), and negative predictive value (NPV), 
we use the epiR (32) package in R (30); with 95% confidence intervals 
constructed using Jeffrey’s prior (33). We report performance at a 
range of probability thresholds to demonstrate how the thresholds can 
be adjusted to reduce false positives or false negatives depending on 
the setting (34). Secondly, we  assess model calibration using 
calibration curves created using the CalibrationCurves package (29), 
which is based on the rms (35) package. Finally, we assess the clinical 
usefulness of the model using decision curve analysis (36). Net 
benefits are given at various thresholds, and models which reach zero 
net benefit at higher thresholds are considered more clinically useful. 
Two brief sensitivity analyses are performed, one assessing the model’s 
ability to deal with missing data and the other assessing its ability to 
deal with noise. To improve the model’s interpretability and reduce the 
black-box nature, we produce saliency maps (37) that show which 
areas of the image are helpful to the model in the prediction. We also 
check the assumption of normally distributed random-
effects parameters.

2.6. Comparison models

To assess the added benefit of using our mixed-effects method, 
we  compare against networks that use alternative methods. Both 
COVNet (7) and a method proposed by Bai et al. (8) propose deep 
learning models that consider the slices separately before 
concatenating the features using max pooling. COVNet uses a 
ResNet50 (38) CNN to extract features and pooling layers to 
concatenate the features before a fully connected classification layer. 
The model proposed by Bai et al. uses EfficientNetB4 (39) to extract 
features followed by a series of full-connected layers with batch 
normalization and dropout; average pooling is then used to 
concatenate the feature vectors before classification. While max 
pooling is simple and computationally efficient, it cannot deal with 
pose variance and does not model the relationship between slices.

An alternative method to pooling is treating the scans as 3D, 
such as in CoviNet (40). CoviNet takes the whole scan and uses a 
16-layer 3D CNN followed by pooling and fully connected layers. 
We  implemented these models as described in their 
respective papers.

In all comparison experiments, we kept hyperparameters, such as 
learning rate, learning rate decay, and data augmentation, the same to 
ensure the comparisons were fair. For COVNet (7) and the model 
proposed by Bai et al. (8) we pretrained the CNNs on ImageNet as 

they also did; however, no pretrained models were available for 
CoviNet. For the loss function, we also used the Brier score (25).

2.7. Computing

Models were developed using an Amazon Web Services p3.8xlarge 
node with four Tesla V100 16GiB GPUs and 244GiB available 
memory. Model inference was performed on a local Linux machine 
running Ubuntu 18.04, with a Titan X 12GiB GPU and 32GiB 
available memory. Model development and inference were performed 
using Tensorflow 2.4 (41, 42), and R 4.0.5 (30) was used to produce 
evaluation metrics (43, 44) and graphs (35, 45). We  used mixed 
precision to reduce the computational cost, which uses 16-bit floating-
point precision in all layers, except for the mixed-effects and 
classification layers, where 32-bit floating-point precision is used.

We used the Adam optimizer (46) with an initial learning rate of 
1e-4; if the internal validation loss did not improve for three epochs, 
we  reduced the learning rate to 20%. In addition, we  assumed 
convergence and stopped training if the loss did not improve for 10 
epochs to reduce the time spent training and the energy used.

2.8. Data

There is currently no established method for estimating the 
sample size estimate in deep learning. We propose treating the final 
fully connected classification layer as the model and treating previous 
layers as feature extraction. We can then use the number of parameters 
in the final layer to estimate the required sample size. Using the 
“pmsampsize” package (47) in R, we estimate the required minimum 
sample size in the development set. We use a conservative expected 
C-statistic of 0.8, with 21 parameters and an estimated disease 
prevalence of 80% based on datasets used in other studies. This gives 
a minimum required sample size of 923 patients in the training set. 
For model validation, around 200 patients with the disease and 200 
patients without the disease are estimated to be  needed to assess 
calibration (29).

All data used here is retrospectively collected and contains 
hospital patients with CT scans performed during the COVID-19 
pandemic. The diagnosis was determined by examining radiological 
features of the CT scan for signs of COVID-19, such as ground-glass 
opacities. For model development, we use the MosMed dataset (48), 
which consists of a total of 1,110 CT scans displaying either healthy or 
COVID-19 infected lungs. The scans were performed in Moscow 
hospitals between March 1, 2020, and April 25, 2020. We split the 
dataset into two sets for training and internal validation on the patient 
level. The training set is used to train the model, and the internal 
validation set is used to select the best model based on the loss at each 
epoch; this helps prevent overfitting on the training set. In addition, 
we obtained images from a publicly available dataset published by 
Zhang et  al. (49) consisting of CT images from a consortium of 
Chinese hospitals.

Overall, this allows us to perform external geographical validation 
in another country and to better evaluate the developed model. In 
addition, we will be able to assess how well a deep learning model 
generalizes to other populations. A summary of all the datasets used 
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is shown in Table 1. We have 923 patients in the training set and at 
least 200 patients in each class for the external validation set.

2.9. Patient and public involvement

Patients or the public were not involved in the design, conduct, 
reporting, or dissemination of our research.

2.10. Data pre-processing and 
augmentation

The MosMed dataset was converted from Dicom image format 
into PNG, normalized to have a mean of 120 and a variance of 95. 
Images were ordered from the top of the lungs to the bottom. 
During training, we applied random online data augmentation to 
the images. This alters the image slightly and gives the effect of 
increasing the training dataset size, although this is not as good as 
expanding the training dataset with more samples. First, we adjusted 
the brightness and contrast between 80 and 120%. We then rotated 
the image plus or minus 5 degrees and cropped the image up to 20% 
on each side. Finally, we  flipped the image horizontally and 
vertically with a probability of 50% each. All random values were 

chosen using the uniform distribution except for the flips, which 
were chosen using a random bit. Example images are shown in 
Figure 2A.

The dataset taken from Zhang et al. (49) required a large amount 
of sorting to be  made suitable for use. Some of the scans were 
pre-segmented and only showed the lung areas, while others showed 
the whole CT scan. We  removed any pre-segmented images. 
Identifying information on some images had to be cropped to reduce 
bias in the algorithm. In addition, many of the scans were duplicates 
but were not labeled as such, and many scans were incomplete, only 
showing a few lung slices or not showing any lung tissue at all. We only 
used complete scans with one scan per patient. Finally, some scans 
needed to be  ordered top to bottom. Using the bilinear sampling 
algorithm, all images were resized to 256 by 256 pixels, and image 
values were divided by 255 to normalize between 0 and 1. Example 
images are shown in Figure 2B.

The MosMed dataset has a median of 41 slices, a minimum of 31 
slices and a maximum of 72 slices. The Zhang et al. dataset has much 
greater variability in scan size with a median of 61 slices, a minimum 
of 19 slices, and a maximum of 415 slices. We present histograms 
showing the number of slices per scan in Figure 3. We require a fixed 
number of slices as input, and we chose to use 20 slices. For all scans, 
we included the first and last images. If scans had more than 20 slices, 
we sampled uniformly to select 20. Only one scan in the Zhang et al. 
dataset had less than 20 slices; a blank slice replaced this slice; the 
mixed-effects model can account for missing data.

While removing slices may waste some information available to 
us, using the full 415 slices that some images have would be impractical 
due to the large memory footprint. An alternative to removing slices 
would be to reduce the resolution of each slice; however, this again 
would waste information. Choosing to use 20 slices of each CT image 
is a compromise between the amount of information used and the 
practicality of processing the CT scans.

TABLE 1 Summary of the datasets used.

Dataset Location Use Healthy/
COVID19

MosMed training Moscow, Russia Training 169/856

MosMed validation Moscow, Russia Internal validation 85/285

Zhang et al. (48) China External validation 243/553

FIGURE 2

Example images showing (A) healthy and (B) COVID-19 lungs taken from the Mosmed dataset.
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3. Results

On the internal validation dataset, the proposed model attained 
an AUROC of 0.936 (95%CI: 0.910, 0.961). Using a probability 
threshold of 0.5, the sensitivity, specificity, NPV, and PPV were 0.753 
(0.647, 0.840), 0.909 (0.869, 0.940), 0.711 (0.606, 0.802), and 0.925 
(0.888, 0.953), respectively. The model proposed by Bai et  al. (8) 
attained an AUROC of 0.731 (0.674, 0.80). However, despite attaining 
a reasonably AUC value, the model was badly calibrated, and the 
predicted probabilities of COVID-19 were all clustered around 0.42, 
meaning that the sensitivity, specificity, PPV, and NPV are 
meaningless. We tried to retrain the model and rechecked the code 
implementation; however, we  could not obtain more meaningful 
results. Covinet (9) attained an AUROC of 0.810 (0.748, 0.853). Using 
a probability threshold of 0.5, the sensitivity, specificity, NPV, and PPV 
were 0.824 (0.726, 0.898), 0.596 (0.537, 0.654), 0.378 (0.308, 0.452), 
and 0.919 (0.870 0.954), respectively. COVNet (7) attained an AUROC 
of 0.935 (0.912, 0.959). Using a probability threshold of 0.5, the 
sensitivity, specificity, NPV, and PPV were 1.0 (0.958, 1.0), 0.796 
(0.745, 0.842), 0.594 (0.509, 0.676), and 1.0 (0.984, 1.0), respectively. 
Full results for a range of probability thresholds are shown in Table 2, 
with ROC curves shown in Figure 4.

Calibration curves in Figure 5 show reasonable calibration for the 
mixed-effects model, although the model may still benefit from some 
recalibration. The other models do not have good calibration and 
likely provide harmful predictions. The decision curve in Figure 6 
shows that the proposed model is of great clinical benefit compared to 
the treat all and treat-none approach.

It is important to remember that the model was selected using this 
internal testing set to avoid overfitting on the training set; therefore, 
these results are biased, and the external validation results are more 
representative of the true model performance.

On the external geographical validation dataset, the proposed 
model attained an AUROC of 0.930 (0.914, 0.947). With a probability 
threshold of 0.5, the sensitivity, specificity, NPV, and PPV were 0.778 
(0.720, 0.828), 0.882 (0.853, 0.908), 0.744 (0.686, 0.797), and 0.90 
(0.872, 0.924), respectively. The model proposed by Bai et al. (8) again 

attained a reasonable AUROC of 0.805 (0.774, 0.836); however, the 
sensitivity, specificity, NPV, and PPV were meaningless. Covinet (9) 
attained an AUROC of 0.651 (0.610, 0.691). Using a probability 
threshold of 0.5, the sensitivity, specificity, NPV, and PPV were0.008 
(0.001, 0.029), 0.991 (0.979, 0.997), 0.286 (0.037, 0.710), and 0.695 
(0.661, 0.727), respectively. COVNet (7) attained an AUROC of 0.808 
(0.775, 0.841). With a cut-off point of 0.5, the sensitivity, specificity, 
NPV, and PPV were 0.387 (0.325, 0.451), 0.940 (0.917, 0.959), 0.740 
(0.655, 0.814), and 0.777 (0.744, 0.808), respectively. Full results are 
shown in Table 3.

Similar to the internal validation, Figure  7 shows reasonable 
calibration for the mixed-effects model, although some recalibration 
may improve performance. Again, the comparison models could give 
harmful predictions as they are poorly calibrated. The decision curve 
in Figure 8 shows that the model is of great clinical benefit compared 
to the treat all and treat-none approach.

Although our proposed method and the Covnet model showed 
comparable performance on the internal validation set, the Covnet 
model could not generalize to the external geographical validation 
set, and calibration showed that the Covnet model would provide 
harmful risk estimates. This highlights the need for robust external 
validation in each intended setting. Nevertheless, the results show 
that the proposed method better generalizes to external geographical 
datasets and provides less harmful predictions when compared to 
the four previously proposed methods based on the calibration  
curves.

3.1. Saliency maps

It is vital to understand how the algorithm makes decisions and 
to check that it identifies the correct features within the image. 
Saliency maps can be used as a visual check to see what features the 
algorithm is learning. For example, the saliency maps in Figure 9 show 
that the model correctly identifies the diseased areas of the scans. 
We used 100 samples with a smoothing noise of 0.05 to create these 
saliency maps.

FIGURE 3

Histogram showing the number of slices per scan for (A) the MosMed dataset and (B) the Zhang et al. dataset. The MosMed dataset has much fewer 
slices on average with a much smaller spread.
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FIGURE 4

Receiver operating characteristic curves for (A) the MosMed internal validation set and (B) the Zhang et al. external validation set.

3.2. Sensitivity analysis

Mixed-effects models are capable of accounting for missing data. 
However, only one image had less than 20 slices; hence, we could not 
adequately assess if our model can indeed maintain good 
performance with missing data. Here, we rerun the analysis using 
the same dataset, using the same model and weights; however, 

we reduce the number of slices available as testing data inputs to 
simulate missing data. Blank images replace these slices. 
We uniformly sampled the slices choosing between 10 and 19 slices; 
this equates to between 5 and 50% missing data for the model. 
We ran inference at each level of missingness and briefly show the 
AUROC to determine at which point the predictive performance is 
significantly reduced.

TABLE 2 Area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive 
value (NPV) on the internal validation dataset.

Model AUROC Threshold Sensitivity Specificity PPV NPV

Bai et al. 0.731

(0.674, 0.80)

0.3 0 0.0 (0.0, 0.042) 1.0 (0.987, 1.0) NA 0.77 (0.724, 0.812)

0.4 0.012 (0, 0.064) 0.996 (0.981, 1.0) 0.50 (0.013, 0.987) 0.772 (0.725, 0.814)

0.5 1.0 (0.958, 1.0) 0.0 (0.0, 0.013) 0.230 (0.188, 0.276) NA

0.6 1.0 (0.958, 1.0) 0.0 (0.0, 0.013) 0.230 (0.188, 0.276) NA

0.7 1.0 (0.958, 1.0) 0.0 (0.0, 0.013) 0.230 (0.188, 0.276) NA

CoviNet 0.801

(0.748, 0.853)

0.3 0.459 (0.350, 0.570) 0.898 (0.857, 0.931) 0.574 (0.448, 0.693) 0.848 (0.802, 0.886)

0.4 0.706 (0.597, 0.80) 0.761 (0.708, 0.810) 0.469 (0.380, 0.559) 0.897 (0.851, 0.932)

0.5 0.824 (0.726, 0.898) 0.596 (0.537, 0.654) 0.378 (0.308, 0.452) 0.919 (0.870 0.954)

0.6 0.918 (0.838, 0.966) 0.446 (0.387, 0.505) 0.331 (0.271, 0.394) 0.948 (0.895, 0.979)

0.7 0.965 (0.90, 0.993) 0.246 (0.197, 0.30) 0.276 (0.226, 0.331) 0.959 (0.885, 0.991)

CovNet 0.935

(0.912, 0.959)

0.3 0.941 (0.868, 0.981) 0.839 (0.791, 0.879) 0.635 (0.544, 0.719) 0.98 (0.953, 0.993)

0.4 0.965 (0.90, 0.993) 0.825 (0.775, 0.867) 0.621 (0.533, 0.704) 0.987 (0.964, 0.997)

0.5 1.0 (0.958, 1.0) 0.796 (0.745, 0.842) 0.594 (0.509, 0.676) 1.0 (0.984, 1.0)

0.6 1.0 (0.958, 1.0) 0.779 (0.726, 0.826) 0.574 (0.490, 0.655) 1.0 (0.984, 1.0)

0.7 1.0 (0.958, 1.0) 0.761 (0.708, 0.810) 0.556 (0.473, 0.636) 1.0 (0.984, 1.0)

Mixed-effects

(ours)

0.936

(0.910, 0.961)

0.3 0.588 (0.476 0.694) 0.961 (0.932, 0.981) 0.820 (0.70, 0.906) 0.887 (0.846, 0.920)

0.4 0.659 (0.548, 0.758) 0.933 (0.898, 0.959) 0.747 (0.633, 0.840) 0.902 (0.862, 0.933)

0.5 0.753 (0.647, 0.840) 0.909 (0.869, 0.940) 0.711 (0.606, 0.802) 0.925 (0.888, 0.953)

0.6 0.812 (0.712, 0.888) 0.884 (0.841, 0.919) 0.676 (0.577, 0.766) 0.940 (0.905 0.960)

0.7 0.906 (0.823 0.958) 0.832 (0.783, 0.873) 0.616 (0.525, 0.702) 0.967 (0.937, 0.986)

Point estimates and 95% confidence intervals were calculated using De Long’s method for AUROC and Jeffrey’s interval for sensitivity, specificity, PPV, and NPV. Results are shown at a range 
of probability thresholds.
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The plot of AUROCs at different levels of missingness is shown 
in Figure 10, along with 95% confidence intervals. We can see that 
at 20% missingness, there is a statistically significant decrease in 

predictive performance. Although, even at 50% missingness, the 
model still performs relatively well, with an AUROC of 0.890 (95% 
CI: 0.868, 0.912). It should be noted that this does not mean that 
there is no reduction in performance at 5–15% missingness, only 
that the reduction was not statistically significant at the 95% 
confidence level.

Deep learning models can be  susceptible to adversarial 
attacks (50), where minor artifacts or noise on an image can 
cause the image to be misclassified, even when the image does 
not look significantly different to a human observer. Here, 
we perform a brief sensitivity analysis by adding a small Gaussian 
noise to the image. We  tested the model performance on the 
external dataset, with each image having a random Gaussian 
noise added. Experiments were conducted with standard 
deviations of 0 up to 0.005 in increments of 0.001 added to the 
normalized image. We did not add Gaussian noise in the data 
augmentation so that the model is not explicitly trained to deal 
with this kind of attack.

When using a variance of 0, the images are  
unchanged, and the results are the same as the standard results 
above. We  present results on the Zhang et  al. (49) dataset. 
Example images for each level of variance are shown in Figure 11, 
and a graph showing the reduction in AUROC is shown in  
Figure 12.

FIGURE 5

Calibration curves for (A) the Bai et al. model (B) the Covinet model, (C) the Covnet model, (D) the proposed mixed-effects model on the Mosmed 
internal validation dataset.

FIGURE 6

Decision curves for the proposed mixed-effects model on the 
Mosmed internal validation dataset.
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TABLE 3 Area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive 
value (NPV) on the external validation dataset.

Model AUROC Threshold Sensitivity Specificity PPV NPV

Bai et al.
0.805

(0.774, 0.836)

0.3 0.0 (0.0, 0.015) 1.0 (0.993, 1.0) NA 0.695 (0.661, 0.727)

0.4 0.0 (0.0, 0.015) 1.0 (0.993, 1.0) NA 0.695 (0.661, 0.727)

0.5 1.0 (0.985, 1.0) 1.0 (0.0, 0.007) 0.305 (0.273, 0.339) NA

0.6 1.0 (0.985, 1.0) 1.0 (0.0, 0.007) 0.305 (0.273, 0.339) NA

0.7 1.0 (0.985, 1.0) 1.0 (0.0, 0.007) 0.305 (0.273, 0.339) NA

CoviNet
0.651

(0.610, 0.691)

0.3 0.0 (0.0, 0.015) 1.0 (0.993, 1.0) NA 0.695 (0.661, 0.727)

0.4 0.0 (0.0, 0.015) 1.0 (0.993, 1.0) NA 0.695 (0.661, 0.727)

0.5 0.008 (0.001, 0.029) 0.991 (0.979, 0.997) 0.286 (0.037, 0.710) 0.695 (0.661, 0.727)

0.6 0.160 (0.117, 0.213) 0.929 (0.905, 0.949) 0.50 (0.385, 0.615) 0.716 (0.681, 0.749)

0.7 0.551 (0.487, 0.615) 0.694 (0.654, 0.733) 0.442 (0.385, 0.50) 0.779 (0.740, 0.815)

CovNet
0.808

(0.775, 0.841)

0.3 0.305 (0.247, 0.367) 0.969 (0.951, 0.982) 0.813 (0.718, 0.887) 0.760 (0.727, 0.791)

0.4 0.354 (0.294, 0.418) 0.955 (0.934, 0.971) 0.775 (0.686, 0.849) 0.771 (0.737, 0.802)

0.5 0.387 (0.325, 0.451) 0.940 (0.917, 0.959) 0.740 (0.655, 0.814) 0.777 (0.744, 0.808)

0.6 0.432 (0.369, 0.497) 0.937 (0.913, 0.956) 0.750 (0.670, 0.819) 0.790 (0.756, 0.820)

0.7 0.473 (0.409, 0.538) 0.931 (0.907, 0.951) 0.752 (0.675, 0.818) 0.801 (0.768, 0.831)

Mixed-effects

(ours)

0.930

(0.914, 0.947)

0.3 0.675 (0.612, 0.733) 0.935 (0.911, 0.954) 0.820 (0.760, 0.871) 0.867 (0.838, 0.894)

0.4 0.741 (0.681, 0.795) 0.904 (0.877, 0.927) 0.773 (0.713, 0.825) 0.888 (0.859, 0.913)

0.5 0.778 (0.720, 0.828) 0.882 (0.853, 0.908) 0.744 (0.686, 0.797) 0.90 (0.872, 0.924)

0.6 0.827 (0.774, 0.873) 0.859 (0.827, 0.887) 0.720 (0.664, 0.772) 0.919 (0.892, 0.941)

0.7 0.885 (0.838, 0.922) 0.828 (0.794, 0.859) 0.694 (0.639, 0.744) 0.942 (0.918, 0.961)

Point estimates and 95% confidence intervals were calculated using De Long’s method for AUROC and Jeffrey’s interval for sensitivity, specificity, PPV, and NPV. Results are shown at a range 
of probability thresholds.

3.3. Fixed-effects only

To show that the mixed-effects method improves prediction over 
the fixed-effects method alone, we removed the random-effects part 
of the model to leave the fixed effects only. This was the only change 
to the model and allowed us to see the added benefit of the mixed-
effects part. The full results are shown in Tables 4, 5. This experiment 
shows much worse performance when the random effects are removed 
from the model.

4. Discussion

Artificial intelligence is set to revolutionize healthcare, allowing 
large amounts of data to be processed and analyzed automatically, 
reducing pressure on stretched healthcare services. These tools can aid 
clinicians in monitoring and managing both common conditions and 
outbreaks of novel diseases. However, these tools must be assessed 
adequately, and best practice guidelines for reporting and development 
must be followed closely to increase reproducibility and reduce bias. 
We have developed a deep learning model to classify CT scans as 
healthy or COVID-19 using a novel mixed-effects model. Following 
best practice guidelines, we have externally validated the model. In 
addition, we  robustly externally geographically validated the 
developed model in several performance areas, which are not 
routinely reported. For example, discriminative performance 

measures show that the model can discriminate between healthy and 
COVID-19 CT scans well, calibration shows that the model is not 
clinically harmful. Finally, the clinical usefulness measures show that 
the model may be  useful in a clinical setting. From the results 
presented here, it would seem that our deep learning model 
outperforms the RT-PCR tests as shown in the review by Watson et al. 
(3); however, those results are conservative estimates and were 
conducted under real-world clinical settings. A prospective study is 
required to determine if this is the case.

Compared to previously proposed models, our model showed 
similar discriminative performance to one existing method; however, 
our method generalized better to an external geographical validation 
set and showed improved calibration performance. Interestingly, in 
both internal and external validation, the sensitivity and NPV are 
similar in all models. However, the specificity and PPV are statistically 
significantly improved for the mixed-effects model in the external 
validation dataset. The performance of the proposed model in the 
external validation set is similar to that reported by PCR testing (3). 
However, a direct comparison should not be made as PCR testing on 
this exact dataset is unavailable.

There are several limitations of the study that should 
be highlighted and improved in future work. Firstly, we have only 
performed external geographical validation in a single dataset. 
Further external validation, both geographical and temporal, is 
needed on many datasets to determine if the model is correct in each 
intended setting. Although we performed a brief sensitivity analysis 
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here, more extensive work on adversarial attacks is needed. Future 
studies could consider following the method proposed by 
Goodfellow et  al. (50) to improve robustness against adversarial 
examples. Patient demographic data were not available for this study, 
but future studies could incorporate this data into the model to 

improve results. Finally, rules of thumb for assessing sample size 
calculations in the validation set can lead to imprecise results (51). 
Simulating data is a better alternative; however, it is difficult to 
anticipate the distribution of the model’s linear predictor. Therefore, 
we were required to revert to the rule of thumb using a minimum of 
200 samples in each group (29).

Initial experiments used the Zhang et al. (49) dataset for training; 
this showed promising results on the internal validation set; however, 
external validation showed random results. In addition, saliency maps 
showed that the model was not using the features of COVID-19 to 
make the diagnosis and was instead using the area around the image. 
We concluded that the images for each class were slightly different, 
perhaps due to different imaging protocols, and the algorithm was 
learning the image format rather than the disease. We then used the 
MosMed dataset for training and the Zhang et al. (49) dataset for 
external validation. This highlights the need for good quality training 
data and external validation and visualization.

Future studies should validate models and follow reporting 
guidelines such as TRIPOD (17) or the upcoming QUADAD-AI 
(52) and TRIPOD-AI (53) to bring about clinically useful and 
deployable models. Further research could look deeper into the 
areas of images identified by the algorithm as shown on the 

FIGURE 7

Calibration curves for (A) the Bai et al. model (B) the Covinet model, (C) the Covnet model, (D) the proposed mixed-effects model on the Zhang et al. 
external validation dataset.

FIGURE 8

Decision curves for the proposed mixed-effects model on the Zhang 
et al. external validation dataset.
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FIGURE 9

Example of original images and saliency maps showing highlighted 
regions on four patients in the Zhang et al. dataset. Four consecutive 
images display how the diseased areas differ between slices. All 
images are taken from the external validation set.

saliency maps; this could potentially identify new features of 
COVID-19 which have gone unnoticed. Before any model can 
be fully deployed, clinical trials are needed to study the full impact 
of using such algorithms to diagnose COVID-19 and the exact 
situations in which such a model may be  used. In-clinic 
prospective studies comparing the performance deep learning 
models with RT-PCR and lateral flow tests should be carried out 
to determine how deep learning compares; this will show whether 
deep learning could be  used as an automated alternative to 
RT-PCR testing.

This study indicates that deep learning could be  suitable for 
screening and monitoring of COVID-19 in a clinical setting; however, 
validation in the intended setting is vital, and models should not 
be  adopted without this. It has been observed that the quality of 
reporting of deep learning prediction models is usually very poor; 

however, with a bit of extra work and by following best practice 
guidelines, this problem can be overcome. This study highlights the 
importance of robust analysis and reporting of models with 
external validation.
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FIGURE 10

AUROC values at different levels of missingness. At 20% missingness, 
the loss in performance becomes statistically significant; however, 
even with 50% missing images, the model still has a reasonably high 
AUROC.
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FIGURE 11

Example images showing the effect of increasing the amount of noise in the image input. (A) no noise; (B) deviation  =  0.001; (C) deviation  =  0.002; 
(D) deviation  =  0.003; (E) deviation  =  0.004; (F) deviation  =  0.005.

FIGURE 12

Graph showing the drop in AUROC as the amount of noise in the image input increases. The AUROC falls steadily with increased noise in the image.
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TABLE 4 Area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive 
value (NPV) on the internal validation dataset for our proposed model and the fixed effects model.

Model AUROC Threshold Sensitivity Specificity PPV NPV

Fixed effects 0.494

(0.427, 0.561)

0.3 0.859 (0.766, 0.925) 0.165 (0.124, 0.213) 0.235 (0.189, 0.286) 0.797 (0.672, 0.890)

0.4 0.953 (0.884, 0.987) 0.046 (0.025, 0.077) 0.229 (0.187, 0.277) 0.765 (0.501, 0.932)

0.5 0.988 (0.936, 1.0) 0.014 (0.004, 0.036) 0.231 (0.188, 0.277) 0.80 (0.284, 0.995)

0.6 1.0 (0.958, 1.0) 0.0 (0.0, 1.0) 0.230 (0.188, 0.276) NA (NA, NA)

0.7 1.0 (0.958, 1.0) 0.0 (0.0, 1.0) 0.230 (0.188, 0.276) NA (NA, NA)

Mixed-effects

(fixed + random)

0.936

(0.910, 0.961)

0.3 0.588 (0.476 0.694) 0.961 (0.932, 0.981) 0.820 (0.70, 0.906) 0.887 (0.846, 0.920)

0.4 0.659 (0.548, 0.758) 0.933 (0.898, 0.959) 0.747 (0.633, 0.840) 0.902 (0.862, 0.933)

0.5 0.753 (0.647, 0.840) 0.909 (0.869, 0.940) 0.711 (0.606, 0.802) 0.925 (0.888, 0.953)

0.6 0.812 (0.712, 0.888) 0.884 (0.841, 0.919) 0.676 (0.577, 0.766) 0.940 (0.905 0.960)

0.7 0.906 (0.823 0.958) 0.832 (0.783, 0.873) 0.616 (0.525, 0.702) 0.967 (0.937, 0.986)

Point estimates and 95% confidence intervals were calculated using De Long’s method for AUROC and Jeffrey’s interval for sensitivity, specificity, PPV, and NPV. Results are shown at a range 
of probability thresholds.
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TABLE 5 Area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive 
value (NPV) on the external validation dataset for our proposed model and the fixed effects model.

Model AUROC Threshold Sensitivity Specificity PPV NPV

Fixed effects
0.630

(0.590, 0.670)

0.3 0.794 (0.738, 0.843) 0.374 (0.334, 0.416) 0.358 (0.317, 0.40) 0.805 (0.752, 0.852)

0.4 0.971 (0.942, 0.988) 0.159 (0.130, 0.192) 0.337 (0.302, 0.373) 0.926 (0.854, 0.970)

0.5 1.0 (0.984, 1.0) 0.063 (0.044, 0.087) 0.319 (0.286, 0.354) 1.0 (0.90, 1.0)

0.6 1.0 (0.985, 1.0) 0.018 (0.277, 0.343) 0.309 (0.277, 0.343) 1.0 (0.692, 1.0)

0.7 1.0 (0.985, 1.0) 0.004 (0.0, 0.013) 0.306 (0.274, 0.339) 1.0 (0.158, 1.0)

Mixed-effects

(fixed + random)

0.930

(0.914, 0.947)

0.3 0.675 (0.612, 0.733) 0.935 (0.911, 0.954) 0.820 (0.760, 0.871) 0.867 (0.838, 0.894)

0.4 0.741 (0.681, 0.795) 0.904 (0.877, 0.927) 0.773 (0.713, 0.825) 0.888 (0.859, 0.913)

0.5 0.778 (0.720, 0.828) 0.882 (0.853, 0.908) 0.744 (0.686, 0.797) 0.90 (0.872, 0.924)

0.6 0.827 (0.774, 0.873) 0.859 (0.827, 0.887) 0.720 (0.664, 0.772) 0.919 (0.892, 0.941)

0.7 0.885 (0.838, 0.922) 0.828 (0.794, 0.859) 0.694 (0.639, 0.744) 0.942 (0.918, 0.961)

Point estimates and 95% confidence intervals were calculated using De Long’s method for AUROC and Jeffrey’s interval for sensitivity, specificity, PPV, and NPV. Results are shown at a range 
of probability thresholds.
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