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The heart is a relatively complex non-rigid motion organ in the human body.

Quantitative motion analysis of the heart takes on a critical significance to

help doctors with accurate diagnosis and treatment. Moreover, cardiovascular

magnetic resonance imaging (CMRI) can be used to perform a more

detailed quantitative analysis evaluation for cardiac diagnosis. Deformable image

registration (DIR) has become a vital task in biomedical image analysis since

tissue structures have variability in medical images. Recently, the model based

on masked autoencoder (MAE) has recently been shown to be e�ective in

computer vision tasks. Vision Transformer has the context aggregation ability to

restore the semantic information in the original image regions by using a low

proportion of visible image patches to predict the masked image patches. A novel

Transformer-ConvNet architecture is proposed in this study based on MAE for

medical image registration. The core of the Transformer is designed as a masked

autoencoder (MAE) and a lightweight decoder structure, and feature extraction

before the downstream registration task is transformed into the self-supervised

learning task. This study also rethinks the calculation method of the multi-

head self-attention mechanism in the Transformer encoder. We improve the

query-key-value-based dot product attention by introducing both depthwise

separable convolution (DWSC) and squeeze and excitation (SE) modules into

the self-attention module to reduce the amount of parameter computation to

highlight image details and maintain high spatial resolution image features. In

addition, concurrent spatial and channel squeeze and excitation (scSE) module is

embedded into the CNN structure, which also proves to be e�ective for extracting

robust feature representations. The proposed method, called MAE-TransRNet, has

better generalization. The proposed model is evaluated on the cardiac short-axis

public dataset (with images and labels) at the 2017 Automated Cardiac Diagnosis

Challenge (ACDC). The relevant qualitative and quantitative results (e.g., dice

performance and Hausdor� distance) suggest that the proposed model can

achieve superior results over those achieved by the state-of-the-artmethods, thus

proving thatMAE and improved self-attention aremore e�ective and promising for

medical image registration tasks. Codes andmodels are available at https://github.

com/XinXiao101/MAE-TransRNet.
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1. Introduction

Medical image registration has been considered a vital

analytical task in medical image processing, especially for

the registration of deformable non-rigid organs. It is capable

of providing doctors with a wide variety of complementary

information regarding lesions (1). The systole and diastole of the

heart chambers play a vital role inmaintaining the ejection function

of the heart. Certain heart diseases can lead to changes in the shape

of the ventricles, thus resulting in abnormal motion. For instance,

hypertrophic cardiomyopathy may cause the localized thinning

of the ventricular wall. Inadequate aortic valve closure can cause

lesions (e.g., enlarged ventricular chambers). Thus, the study on

cardiac registration takes on a critical significance in quantifying

cardiac motion, which helps doctors predict the progression of

patients diseases in future and conduct precise medical treatment.

Moreover, cardiovascular magnetic resonance imaging (CMRI)

presents accurate morphological information and a better soft

tissue contrast ratio of the human heart (2), which contributes to

the diagnosis of a wide variety of cardiac abnormalities. CMRI has

become the gold standard in the analysis of cardiac motor function,

viability, and abnormalities.

The registration of cardiac images is considered a complex task,

which is primarily indicated by two aspects:

(1) Non-rigid and complex motion. The heart undergoes

very complex motion and deformation in the cardiac cycle. In

addition to the well-known overall deformation (e.g., expansion

or contraction), the heart also undergoes overall rigid motion and

local deformation, thus making it have a more complex non-rigid

periodic motion than other soft tissues (3). Furthermore, due to this

motion, themorphology of the slices of the heart varies significantly

within continuous time frames of a cardiac cycle, thus making

accurate tracking of cardiac motion a difficult task.

(2) Scarcity of anatomical landmarks. There are fewer precise

anatomical landmarks required to characterize cardiac motion

than to resize other soft tissue structures. Moreover, the labels

are more difficult to obtain. Notably, the lack of reliable

identifiable landmarks in the myocardial wall makes it difficult for

registration (4).

The registration of cardiac images is significantly more

complicated than that of other tissues and organs’ images due to

the aforementioned two major problems.

However, with the rise of deep learning technology over the

past few years, traditional registration methods with low accuracy,

complex and tedious iterative processes, and high time costs

have been unable to reduce the difficulties of today’s medical

image registration. Thus, deep learning methods based on deep

neural networks have become the key to solving the bottleneck of

medical image registration performance (5–7). Different training

methods are largely divided into three types, namely, supervised

learning, unsupervised learning, and weakly supervised learning.

In existing research, Rohe et al. (8) proposed SVF-Net, a fully

convolutional network based on the U-Net structure. This network

replaces all layers in the conventional U-Net (9) network with

convolutional layers. In addition, the model combines global

semantic information from the deep network and local positional

information from the shallow network, and it predicts the SVF

3D velocity field using ROI from the segmentation to supervise

3D cardiac image registration. Unsupervised learning methods

have been a research hotspot in the field of registration since

there have been rare labels related to cardiac tissue motion

analysis. Krebs et al. (10) proposed a low-dimensional multiscale

probabilistic deformation network based on conditional variational

autoencoder (CVAE). This network is capable of learning from

unlabeled cardiac data, which can be used for the registration

of deformable soft tissue structures (e.g., heart and brain).

Balakrishnan et al. (11) optimized a simple U-Net network,

named VoxelMorph, which can be trained in an unsupervised or

supervised manner to achieve MRI registration results by defining

a loss function consisting of a mean square error (MSE). The

loss function comprises a similarity measure and a smoothing

constraint on the deformation field. Some researchers, inspired

by the above-unsupervised methods, also proposed a weakly

supervised strategy to solve the problem of sparse anatomical

signatures of tissues and organs. Hu et al. (12) proposed a method

to infer the registration field parameters from the high-level

information contained in a small number of existing anatomical

labels. These researchers introduced existing annotations in the

region around the target at the training stage to introduce

additional information for optimizing the network parameters

and increasing the registration accuracy. Deep learning based on

medical image registration methods, especially using convolutional

neural networks, have shown more significant improvements

in registration performance over the past few years. Increasing

methods have been proposed to solve the problems of slow

computation and less information captured using existing 2D/3D

registration methods (13). However, the current mainstream

frameworks primarily use convolutional neural networks as the

backbone, and the conventional convolutional operation is to

extract features by sliding a window with a convolutional kernel

size. Moreover, the perceptual field is limited to a fixed-size region,

which is only effective in extracting local features and has some

limitations in acquiring global information (14). The Transformer,

originally applied in the field of NLP, has gradually become a

novel alternative architecture for extracting global features in

recent years since it is effective in capturing long-range global

location information (15). Nevertheless, since the Transformer

is insufficient to extract local detailed features, relevant research

has emerged to fuse the advantages of Transformer in extracting

global information and CNN in extracting local information to

complement each other. Vision transformer (16) is capable of

dividing the image data into patches and then interpreting these

patches as sequences to take them as input. The above tokens are

handed it over to the Transformer encoder for processing. Thus,

Chen et al. (17) first proposed a hybrid model of Transformer

and CNN (TransUnet), thus preserving the U-shaped structure

of U-Net and introducing the Transformer encoder structure.

The input image is first passed through a series of convolution

operations to generate feature maps of different resolutions. In

addition, the network serializes the feature maps output from the

last layer as the patches. These patches are input to the Transformer

layer for encoding. Subsequently, a feature sequence with self-

attentive weights is obtained through Transformers encoding, and

it is reshaped to the image size and then upsampled, which is
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combined with different high-resolution CNN features derived

from the encoding path in the upsampling process to achieve

a more accurate medical image segmentation tasks. Chen et al.

(18) proposed ViT-V-Net fusing the basic registration framework-

VoxelMorph based on the V-Net (19) structure with the vision

transformer-based encoder to fully use the spatial correspondence

obtained from the 3D volume for more accurate registration. As

a result, the network can be better in extracting registration field

features and extracting global features. The network is capable of

extracting global features, while preserving as many local features

as possible between image contexts.

Although introducing the Transformer has been very effective

in solving problems (e.g., the loss of deep local feature information),

numerous Transformer baselines and hybrid models have been

proposed to solve the above problems. In fact, the Transformer

is transferred from the NLP to the CV field, and a relatively

large gap exists between the above two fields in understanding

images and texts. Compared with the high information density

of linguistic text information, the image information is highly

redundant, thus making it relatively difficult for the model

to predict the information density. In addition, considerable

information irrelevant to the task objective may be included in the

scope of the model learning, so the model should spend a lot of

parameter capacity in learning. Moreover, a significant gap exists in

the design of Transformer-based structures for NLP tasks and CV

tasks. Decoding linguistic information may be easier than images,

and reconstructing pixels is more complex than reconstructing

words, so the design of the Transformer’s internal structure is

significantly correlated with the learning effect of implicit semantic

representation during image decoding. Due to the above analysis

and the emergence of the problem, He et al. (20) transferred the

method with masked operation from NLP to the CV field. They

developed a relatively simple strategy, i.e., randomly masking a

certain percentage of the image patches, so the model can learn

more useful features and can predict the information of the missing

pixels. This architecture is capable of effectively achieving good

results in classification, segmentation, and detection tasks.

In the meantime, the self-attention mechanism plays a crucial

role in Transformer encoders, and its variants have been used to

varying degrees in text, image, speech, and video tasks (21–23).

The self-attention mechanism can filter out the features which are

useful for the target task, and improve the model computation

efficiency to a certain extent. It can paymore attention to the feature

correlation between the data, to solve the problems of network

information redundancy, gradient dispersion, and the difficulty of

handling variable-length sequences. The current multi-head self-

attention mechanism used in the traditional vision transformer

maps each sequence into three different feature spaces (Q, K, V),

and then calculates the attention weights by scaled dot product,

which selects parallel multiple features from the input features

for fusion. The attention mechanism based on the scaled dot

product can capture the global contextual information of the

feature sequence. However, in terms of computational complexity,

assuming that the sequence length is set to N of dimension D, the

dot product computation is essentially a multiplication between a

matrix of dimension N × D and a matrix of D × N with a time

complexity of O(n2d). In natural language processing tasks and

some speech recognition tasks, many related studies have simplified

the computation of the self-attention mechanism. It is necessary to

consider some strategies to make it better for vision tasks and to

reduce the computational complexity of self-attention.

Inspired by their research, we propose a novel Transformer-

ConvNet model (MAE-TransRNet) using the MAE’s strategy for

cardiac MRI registration.

This study aims to enhance the performance of cardiac

MRI registration by combining the advantages of CNN and

Transformer. In this study, the transformer structure, which is

currently popular, is primarily adopted to fuse the basic structure

of the existing unsupervised registration baseline-VoxelMorph.

We also explore the effect of the improved self-attention

mechanism on the effect of feature aggregation. In addition,

the attention mechanism and the superiority of the currently

proposed Transformer structure with a MAE in increasing the

registration accuracy of 3D medical images are investigated.

The main contributions of this study are summarized into the

following aspects:

(1) We propose a new hybrid multi-head self-attention module

(HyMHSA) for vision tasks. The original query-key-value-based

dot product computation unit is replaced with a dense synthesis

unit that directly computes the attention weights. Meanwhile, the

attention module restricts the interactions between sequences by

exploiting the correlation between adjacent contexts of sequences,

which makes the attention weights interact only between a portion

of adjacent tokens and fuses them with the dot product form of the

computation unit to reduce the computational burden.

(2) We introduce the concurrent spatial and channel squeeze

and excitation (scSE) module (24) in the CNN’s downsampling

structure. In the Transformer encoder, squeeze and excitation

module (25) is introduced after the attention to the Transformer

structure, so as to reduce the feature redundancy in the self-

attention mechanism in the ViT model, while increasing the

richness of the cardiac image features.

(3) The structure of the conventional ViT model is improved

based on Masked Autoencoder (MAE) (20). The application of

the Transformer combined with VoxelMorph is deeply considered

in medical image registration based on the existing research, and

the Transformer is employed as a baseline to make corresponding

model improvements. The proposed model is named MAE-

TransRNet.

2. Related work

2.1. Deformable image registration
baseline–VoxelMorph

Convolutional neural networks have progressively replaced the

conventional registration methods based on mutual information

with the development of deep learning in recent years. VoxelMorph

(11) was proposed in 2019 and has been extensively used

as a baseline in medical image registration. The VoxelMorph

framework can learn registration field parameters from 3D

volumetric data, and the encoder-decoder structure based on U-

Net (9) structure is adopted to combine shallow features and deep

features and reduce the information loss of features. Moreover,

VoxelMorph provides two training strategies. One training strategy
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is based on the grayscale value of the image to make the similarity

to maximize the similarity loss and smoothing loss. This part

is primarily pure unsupervised learning method for iterative

optimization. The other training strategy introduces additional

segmentation labels of the image as the auxiliary information based

on the unsupervised method by obtaining the dice performance

between the image pairs of segmentation labels at the training stage,

thus increasing the registration effect. In this study, the superiority

of the VoxelMorph baseline framework in the medical image

registration is considered, and the skip connection structure of

the VoxelMorph model architecture is redesigned and transferred

into a long-range skip connection structure containing CNN

encoder and decoder. This design is capable of combining the local

information of feature maps at different scales more effectively and

increasing the feature extraction capability.

2.2. Multi-head self-attention in
transformer encoder

The multi-head self-attention module selects multiple pieces

of information from the inputs and learns feature representations

from different representation subspaces at different locations. The

operation of multi-head attention can be described as mapping a

query and a set of key-value pairs to the output, where the query,

key, and value are denoted by Q, K, and V. Then, the three-

part linear mapping is input to the attention mechanism based on

scaled dot product to perform h attentions in parallel computation

(h refers to multiple heads). The formula for each dot product

attention computation is as follows:

Attention(Q,K,V) = softmax(
QKT

√
Dk

)V (1)

1√
Dk

is the attention deflator that mitigates the gradient

disappearance. Then the results of h-heads scaled dot product

attention are concatenated to obtain the final multi-head attention

output feature vector:

MultiHead(Q,K,V) = Concat(head1, ..., headh)W
O (2)

where headi = Attention(QWQ
i ,KW

K
i ,VW

V
i ) (3)

WQ, WK , and WV denote the weight parameter matrixes

corresponding to Q, K, and V. Figure 1 illustrates the structure of

the traditional multi-head self-attention mechanism.

Self-attention models have been widely used in various fields.

For query, key, and value, sequences of three vectors generated by

tokens through linear layers, a considerable number of researchers

have considered how to reduce the computation of attention.

Quadratic, for a matrix with N × N, we may not need the value

of each position on the matrix to participate in the attention

computation. Furthermore, for the global context information of

the Transformer, we do not need to consider all the information

from the beginning to the end. A sequence obtained from the cut

image patches has a very long length. That is, when calculating

the value of the current position, only its neighboring positions

are considered. The range of neighboring positions to consider,

FIGURE 1

Structure of the traditional multi-head self-attention mechanism.

the choice of position, and the choice of the sequence length to

be calculated are all important factors that currently affect the

complexity of attention computation in the vision domain. Chiu

and Raffel (26) introduce a scalable and variable sliding window for

attention computation, and Tay et al. (27) abandon the query-key-

based interactive attention weight learning approach and propose a

dense synthesizer that uses two feed-forward linear layers to predict

the attention weight parameters. Xu et al. (28) further proposed a

local dense synthesizer. They restrict the attention computation to

a local area around the current central frame. However, improved

works based on the self-attention mechanism are rarely found

in medical image registration tasks. Our work is a new attempt.

We introduce an improved self-attention mechanism into our

Transformer encoder and explore whether the attention module
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FIGURE 2

Pipeline for our registration method with MAE Pre-training. In the first stage (shown at the bottom), we use multi-branch MAE for pre-training, The

input of the Transformer encoder is a subset of unobscured tokens from multiple branches, with a lightweight decoder to reconstruct the complete

image. In the second stage (shown at the top), the weights obtained in the pre-training stage are used for the initialization of the registration model,

the network takes a two-channel 3D volume tensor as our input, which is down-sampled by three convolutions, and then recalibrated with attention

weights by scSE module, CNN decoder recovers potential features to image size and up-sample back to the original resolution size, using the spatial

transformation function to warp moving image.

applicable to text, as well as speech tasks, can be well applied to

our registration tasks.

2.3. Squeeze and excitation block in feature
extraction

The convolutional operation is the core of conventional

convolutional neural networks, which are based on local perceptual

fields to fuse features in spatial and channel dimensions. The

squeeze and excitation block proposed by Hu et al. (25) in 2018

places a focus on the research relating to the channel dimension

and explores the feature relationships between channels, which

can adaptively adjust the features on the channel dimension. The

squeeze and excitation block can be stacked in many classical

classification network structures (e.g., AlexNet and ResNet), and

it has high performance on datasets (e.g., ImageNet). Inspired by

the squeeze and excitation module, Guha Roy et al. (24) explored a

fusion module combining channel dimension features and spatial

dimension features to “reconstruct” features both in space and

channel. Thus, the network can focus more on learning features

that are more significance in downstream tasks, and it exhibits high

applicability in 2D and 3D scenes. For the common tasks in current

medical image analysis, (e.g., segmentation and registration), more

insights should be gained into the spatial information at the pixel

level of the image. Now, the embedding structure of such modules

has been extensively used in the field of medical images (e.g., brain

MRI and enhanced CT’s segmentation tasks). Based on the above

research, squeeze and excitationmodule and concurrent spatial and

channel squeeze and excitation (scSE) module are embedded into

the proposed model, and the role of the above two modules in

improving the performance of the registration model is explored.

The importance of different levels of features is adjusted, so the

model can learn more valuable high-level features, and features

that are less important for the target task are given less attention.

Thus, richer spatial and channel information can be obtained

at the pixel level. The relative importance of attention in both

dimensions is calibrated simultaneously, which leads to further

accuracy improvements in downstream registration tasks.

2.4. Transformers in vision and
self-supervised learning

With the prevalence of Transformer architectures migrated

from the NLP domain, increasing variants of Transformer-

ConvNet have high performance in computer vision tasks.

Transformer structures are now extensively employed in vital tasks

(e.g., medical image segmentation, medical image registration, and

reconstruction) because of their superiority in capturing global
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FIGURE 3

Architecture of our HyMHSA module. It is a hybrid version of the traditional multi-head self-attention mechanism and local dense self-attention

mechanism.

contextual information and the localization of CNN convolutional

operations for fine feature extraction. The TransUnet proposed by

Chen et al. (17) is the first attempt at the Transformer-ConvNet

structure, and it has achieved effective results in the segmentation

tasks of cardiac and abdominal multiple organs. Several important

works have also emerged in registration tasks, suggesting that

the splicing and Transformer-ConvNet structures can effectively

consider the advantages of both in their respective fields. However,

with the emergence of some relevant in-depth studies, several

problems are caused as follows:

(1) Numerous studies have suggested that the critical factor for

learning efficiency is the scale of dataset, besides some problems of
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FIGURE 4

scSE module in CNN encoder.

FIGURE 5

3D MAE Transformer. After the masked operation, only the unmasked patches are fed into ViT. After the linear mapping into one-dimensional tokens,

the blank positions (yellow parts) are all filled by the same vector of the same dimension and then decoded by a layer of Transformer decoder. The

next layer will be fine-tuned in accordance with the downstream task.

the model. The ability to learn valid information from considerable

unlabeled data has been a crucial research topic in medical image

analysis tasks. The number of data required to train the vision

Transformer is significantly higher than that of a conventional

convolutional neural network, especially the standard dataset with

annotations. However, for medical images with a small sample size,

it is undoubtedly challenging to obtain many labeled datasets, and

the problem of data starvation always exists in the research on the

vision Transformer architecture.

(2) The Transformer structures adopted to fuse CNNs

are primarily migrated versions of structures based on NLP

tasks, and the information density contained in the text is

significantly different from the images. The features extracted

by the Transformer encoder may be too complete and
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FIGURE 6

Reconstruction e�ect of cardiac images on MAE’s three variants. The pre-processed original images, masked images, reconstructed images, and

MAE reconstruction pasted with visible patches are presented from left to right.

TABLE 1 Comparison of image registration performance (including dice performance and Hausdor� distance) of five di�erent methods on the ACDC

dataset.

Methods
LV Myo RV Avg

DSC HD DSC HD DSC HD DSC HD

VoxelMorph 0.847 5.75 0.743 6.23 0.754 9.32 0.781 7.10

CoTr-Based 0.847 5.59 0.776 6.12 0.768 9.25 0.797 6.99

PVT-Based 0.848 5.37 0.745 6.08 0.778 9.12 0.79 6.86

ViT-V-Net 0.856 5.51 0.789 5.96 0.783 8.78 0.809 6.75

The proposed method 0.858 5.49 0.792 5.93 0.785 8.65 0.812 6.69

The best results are achieved and highlighted by the bold values.

contain some redundant information, so it is imperative to

remove redundancy.

In medical images, the anatomical structure of the respective

organ has a certain correlation between different contextual slice

information, and it is also correlated with the features of the

neighboring regions around the target region. The learning of

the neighboring information and contextual information between

pixels can facilitate the representation of advanced features.

With the continuous development of self-supervised learning, the

Transformer structure combined with the self-attentivemechanism

(29) can break through the state of the art continuously. Self-

supervised learning essentially provides a reliable learning path

that allows the network to learn from large amounts of unlabeled

data to be more capable of feature extraction. In fact, self-

supervised learning is divided into several processes. (1) First, the

basic structure or characteristics of the large amount of unlabeled

data (which can be interpreted as built-in prior knowledge) are

employed. Together with the relevant requirements of the task

definition, some certain properties of the data are adopted instead

of manual labeling, which can be interpreted as generating pseudo-

labels for the images and initially training the network. Thus, it

can extract features, i.e., the initial learning ability. (2) Second,

the network is fine-tuned with a small amount of labeled data, so

the network can further satisfy other tasks such as classification,

segmentation, and registration.

The Transformer refers to an encoder -decoder integration

based purely on an attention mechanism. In the current vision

tasks, more novel strategies are urgently required to help models

learn image features with powerful representations due to the

different natures of visual information and textual information.

Moreover, the MAE recently proposed by Kaiming He et al., has

been well-adapted to the vision transformer and has achieved

better results in tasks (e.g., classification). We consider that masked

autoencoder can be effective in computer vision tasks by destroying
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FIGURE 7

Visualization results of the attention heat map of the ACDC dataset in several models.

FIGURE 8

Examples of registration results from the proposed method, columns 1 and 3 are the moving image and fixed image from three di�erent periods;

columns 2 and 4 are the triple classification labels for the left ventricle, left ventricular myocardium, and right ventricle; columns 5 and 6 represent

the warped original image and the warped image with labels, respectively; column 7 is the dense deformable field generated from fixed image and

moving image; column 8 is the visualization result of the Jacobian determinant, as the dense displacement vector field (DVF); columns 9 and 10 are

the registration flow filed and displacement field generated from the deformed images.

most of the patches of the image data and forcing the model to

adapt to this defective feature structure when learning the image

representation, which significantly reduces the redundancy of the

image and creates a more challenging assignment. Finally, the

model is enabled to learn the essential features of the image, so a

powerful representation of the whole image data is obtained. The
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FIGURE 9

Performance comparison of the training and validation stage of di�erent methods. Compared with other methods, the loss values of the proposed

method are kept at a lower level during the training process, and the dice performance values obtained from the validation set are higher. (A) Training

loss values under the comparison of di�erent registration methods. (B) Validation dice performances under the comparison of di�erent registration

methods.

design of an asymmetric encoder -decoder structure saves model

overhead, in which the encoder accounts for learning high-level

feature representations by learning only the visible, unobscured

patches, and the obscured patches are represented by a set of

shared, learnable latent vectors. Self-supervised learning is further

introduced into the visual transformer based on existing research,

and the self-encoder with mask operations is applied to the heart

image registration task, which can effectively solve the problem

of sparsely labeled data and large information density differences

between images and texts. Furthermore, applying the expandable

MAE to our task and increasing the feature learning difficulty can

instead lead to a stronger learning capability of the model.

3. Proposed method

3.1. Overview

OurMAE-TransRNet is a two-stage registration pipeline. In the

first stage (bottom half of the figure), we use masked autoencoder

as the encoder for pre-training. The encoder input is a subset of

randommasking of the image after patch chunking, and a modified

self-attention mechanism is used in the Transformer encoder

for simplifying the attention weight calculation. It calculates

the attention parameter by selecting local contextual location

information in the sequence. We reconstruct the complete image

with a lightweight Transformer decoder, and the pre-trained model

weights contain the powerful global latent features learned by

the MAE pre-trained model on the cardiac image. In the second

stage (top half of the figure), the pre-trained weights generated

in the first stage are passed to the encoder of the registration

model, and the registration network is initialized. Our input is

3D cardiac MRI (Ω ∈ R3), which consists of a single-channel

grayscale image of the initial time frame F ∈ RH×W×L (fixed

image) and a single-channel grayscale image of the end time frame

M ∈ RH×W×L (moving image). The proposed model aims to

learn the mapping transformations between the image pairs of the

initial frame and the final frame. The resolution of the original

image is first reduced to a suitable size through the downsampling

operation of three convolutional neural networks to obtain a

high-level feature representation, and then the spatial features are

combined with the channel features by a concurrent spatial and

channel squeeze and excitation (scSE) module, and the obtained

high-level attention features are fed into the Transformer coding

layer with the same structure as the pre-training stage. Going

through the CNN decoder, the high-level features are reshaped to

the image format. The deformation field is CNN’s output, which is

applied to the moving image through the warping layer. Here, the

model uses the weights learned in the pre-training stage to train

the registration network by calculating loss for backpropagation

to generate a registration network model with optimal weight

parameters. Subsequently, the objective function is minimized, as

expressed in Equation (4)

ϕ̂ = argmin
ϕ

L(F,M,ϕ) (4)

ϕ is obtained as the vector field offset from F toM as a feature of the

registration image pair, i.e., ϕ = Id + u. Id represents the constant

transformation operation, and u represents the displacement vector

field. Figure 2 illustrates the overall pipeline of the proposed

method.

3.2. Novel multi-head self-attention with
SE module

In the Transformer encoder, the core of multi-head self-

attention is to map query, key, and value in their respective

representation subspaces and merge them back after processing

Frontiers inMedicine 10 frontiersin.org

https://doi.org/10.3389/fmed.2023.1114571
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Xiao et al. 10.3389/fmed.2023.1114571

TABLE 2 Comparison of proposed methods with di�erent attention

mechanisms including time complexity and registration performance.

Method Complexity DSC Avg HD Avg

MHSA O
(
N2D

)
0.807 6.81

LDSA O (Ncn) 0.801 6.71

HyMHSA O
(
N(N + cn)

)
0.812 6.69

N is the length of the input feature and cn is the context neighbor’s value.

in their respective spaces, which is essentially the decomposition

process and re-aggregation of attention features. For the visual

domain, each location of each feature mapping contains

information about the features at other locations in the same

image, which makes the model more adept at capturing the

dependencies between features with long spatial intervals.

However, in practice, the input of image data is generally high

resolution, especially 3D images, which makes the model need

to learn longer feature sequences without losing too many fine-

grained features of the image, and neither direct processing of

the whole image nor downsampling can solve such problems

significantly. The presence of inductive bias in CNN structures

allows such models to be good at extracting local information. The

Transformer structure remains desperate for extensive sample-size

medical training data. In the face of such scarce data, we can

only achieve this by exploring more powerful feature extractors,

introducing some of the properties of inductive bias inherent in

CNNs into Transformer, and in particular, embedding efficient

convolution modules in the structure of self-attention computation

to enhance the attention to small-scale local information in the

dataset, which is one of the aims of our study.

We introduce the SEmodule into the computation of attention.

Meanwhile, we embed the depthwise separable convolution (30)

into our attention and the feed-forward layer. Given a 3D image

as the input X ∈ RB×C×H×W×L, the input is mapped into

three subspaces representing Q, K, and V by a module consisting

of deep convolution and point convolution, respectively. The

depthwise convolution aggregates the spatial information, and the

pointwise convolution aggregates the feature information along

the channel dimension. Then we flatten the image features into

a long sequence for Transformer encoding by patch embedding

and position encoding. SE module is introduced in the respective

transformer block to solve the problem thatmany channels inmany

current ViT models contain excessive redundant information, as

well as to increase the efficiency of the model. After SEmodules, the

long token (X ∈ R
B×N×D) is compressed into a 1×1×1×D token,

which is equivalent to compressing all global attention features into

a high-level feature representation. Moreover, a series of nonlinear

mappings are performed for the respective channel of the high-

level features. Finally, the weight parameter corresponding to each

channel is obtained, and a weight value representing the degree of

attention is generated for the respective feature channel. This part

aims to learn the nonlinear interaction between each token channel,

and the weights are weighted with the original token to obtain the

reconstructed attention to the feature representation with shape

B × N × D. After the above operation, our input changes from

X ∈ R
B×C×H×W×L to XQ/XK/XV ∈ R

B×N×D, formulating as:

X1 = PoiW(DepW(X,K1),K0)

X2 = PoiW(DepW(X,K2),K0)

X3 = PoiW(DepW(X,K3),K0)

(5)

XQ = SE(Patch_PosEmd(X1,H,W, L,C, P), r)

XK = SE(Patch_PosEmd(X2,H,W, L,C, P), r)

XV = SE(Patch_PosEmd(X3,H,W, L,C, P), r)

(6)

where DepW and PoiW denote depthwise convolution and

pointwise convolution, K0, K1, K2, and K3 are different kernel sizes,

r is the reduction ratio of SE module, XQ, XK , and XV denote the

vector representations mapped from the original input to three

different subspaces, and P denotes the patch size.

The design of the attention module affects the computational

efficiency of the vision transformer. Currently, self-attention in

vision transformer establishes global long-distance dependencies

by interacting information between all regions in the image, which

requires neighborhood and global context to achieve. Our approach

does not entirely discard the decomposition and aggregation

model of multi-headed self-attention while further setting the

model’s scope to consider neighborhoods. Our hybrid attention

reduces the computational effort by restricting the current frame

from interacting with its finite neighboring frames. We take one

attention head as an example to explain our approach. First, we

generate three weight matrixes W1, W2, and W3 for computing

attention using the linear layer of SELU. W1 and W2 are used to

directly generate the attention weights corresponding to XQ and

XK , and W3 is used to generate the attention weights for “values.”

In W2, we introduce a hyperparameter cn, which represents the

contextual neighbors. This parameter restricts the contexts around

the current location considered in the attention calculation. Thus,

the dimension of the original weight calculation is reduced from

N to cn. The model shares attention weights among only a limited

number of locally adjacent contexts, significantly reducing time

complexity. The input token (XQ/XK/XV ∈ R
B×N×D) is computed

by attention weighting to obtain the query token (SXQ ∈ R
B×N×cn)

with local contextual information and key token (SXK ∈ R
B×N×cn),

value token (SXV ∈ R
B×N×D) are obtained directly by W3

weighting. Furthermore, we introduce the variable j to compute the

weights of each cn position above and below the j-centered position

in the token with local attention, weight it with the value token, and

sum it to obtain two vector outputs AttnQ_V , AttnQ_K containing

local adjacency context information. Since query and key are

obtained by locally computing the full dense attention synthesized

directly, we call this part the local dense attention computation

module. The output of local dense attention is calculated by:

SXQ = Softmax (SELU(XQW1)W2)

SXK = Softmax (SELU(XKW1)W2)

SXV = XVW3

(7)
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FIGURE 10

Boxplots to describe the variability of dice performance obtained by di�erent registration methods for the same anatomical structure.

FIGURE 11

Boxplots to describe the variability of dice performance for various anatomical structures obtained under the same registration method.

TABLE 3 Ablation study about di�erent masking ratios in the ACDC dataset for registration.

Masking ratio
LV Myo RV Avg

DSC HD DSC HD DSC HD DSC HD

0.85 0.854 5.52 0.773 6.12 0.783 8.75 0.803 6.8

0.75 0.858 5.49 0.792 5.93 0.785 8.65 0.812 6.69

0.65 0.857 5.42 0.776 5.89 0.783 8.62 0.812 6.64

0.375 0.858 5.42 0.794 5.85 0.786 8.62 0.813 6.63

0.125 0.859 5.39 0.795 5.78 0.788 8.58 0.814 6.58

The best results are achieved and highlighted by the bold values.
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TABLE 4 Ablation experiments on the location of SE module embedding.

SE module position
LV Myo RV Avg

DSC HD DSC HD DSC HD DSC HD

Transformer 0.856 5.51 0.789 5.98 0.783 8.68 0.811 6.72

CNN Block 0.854 5.65 0.793 6.07 0.782 8.73 0.809 6.82

Trans+CNN 0.858 5.49 0.792 5.93 0.785 8.65 0.812 6.69

The best results are achieved and highlighted by the bold values.

OutnQ =
cn−1∑

j=0

S
n,j
XQS

n+j−⌊ cn
2 ⌋

XV

OutnK =
cn−1∑

j=0

S
n,j
XKS

n+j−⌊ cn
2 ⌋

XV

(8)

AttnQ_V = OutnQW3

AttnK_V = OutnKW3

(9)

where W1 ∈ R
D×D, W2 ∈ R

D×cn, and W1 ∈ R
D×D are three

learnable weights and n denotes the number of tokens.

Finally, we aggregate the attention of the three components Q,

K, and V by the traditional multi-head self-attention computation

module to obtain the feature representation of hybrid attention in

one attention head, and then we concatenate the outputs of all the h

heads and calculate the output of the HyMHSA block, formulating

as:

AttnOut = MHSA(AttnQ_V ·WQ,AttnQ_K ·WK , SXV ·WV ) (10)

HyMHSA(X) = Concat(AttnOut1, ...,AttnOuth)W
m (11)

Our architecture of the hybrid multi-head self-attention

mechanism is shown in Figure 3.

3.3. Squeeze and excitation module in 3D
CNN encoder

The channel and spatial dimensional parallel attention

mechanismmodules are introduced in the CNN encoder before the

Transformer structure to operate on convolutional features using

a dual-dimensional parallel extraction of attention features, with

input feature maps of X ∈ RH×W×L×C. Moreover, the attention

mechanism modules [e.g., spatial squeeze and channel excitation

block (cSE) and channel squeeze and spatial excitation block (sSE)]

are applied to 3D CNN (Figure 4) The spatial attention module

consists of a global average pooling layer and a fully connected,

ReLU activation layer (ẑ = W1 (δ (W2z))) behind it. This module

generates the intermediate feature vector z ∈ R1×1×1×C via the

pooling layer while generating n-th element, which is expressed as

follows:

zn = 1

H ×W × L

H∑

i

W∑

j

L∑

k

un(i, j, k) (12)

In this step, the global spatial information of the image features

is also embedded into the feature vector z. With the variation of the

squeeze and excitation module, the entire attention recalibration

process is expressed as follows:

XcSE = FcSE
(
X

)
= [σ (ẑ1) x1, σ (ẑ2) x2, · · · , σ (ẑc) xc] (13)

where c denotes the attention weight of each channel, emphasizing

high-importance features and suppressing low-importance

features, assigning different levels of importance to the

respective channel. The other part targets the fine-grained

pixel information in cardiac MRI. This part is enabled us

to deeply mine the channel information of the feature map

and then spatially excite it. The feature vector is expressed

as X =
[
x1,1,1, x1,1,2, · · · , xi,j,k, · · · , xH,W,L

]
, and the linear

representation of the feature projection (Xs = Wsq · X) is obtained
through convolution operation. The attention recalibration process

is illustrated as follows:

XsSE = FsSE
(
X

)
=

[
σ

(
Xs(1,1,1)

)
x1,1,1, σ

(
Xs(i,j,k)

)
xi,j,k, · · · ,

σ
(
Xs(H,W,L)

)
xH,W,L

]
(14)

The value of each σ represents the relative importance of the

spatial information (i, j, k, c) for a given feature map. Accordingly,

the combination of the twomodules allows features on channel and

spatial aspects to be considered more often in the learning process

of the network. The formula is:

X̄scSE = X̄cSE + X̄sSE (15)

3.4. 3D vision transformer with MAE as
deformable registration core architecture

3.4.1. 3D vision transformer architecture
The conventional 3D ViT architecture is borrowed as the

backbone for pre-training and downstream registration tasks, and

the feature maps containing some high-level feature information

obtained from three downsampling operations are employed

as the input of ViT: X ∈ R
H×W×L×C. The size of P ×

P × P non-overlapping patches is adopted to slice the high-

dimensional images to get N = HWL
P3

patches. These patches

are flattened into P3C-dimension vectors, and the serialized

representation with high-level features is obtained. To preserve the

position information, position embedding is introduced after patch

embedding, and the vector of flattened patches and the vector of

position information are added for a serialized representation of

the global information of the image.
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TABLE 5 Comparison of image registration performance in three variants of MAE pre-training model (including dice performance and Hausdor�

distance) on the ACDC dataset.

Pretrain-Model
LV Myo RV Avg

DSC HD DSC HD DSC HD DSC HD

Base 0.858 5.49 0.792 5.93 0.785 8.65 0.812 6.69

Large 0.859 5.47 0.795 5.96 0.786 8.6 0.813 6.68

Huge 0.861 5.42 0.794 5.87 0.786 8.37 0.814 6.56

TABLE 6 Three variants of MAE’s detail about configuration and parameters.

Model Patch size Encoder dim Mlp dim ViT layers ViT head Params

Base 16 768 3,072 12 12 63.837M

Large 16 1,024 4,096 24 16 244.455M

Huge 14 1,280 5,120 32 16 387.248M

FIGURE 12

MAE’s pre-training result on the ACDC dataset, including training loss, validation loss, training contrastive loss, and training reconstruction loss. We

consider three di�erent MAE variants.

3.4.2. Pre-training with MAE
The core part of the proposed method introduces a self-

supervised learning strategy by designing 3DViT as an autoencoder

structure with random masked operations to allow the encoder

to learn more high-level abstract features and by employing an

asymmetric encoder -decoder structure as the core structure of the

registration network. Figure 5 illustrates the 3D MAE framework

adopted. The feature map is sliced into overlap patches (patch size
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= 8) in the conventional ViT approach, accessing the position

embedding. For the above patches, the patches above half of the

ratio (masking ratio = 0.75) are masked, only a small portion

of patches that are visible to the encoder are kept, and then the

patches required to be masked are calculated. Next, random indices

are obtained and divided into the masked and unmasked parts.

The unmasked part is the shallow representation of the high-level

features, while the masked part is represented by a shared and

learnable vector. Each masked patche can be represented as the

same vector. As depicted in Figure 5, only the unmasked patches are

fed into ViT after the masked operation. After the linear projection,

the patches are converted to one-dimensional tokens, and the blank

positions (yellow parts) are all filled by the same vector of the same

dimension and then decoded by a layer of Transformer decoder.

In the MAE, the MSE is used as the reconstruction loss function,

and the reconstruction effect is measured by obtaining the MSE

between the reconstructed image and the original image in the pixel

space.

3.4.3. Designed architecture applied to
downstream tasks

A simple layer is designed as the registration head according

to the downstream registration task. Before this layer, five CNN

decoder layers are also designed to reconstruct the feature

representation obtained by the Transformer Block. Subsequently,

the feature representation is recovered to the image data format and

gradually upsampled back to the original resolution, as presented in

Figure 5.

3.5. Loss functions in the registration model

The loss function in the registration model consists of a mean

square error (MSE) similarity loss and a regularized smoothing

loss based on a folding penalty and the sum of the two is used as

the loss between the moving image M, the fixed image F, and the

deformation field ϕ. The loss function is given by:

L(F,M,ϕ) = LMSE(F,M,ϕ)+ αP (16)

where LMSE(F,M,ϕ) is the mean square error similarity loss, α

is the regularization parameter, P is the regularization loss based

on the folding penalty, and the two parts of the loss function are

formulated as:

LMSE(F,M,ϕ) = L(2) = 1

�

∑

2∈ω

[F(2)−M ◦ ϕ(2)]2 (17)

P = 1

V

∫ X

0

∫ Y

0

∫ Z

0

[(
∂2T

∂x2

)2

+
(

∂2T

∂y2

)2

+
(

∂2T

∂z2

)2

+2

(
∂2T

∂xy

)2

+ 2

(
∂2T

∂xz

)2

+ 2

(
∂2T

∂yz

)2
]
dxdydz

(18)

In the mean square error similarity loss function, 2 is the

network parameter to be learned, � represents the image domain,

and M ◦ ϕ(2) denotes the moving image after spatial transform

(warped layer); in the regularized loss function based on the folding

penalty, the essence of the function is to penalize the folding

region of the deformation field, V is the volume of the 3D image

domain, T is the local spatial transformation, and adding this term

minimizes the second-order derivative of the local transformation

of the deformation field, which leads to an affine transformation of

the local deformation field and thus enhances the smoothness of the

global deformation field.

4. Experiments

4.1. Preparation of datasets and related
setting details

The dataset used for the experiment and the related settings

are described. In this study, the dataset applied is the publicly

available benchmark dataset from the automated cardiac diagnosis

challenge (31) (ACDC) in 2017. This dataset contains short-axis

cardiac 3D MR images from a total of 150 cases for two-time

frames of initial frame-end frame, and the public dataset applied

provides standard segmentation labels for three parts (including the

left ventricle (LV), the left ventricular myocardium (Myo), and the

right ventricle (RV)) for the registration task, which involves five

categories of cases (including normal, heart failure with infarction,

dilated cardiomyopathy, hypertrophic cardiomyopathy, and right

ventricular abnormalities). Hundred cases of the above 150 cases

contain the triple segmentation labels, while 50 cases do not contain

labels. The same dataset is employed for the pre-training task

and the downstream task. For the pre-training task, 250 cases

are employed for training, and 50 cases are applied for validation

(only include images). For the downstream task, the image parts

are extracted in 40 cases (1–40), and the complete cardiac cycle

images of 50 cases (101–150) for a total of 90 cases are extracted

as the training set, 20 cases (41–60) containing images and labels

are extracted as the validation set, and 40 cases of data from cases

(61–100) are extracted as the test set. At the data preprocessing

stage, all the images are cropped to 64 × 128 × 128, the random

flip is adopted as the data augment method for the training set to

increase the sample size of the dataset. Furthermore, the label pixel

normalization method is applied for the validation and test sets to

preprocess the data.

4.2. MAE architecture for pre-training

In the pre-training task, the three variants of MAE architecture

(MAE-ViT-Base, MAE-ViT-Large, and MAE-ViT-Huge) are

adopted to pre-train the heart dataset to compare how well the

model learns cardiac image features. Unlike the original method

of pre-training with the ImageNet-1K (32) dataset, the ACDC

dataset is employed, which is divided into 250 cases and 50 cases

for training and validation, respectively. The learning rate is set

to 1e-4, and MAE pre-training is run for 500 epochs. Moreover,

the batch size is set to 2, and the masking ratio is set to 0.75

(default setting) to save the pre-trained MAE model obtained in

the pre-training stage for testing some subsequent results.
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4.3. Downstream task–Cardiac MRI
registration

The method proposed in this study is a hybrid network of

CNN and Transformer structures, while some structures with

Transformer structures are employed as the main backbone

network to access in the registration task for comparison.

Thus, VoxelMorph is adopted as the baseline network. The

PyTorch framework is employed to implement all methods for

the comparison experiments. The MONAI framework is used

to visualize the registration results, and the methods of the

experiments are completed on an NVIDIA RTX 3090 GPU. The

Adam optimizer and the step decay (power = 0.9) learning rate

reduction strategy are employed in all neural networks. nii format

is converted into 3D volume npz format for two time frames from

the dataset, and the two-time frames in the respective 3D format in

the training sets are converted into fixed image and moving image,

respectively. Subsequently, the validation sets and test sets let the

image and label of each of the two-time frames form a 3D image

pair. On that basis, the respective image is matched with the image

of another time frame in a random combination, thus forming

four pairs of fixed image and moving image (360 pairs, 80 pairs,

and 160 pairs). The proposed framework is compared primarily

with several typical methods based on deep learning, which include

the baseline framework for registration, VoxelMorph, and three

networks [CoTr-based (33) registration network, PVT-based (34)

registration network, and ViT-V-Net)] for several applications of

the Transformer backbone. The single-channel fixed image and

the moving image are combined into a 3D grayscale image with

a channel number of 2 as the input of the network. All inputs are

subjected to the same preprocessing. The batch size is set to 2, the

initial learning rate is set to 0.0001, and the training rounds of 500

epochs are set. The whole process is performed by downsampling

the input five-dimensional tensor. Subsequently, the obtained high-

level feature representation is divided into equal-sized patches

through patch embedding operation. For patches, the remaining

visible unmasked patches are fed into the encoder of the 3D vision

transformer, so the deformation is achieved from the input image

to the predicted densely aligned deformation field using the spatial

transformer network. The proposed model is trained by optimizing

the loss function for the similarity between the fixed and moving

images. For the metrics to evaluate the registration effect, dice

coefficient (DSC) and hausdorff distance (HD) are selected to

evaluate the 3D registration results.

5. Results

5.1. Cardiac image in MAE reconstruction

The reconstruction effect for cardiac MRI is tested by pre-

training the model on the ACDC dataset. Figure 6 presents the

results of three variants of MAE architecture’s reconstruction at

a mask ratio of 0.75. As revealed by the results, although the

resolution of visible patches in the reconstructed image is reduced,

and the three model variants differ in their reconstruction of

cardiac images. The MAE can still recover the lost information

from the pixels around the missing patches effectively. The

recovered features can be better applied to downstream tasks.

5.2. Cardiac MRI registration

The method applied takes the dice coefficient and hausdorff

distance as measurement metrics. The proposed method is

compared with several advanced registration methods currently

available, and the experiments are performed on 150-cases ACDC

dataset. The comparison results achieved for dice performance

and Hausdorff distance are listed in Table 1. Some representative

registration methods are based on deep learning, including

the unsupervised registration baseline -VoxelMorph, as well

as the registration network with 3D PVT-based, CoTr-based,

and ViT-V-Net.

The visualization results of the attention heat map of the ACDC

dataset in several models are shown in Figure 7. We compared the

proposedmethod with VoxelMorph and ViT-V-Net to compare the

models in terms of feature aggregation. In the visualization results,

brighter regions indicate a higher degree of feature aggregation.

These visualization results of the attention heat map show that all

three methods can aggregate different features in three regions of

the left and right ventricles and ventricular walls. In contrast, our

method can wrap the target contour region more comprehensively.

Figure 8 presents the registration results of the whole cardiac

organ and the left and right ventricles obtained by the proposed

method and the generated deformation fields, including three

different periods of registration. The proposed method is capable of

enhancing the dice performance by nearly 0.01 and decreasing the

Hausdorff distance by about 0.1, respectively, compared with other

methods, and the loss values of the proposed method are kept at a

lower level during the training process, and the dice performance

values obtained from the validation set are higher (Figures 9A,

B). In the meantime, we set the value of contextual neighbors in

self-attention to 100 by default and compare the time complexity

of traditional self-attention, naive local intensive attention, and

hybrid local dense attention in our model. The results show that

the model can improve model performance while maintaining a

low time complexity. These results are shown in Table 2. In brief,

theMAE-TransRNet achieves better registration results and verifies

the effectiveness of MAE, SE, and HyMHSA modules introduced

into the registration task. In the meantime, we used boxplots to

describe the variability of dice performance obtained by different

registrationmethods for the same anatomical structure and also the

variability of dice performance for various anatomical structures

obtained using the same registration method (Figures 10, 11).

6. Ablation study

To evaluate the effect of our proposed MAE-TransRNet more

accurately, a series of ablation experiments are set to verify the

performance of the model under different settings, including the

masking ratio size, and whether to add different dimensions to the

Transformer encoder and CNNmodules, and the effect of theMAE

model size on the effect of the registration task. All the training

epoch is set to 500.
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6.1. Masking ratio

The default value of the masking ratio is set to 0.75 as the

baseline framework for the experiment, and the experimental

settings are used when the masking ratio is set to other values

to explore the effect of the masking ratio on the final registration

effect. The result is listed in Table 3.

6.2. SE module’s position

The SE module is introduced in the MAE-TransRNet

architecture. Because of the Transformer-ConvNet architecture,

the SE module is embedded into the Transformer block and the

scSE module into the CNN block, and the effect of SE embedding

on the model is compared at the above two positions. It is found

that the dice coefficients and HD of the registration are slightly

improved by introducing SE module either in the Transformer

block or in the CNN block, and the results are better when

SE module is introduced in both parts of the architecture, thus

suggesting that the attention mechanism based on the channel and

spatial dimensions in the Transformer block and CNN block is

beneficial. The results of our experiments are listed in Table 4.

6.3. Model scaling

Finally, we provide an ablation study on different model

sizes of MAE pre-training model. In particular, three different

configurations, including the “Base,” “Large,” and “Huge” models,

are investigated. For the “base” model, the patch size, encoder dim,

MLP dim, number of ViT layers, and number of ViT heads are set

to be 16, 768, 3,072, 12, and 12. It is concluded that larger model

results in a better performance. For the huge computation cost, the

MAE-ViT-Base model is applied to all the experiments. The result

and the related configuration are shown in Tables 5, 6. Moreover,

the related train loss value is presented in Figure 12.

7. Discussion

An unsupervised learning deformable image registration

model is proposed based on Transformer-ConvNet. It has been

implemented to predict the spatial transformation parameters

between input image pairs by introducing ViT. There are two

differences between most deep learning-based methods, especially

some methods that introduce the Transformer as follows:

(1) The proposed model is trained by continuously optimizing

the image similarity metric without any label as ground truth,

while the label is used to support validation and testing. Thus, the

registration effectiveness is measured.

(2) We designed the core of the Transformer as a self-encoder

and lightweight decoder structure with a MAE, turning the feature

extraction prior to the registration downstream task into a self-

supervised learning task.

The cardiac MRI dataset for the ACDC is evaluated. The

experimental results suggest that the model can outperform the

baseline model of deep learning-based deformable registration and

slightly outperform some other Transformer-based registration

methods. A MAE is applied to the heart registration task first from

the difference between text and image information. The method

of masking more than half of the patches significantly reduces the

redundancy of images, making the feature extraction task more

challenging and forcing the model to learn more deeply hidden

and better representations. Our purpose in introducing two SE

modules is to enhance the feature representation capability of the

Transformer structure and the CNN structure. The purpose of

introducing the scSE module in the CNN structure is to help us

dig deeper into the fine-grained information of the feature map by

considering the importance of features in the channel and spatial

dimensions to the fine-grained pixel information in the heart

image; we introduce the SE module in the self-focus mechanism,

hoping to analogize the application scenario of SE in convolution to

do query, key, and value in the self-focus computation, respectively.

We successfully introduce some convolutional induction bias

in the Transformer module to enhance the extraction of local

information. Also, we are the first to use this kind of local dense

attention in the vision domain, especially in the alignment task. We

believe that this self-attention mechanism based on local neighbor

context is useful for medical image analysis tasks. The results of

several comparison experiments and ablation studies suggest that

using the MAE for medical image registration tasks is of great

significance in the effect improvement, and the MAE with different

scales has a slight difference in the reconstruction effect of cardiac

images. It is more appropriate to select “Base” as the baseline

model to avoid a high cost of computation. It is worth discussing

that, unlike the results when the MAE with a high masking ratio

is applied to natural images (e.g., ImageNet-1K dataset), a high

masking ratio does not make the MAE achieve the optimal result

in medical image tasks. Since the masking ratio is continuously

adjusted downward, the effectiveness of our registration tasks

is increased slightly, which also suggests that the masking ratio

of MAE has different effects on different image analysis tasks.

Moreover, the embedding of the SE module in Transformer-

ConvNet structure plays a positive role in feature extraction to a

certain extent.

However, the effect of the proposed method compared with

other methods on the cardiac registration task does not differ

significantly between models, probably because the dataset size

is relatively small and the model parameters are great. In

addition, for the part of MAE, before feeding into the decoder,

a part of the token in the blank position is filled in by

sharing the learnable vector, which essentially generates non-

existent content and is easy to mislead the original features

of the image. Accordingly, if the potential impact is further

considered, our future research is devoted to the design of

the model to be more lightweight, considering the realism of

the underlying information representation, while trying to scale

up a certain amount of dataset size to further enhance the

registration performance.

8. Conclusion

An unsupervised learning deformable image registration

method is proposed based on Transformer-ConvNet structure,
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which changes the original ViT structure, introduces mask

operations, and does not require segmentation labels as registration

information. Furthermore, we introduce a new multi-head

self-attention mechanism that sets the range of the model

considering neighbors so that the attention module only computes

contextual information within a limited distance from the

current location. The result of this study verifies that the MAE-

TransRNet can achieve results comparable to several popular

methods at present and still has much room for improvement.

Future research may be extended to multimodal cardiac image

registration tasks.
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