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The lymphatic vasculature maintains tissue homeostasis via fluid drainage in the 
form of lymph and immune surveillance due to migration of leukocytes through 
the lymphatics to the draining lymph nodes. Lymphatic endothelial cells (LECs) 
form the lymphatic vessels and lymph node sinuses and are key players in 
shaping immune responses and tolerance. In the healthy lung, the vast majority 
of lymphatic vessels are found along the bronchovascular structures, in the 
interlobular septa, and in the subpleural space. Previous studies in both mice and 
humans have shown that the lymphatics are necessary for lung function from 
the neonatal period through adulthood. Furthermore, changes in the lymphatic 
vasculature are observed in nearly all respiratory diseases in which they have been 
analyzed. Recent work has pointed to a causative role for lymphatic dysfunction 
in the initiation and progression of lung disease, indicating that these vessels may 
be active players in pathologic processes in the lung. However, the mechanisms 
by which defects in lung lymphatic function are pathogenic are understudied, 
leaving many unanswered questions. A more comprehensive understanding of 
the mechanistic role of morphological, functional, and molecular changes in the 
lung lymphatic endothelium in respiratory diseases is a promising area of research 
that is likely to lead to novel therapeutic targets. In this review, we will discuss our 
current knowledge of the structure and function of the lung lymphatics and the 
role of these vessels in lung homeostasis and respiratory disease.
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Introduction

Historically, the lymphatic vascular system has been understudied compared to the blood 
vascular system, in part because of difficulty identifying these vessels and unique anatomical 
differences that make their characterization challenging. However, there have been significant 
advances in lymphatic research over the past two decades, and the importance of lymphatic 
function has been increasingly uncovered (1–3). In the lung, lymphatic vessels play critical roles 
spanning from the first breath after birth to roles in diseases such as asthma, tuberculosis, and 
COPD (4–9). While the importance of the lung lymphatics is starting to be understood, the 
precise mechanisms by which these vessels affect lung homeostasis and disease pathogenesis are 
not entirely clear. However, given that the lung is both constantly exposed to outside pathogens 
and toxins and also exquisitely sensitive to fluid accumulation, lymphatic function is predicted 
to play a key mechanistic role in lung function.
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Lung lymphatic structure and 
anatomy

The lymphatic system has been described since the 16th century, and 
landmark studies by Dr. Florence Sabin in the 1900s provided critical 
information about the origins and anatomy of the lymphatic vasculature 
during development. However, it has only been in the past 20 years that 
the molecular basis for lymphatic development has been uncovered. In 
mammals, the lymphatic system develops embryonically and is driven 
by specification of endothelial cells to a lymphatic identity via the 
transcription factor PROX1, which is required to bias and maintain a 
population of progenitor cells to the lymphatic program (10–14). 
Embryonic lymphangiogenesis is driven by vascular endothelial growth 
factor C (VEGFC) signaling through its receptor VEGFR3 on LECs 
(15). Lymphatic vessels form an extensive network throughout the skin 
and in most internal organs where they function to promote interstitial 
fluid drainage, trafficking of antigen presenting cells into regional 
lymph nodes, and absorption of lipids and small molecules (16, 17). In 
the lung and elsewhere, the lymphatic vascular network consists of 
small, thin-walled, and blind-ended initial lymphatics that drain into 
larger collecting lymphatic vessels (18, 19). Discontinuous button-like 
junctions between LECs in the initial lymphatics facilitate uptake of 
interstitial fluid and macromolecules (18). The collecting lymphatics 
have tighter and continuous zipper-like junctions and in most organs 
are covered with specialized muscle cells that promote lymph flow by 
providing contractile activity, though notably, the lymphatics in the lung 
lack this smooth muscle cell coverage (18, 19). Initial lymphatics in the 
lung parenchyma drain into collecting lymphatic vessels that are present 
in the bronchovascular bundles and interlobular septa (Figure 1). These 
collecting lymphatics drain to thoracic lymph nodes, and eventually 
into the thoracic duct, where lymph is returned to the blood circulation.

Lung lymphatic development

Much of our recent understanding of the development and origins 
of the lymphatics are the result of studies using mouse and zebrafish 
embryos. In addition, the identification of mutations in several genes 
that are essential for lymphatic development in patients with lymphatic 
disorders has also aided in our knowledge of the molecular basis for 
lymphatic development (3). The lymphatic vasculature, including the 
lung lymphatics, arise from specification of LEC progenitors expressing 
the master transcriptional factor PROX1 in the cardinal veins to form 
lymph sacs (14, 20–22). Lymphatic identity in these LECs is maintained 
by a feedback loop involving both PROX1 and VEGFR3 (23). Migration 
of LECs from the lymph sacs into the developing lobes of the lungs 
begins at embryonic day 11.5 in mice, with more extensive patterning 
and lymphatic vessels with lumens detected in proximal and distal 
bronchovascular bundles at E14.5 (24). By E18.5, the lung lymphatic 
vasculature is a well-defined and continuous network that is associated 
with both bronchovascular bundles and veins (24).

Identification and imaging of the lung 
lymphatics

Study of the lymphatic system in general, and the lung lymphatics 
in particular, has historically been quite challenging due to the lack of 

reliable imaging techniques and molecular markers as well as their 
thin walls, small size, variable anatomy, and complex interconnections 
(25). Even directly after surgical exposure, lymphatic vessels are not 
easily visible, as lymph is normally transparent. Studies using casting 
techniques in animal models provided critical early insights into the 
anatomy of the lung lymphatic vasculature. Using corrosion casting 
(26–28), lymphatics within the lung were visualized and found to 
consist of blind-ended initial lymphatics that empty into tubular 
conduit lymphatics around blood vessels and airways (29, 30). A series 
of ‘pre-lymphatics’ were also seen and consisted simply of tissue planes 
that connected with lymphatic channels on the pleural surface.

Since these studies, visualization of the lung lymphatics in animal 
models is now greatly aided by identification of lymphatic-specific 
markers and genetically modified mice that allow for microscopic 
analysis of these vessels. For example, lymphatic reporter mice in 
which LECs are labeled by expression of fluorescent proteins driven 
by the lymphatic-specific promoter gene PROX1 provide a key tool for 
identification of lung LECs (31, 32). Immunohistochemical techniques 
can also be used for identification of lung lymphatic vessels in human 
and mouse tissue using antibodies targeting lymphatic markers such 
as VEGFR3, PROX1, and Podoplanin. However, care must be taken 
in the use of these markers given organ-specific differences in their 
specificity for the lymphatic endothelium (33–35). For example, while 
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FIGURE 1

Anatomical distribution of lymphatics in healthy lung. (A) Distribution 
of lymphatics in the lung (green, left) with arrows indicating the 
direction of lymph flow. Cross section of the lung (right) and the 
distribution of lymphatics in relation to other lung structures. Images 
created using MediBang Paint Pro. (B,C) Visualization of lung 
lymphatics using whole mount immunohistochemistry of lung tissue 
from a Prox1-EGFP lymphatic reporter mouse, in which all LECs are 
labeled by GFP expression (green). Initial lymphatics are shown in B, 
with blunt ends of these vessels indicated by arrowheads. A larger 
collecting lymphatic is shown in C. Values indicated with asterisks. 
Scalebars = 50 um.
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relatively specific for the lymphatics in the lung, VEGFR3 is not a 
lymphatic-specific marker in other organs, particularly in the liver, 
where VEGFR3 is highly expressed in sinusoidal endothelial cells (36). 
Similarly, while Podoplanin can be used to detect lymphatics in the 
skin in mice, it lacks specificity for lymphatics in the lung, where it 
also expressed at high levels by type I alveolar epithelial cells (37). 
Expression of lymphatic markers may also change in settings of lung 
injury, further complicating the identification of lung lymphatic 
vessels (38, 39). Despite this, reliable markers for the lung lymphatics 
in both mice and humans have been identified, particularly when used 
in combination with each other (Table 1). Notably, novel radiographic 
techniques using inhaled lipid nanoparticles to map the draining 
patterns of the lung lymphatics have been developed in animal models 
(44, 45) and may be adapted for use in patients in the future.

Clinically, lymphangiography has significantly advanced our 
ability to image the lymphatics at high resolution due to direct 
administration of contrast agent into cannulated lymph vessels for 
computed tomography (CT) of lymphatic architecture. Contrast 
enhanced magnetic resonance lymphangiography has also provided a 
great deal of new information about the anatomy of the pulmonary 
lymphatics, particularly in the setting of pathological lymphatic flow 
into the lung parenchyma (46). Newer experimental techniques 
combine immunohistochemistry and high-resolution micro-CT 
(μCT) to obtain 3D imaging and microfluidic modeling of human 
pulmonary lymphatics at high resolution (47).

Lung lymphatic function

The lungs are susceptible to inflammation and injury, as they are 
constantly exposed to pathogens, environmental toxins, and inflammatory 
stimuli. Therefore, a major role of the lung lymphatics is clearing toxic 
substances and regulating the immune response (22, 48–50). In addition, 
though most fluid drainage in the lung can be accommodated via Starling 

forces to the pulmonary capillaries, lymphatic vessels clearly play a role in 
drainage of excess fluid and preventing edema that would compromise 
gas exchange (51, 52). Animal models have demonstrated that the 
lymphatic vessels begin draining interstitial fluid at the late gestational 
period, which increases compliance and changes lung mechanics to 
prepare for inflation at birth (9, 53).

The lung lymphatics also play a central role in coordinating the 
adaptive immune response by serving as a conduit for immune cell 
trafficking from lungs to draining lymph nodes where the response to 
infection and inflammation is coordinated (54, 55). Immature dendritic 
cells (DCs) reside in the periphery of the lung where they sample antigens 
found in inhaled air. These DCs extend their cellular processes between 
airway epithelial cells and into the airway lumen to provide continuous 
immune surveillance of the airway luminal surface (56–58). In addition, 
passive leakage of smaller antigens into the afferent lymph vessels also 
occurs through the tight junction barrier of LECs which acts as a 
molecular sieve. Lung DCs first migrate to bronchopulmonary lymph 
nodes and then drain to the mediastinal trunk (30). This egression of DCs 
from the lungs to the draining lymph nodes is tightly regulated (59), and 
sampling of antigens by pulmonary DCs that traffic to the lung draining 
lymph nodes is a key mechanism for orchestrating an appropriate 
immune response.

Studies using molecular tracing of DCs have proven useful for 
studying the kinetics of DC migration in the lung lymphatics to the 
draining lymph nodes (60–62). In normal conditions, a limited 
number of DCs reside in the lung and patrol the environment, and 
these cells maintain a steady state of migration via lymphatics to 
mediastinal lymph nodes every 1 to 2 days (63). Circulating pre-DCs 
migrate into lungs at a constant rate to replenish the resident DC pool, 
which turns over every 10 to 14 days (64–67). However, the turnover 
rate of DCs depends on anatomical location, and it has been found 
that the kinetics of migration of antigen presenting cells in the upper 
airways is much faster than in the lung parenchyma (63, 68). In one 
study, roughly 80% of the DCs in the upper airways were replaced by 

TABLE 1 Lung lymphatic markers in humans and mice.

Markers Species Remarks

Human Mouse

VEGFR3 Not specific for lung lymphatics, also 

expressed by blood endothelial cells

Relatively specific lung lymphatic marker, 

less specific in other tissues

 • Should be used cautiously in lung injury models where there is 

increased VEGFR3 expression in pulmonary capillaries

 • Can stain epithelial cells and macrophages (40)

 • Recommended to perform co-staining with other markers 

when used for human lung staining

PROX1 Can differentiate LECs from BECs Can differentiate LECs from BECs Detailed analysis of the tissue can be difficult given nuclear 

localization of this marker

LYVE-1 Not a specific marker for lung 

lymphatics, but can be useful in other 

tissues

Not a specific marker for lung lymphatics, 

but can be useful in other tissues

Can be combined with PROX1 for double staining to identify 

lung lymphatics

Podoplanin Best marker for human lung lymphatics, 

especially the D2-40 epitope

Not a specific marker of pulmonary 

lymphatics

Also stains podocytes and epithelial cells in mice (41)

CCL21 Can be used for staining of lymphatics 

in the lung

Can be used for staining of lymphatics in the 

lung

Can also stain HEVs in mice and CD45− myofibroblast-like cells 

in human tissue (42, 43)

LEC, lymphatic endothelial cell; VEGFR, vascular endothelial growth factor receptor; Prox1, Prospero-related homeodomain transcription factor; LYVE, lymphatic hyaluronan receptor, CCL, 
Chemokine (C-C motif) ligand, HEVs, High endothelial venules.
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new cells within 18 h whereas only 12% of the parenchymal cells were 
replaced within 9 days (68). Thus, there is a balance between migration 
of immune cells from the lungs via the lymphatic vessels and 
replenishment of these cells from the circulation that affects lung 
homeostasis. Changes in the rate of lung lymphatic trafficking or in 
the rate of cellular influx can have profound implications on the lung 
immune milieu. For example, lung lymphatic dysfunction alone, in 
the absence of inflammatory stimuli, is sufficient to generate profound 
lung inflammation characterized by accumulation of lung immune 
cells and the formation of tertiary lymphoid organs (TLOs) (7). 
Conversely, in the settings of infection, lung lymphatic migration of 
DCs to draining lymph nodes is increased (68–73). In this way, 
changes in lung lymphatic trafficking coupled with the rate of immune 
cell recruitment to the lung can govern the inflammatory state of the 
lung and its response to injury.

Interactions between LECs and trafficking leukocytes also affect 
immune cell migration and the immune response. Chemokines 
provide critical cues for the directional guidance of leukocyte 
transmigration in lymphatics, with chemokines and adhesion 
molecules synthesized and secreted by LECs tightly regulating 
leukocyte migration along chemotactic gradients under both steady 
state and inflammatory conditions (59). CCL21 expression on the 
lymphatic endothelium and expression of its receptor CCR7 on DCs 
and T cells is essential for uptake and migration of immune cells via 
pulmonary lymphatic vessels (74). Immobilized CCL21 on the 
lymphatic endothelium also plays an essential role in directing 
leukocyte movement within the lymphatic vessels (75–77). Antigen 
presentation by DCs to the lymph nodes is therefore dependent on 
gradients of ligands for CCR7 on the lymphatic endothelium (62, 
78–80). During inflammatory conditions, other factors such as 
sphingosine-1-phosphate (SIP-1), ICAM-1 and VCAM-1, and 
prostaglandin E2 expressed by the lymphatic endothelium are also 
important for leukocyte trafficking in lymphatics (38, 81–84).

The lung lymphatics in respiratory 
disease

Lymphatics are now considered to actively participate in 
physiological and pathophysiological processes in the lung, in part 
because of the role of these vessels in modulating the lung immune 
milieu. Morphological or functional defects in the lymphatic 
vasculature have been uncovered in many diverse pathological lung 
conditions (Figure 2). However, the mechanisms by which lymphatic 
dysfunction contributes to disease pathogenesis are not entirely clear. 
In some settings, lymphatic dysfunction may be secondary to lung 
injury and remodeling, but it is clear that in other settings, lymphatic 
dysfunction itself drives disease progression.

Asthma

Asthma is an inflammatory disease characterized by mostly reversible 
airflow obstruction showing features such as subepithelial fibrosis, 
changes in the extracellular matrix, mucosal edema, and angiogenesis (85, 
86). Remodeling of airway lymphatic vessels is seen in asthma (86) and in 
animal models has been shown to be mediated by VEGFC, VEGFD and 
TNF-alpha (87–89). Blockade of VEGFR3 signaling prevents tracheal 
lymphangiogenesis in a model of chronic airway inflammation (90). 

Furthermore, VEGFR3 signaling may play a role in airway inflammation 
by regulating the adaptive immune response (91). Interestingly, despite 
elevated levels of VEGFC and VEGFD, decreased lymphatic vessel density 
is associated with airway edema and fibrotic changes, and has been 
reported in fatal asthma cases (86), suggesting that anti-lymphangiogenic 
factors may be more prominent in severe disease. However, the exact roles 
that pro-lymphangiogenic and anti-lymphangiogenic factors play in acute 
or chronic airway inflammation are yet to be completely characterized. 
Further studies are required to explore the contribution of lymphatics to 
disease pathogenesis in asthma and how this may be targeted for therapies.

Sarcoidosis

Sarcoidosis is a systemic granulomatous disease that is 
characterized by non-caseating granulomas that are found mainly in 
the lungs and lymph nodes (92–94). Changes in the lymphatic 
vasculature are associated with these pulmonary granulomas, which 
are distributed along the lymphatic drainage pathways in the lung. 
Lymphangiogenesis has been implicated in the pathogenesis of 
pulmonary sarcoidosis given the close association of the pulmonary 
sarcoid granulomas with lymphatic vessels (95–98) and the elevated 
levels of VEGFC and VEGFA that are seen in the serum and 
bronchoalveolar lavage fluid of patients with this disease. In addition, 
immunohistochemical staining has demonstrated that the sarcoid 
granulomas are a source of these lymphangiogenic factors (97, 99). 
Though staining for Podoplanin has revealed atypical tubular vessels 
around the granulomas that resemble lymphatics, they lack staining 
for other lymphatic markers such as VEGFR3, making their identity 
as lymphatic vessels a bit unclear (97).

Lung transplantation

In case of the untreatable end stage pulmonary diseases such as 
COPD, pulmonary fibrosis and cystic fibrosis, lung transplantation is 
the only viable option available. However, long-term outcomes after 
lung transplantation remain poor, and acute rejection is seen in nearly 
30% of recipients, which carries the additional risk of development of 
chronic lung allograft dysfunction (100–103). Lymphatic vessels in the 
lung are severed during transplant surgery and are not surgically 
reconnected. Despite this, reestablishment of lung lymphatic drainage 
has been demonstrated in both humans and animal models (104–106). 
Furthermore, careful analysis of the lung lymphatics post-transplant in 
an animal model demonstrated that functional lymphatic drainage after 
lung transplant is achieved via sprouting of donor lung lymphatics and 
anastomosis of these vessels with those of the host (107).

The important role of lymphatics in lung transplant can 
be attributed to both the function of these vessels in fluid drainage as 
well as immune tolerance. On the one hand, lymphatic vessels 
transport antigen presenting cells loaded with allogeneic antigens to 
the draining lymph nodes which could lead to development of 
immune responses leading to graft rejection. On the other hand, 
lymphatic vessels help clear inflammatory molecules including 
hyaluronan (HA), which has been shown to be  associated with 
rejection (108, 109). Important studies using an orthotopic mouse 
lung transplantation model showed that simulation of 
lymphangiogenesis with recombinant VEGFC suppresses lung 
rejection and promotes clearance of HA from rejected lung grafts, 
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improving graft survival (110). In addition, genetic deletion of the 
lung lymphatics in a transplant model resulted in lung inflammation 
and the formation of bronchus-associated lymphoid tissue (BALT) in 
the lungs of mice (7). Interestingly, animal models suggest that severe 
rejection can be detected prior to the reestablishment of lymphatic 
drainage (111), and furthermore, that acute lung rejection can still 
occur in recipients that are completely devoid of secondary lymphoid 
organs (112). Therefore, several lines of data offer evidence for a 
therapeutic role for lymphatic function in lung transplant.

Tuberculosis

The lung lymphatics can themselves be a site of latent infection in 
tuberculosis (TB). Mycobacterium tuberculosis (Mtb) infection can 
cause lung lymphatic vasculitis that plays a role in Mtb dissemination 
by providing a direct route for spread from the initial site of infection 
in the lungs to the draining nodes (113–116). In addition, lymph 
nodes serve as a niche for Mtb growth and persistence (117). There is 
also evidence of interactions between the granulomas that form in 
Mtb infection and the lymphatic vasculature, as the granulomas may 
induce lymphangiogenesis (98), perhaps due to upregulation of a 
VEGFC (118, 119). In addition, extrapulmonary TB is caused by 
spread of the bacterium via the lymphatic system outside of the lung 
(120–122), providing a potential therapeutic target for this disease.

COPD

Chronic obstructive pulmonary disease (COPD) is most 
commonly caused by cigarette smoking and is characterized by 

progressive respiratory symptoms and airflow limitations that are not 
fully reversible (123, 124). Histologic analysis of human tissue has 
found increased lymphatic vessel density associated with the alveolar 
spaces (125) as well as an increased number of lymphoid follicles in 
patients with advanced COPD (126). In one study, upregulated 
expression of CCL21 and lymphatic chemokine scavenger receptor 
D6 was also observed in the lung lymphatics of patients with COPD 
(8). Recent studies using animal models have uncovered that 
lymphatic dysfunction may play a role in the pathogenesis of this 
disease. Mice with impaired lymphatic function develop many of the 
histologic and pathologic hallmarks of human COPD, including 
hypoxia, formation of lung lymphoid follicles, and airspace 
enlargement due to breakdown of elastin (7). Furthermore, cigarette 
smoke exposure causes lymphatic dysfunction with impaired 
drainage, decreased leukocyte trafficking, and prothrombotic lymph 
resulting in lymphatic thrombosis (6). Lung lymphatic dysfunction 
appears prior to the development of airspace enlargement in this 
model, suggesting that damage to the lymphatics is an early 
pathogenic event in this disease. Interestingly, lung lymphatic 
thrombosis is also seen in human COPD, and is correlated with 
disease severity (6). Further studies are needed to determine the 
mechanisms by which cigarette smoke causes lymphatic dysfunction 
and how lymphatic impairment drives lung injury.

Interstitial lung disease

Interstitial lung disease (ILD) is a debilitating disease 
characterized by chronic and progressive fibrosis and parenchymal 
remodeling. Changes in the lung lymphatics have been observed 
histologically in ILD, where increased alveolar lymphangiogenesis 

FIGURE 2

The lymphatic vasculature in lung disease. LECs, lymphatic endothelial cells; ILD, interstitial lung disease; LAM, Lymphangioleiomyomatosis; GLA, 
generalized lymphatic anomaly; KLA, Kaposiform lymphangiomatosis; VEGF, vascular endothelial growth factor.
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is correlated with collagen deposition and disease severity (127). 
In addition, though lymphatics are rarely found near alveoli in 
normal lungs, lymphatic vessels in the alveolar space are seen in 
the lungs of patients with interstitial pulmonary fibrosis, the most 
common form of ILD (128, 129). Severe damage of the subpleural 
and intralobular lymphatics has also been reported, with 
fragmented and disconnected vessels due to the massive fibrosis 
seen in this disease (130). Therefore, it is unclear whether the 
lymphangiogenesis seen in ILD results in functional vessels, and it 
is more likely that remodeling of the lung renders the lymphatic 
vessels unable for drain properly. Improving lymphatic function 
may be a novel therapeutic target in ILD, and preclinical models 
have indicated that stimulation of lymphatic proliferation may 
prevent fibrosis, suggesting a protective role for lymphatics in this 
disease (131).

Lymphangioleiomyomatosis

Lymphangioleiomyomatosis (LAM) is a rare multisystem 
disease primarily affecting premenopausal women (132) that 
results from mutations in the tuberous sclerosis complex (TSC) 
genes TSC1, or TSC2 (4) in aberrant smooth muscle-like cells 
(LAM cells) that infiltrate the lungs, airways, and lymph 
nodes  via  the lymphatics (133). LAM is characterized by 
lymphangioleiomyomas that are comprised of the LAM cells and 
abnormal lymphatic channels lined by LECs (134, 135). Chylous 
effusions are often seen due to lymphatic dilation and dysfunction 
in the lungs (136). Around 70% of the patients have elevated levels 
of the lymphangiogenic factor VEGFD, which is a biomarker for 
the diagnosis of LAM (137), and is produced by the LAM cells 
(105). In addition, recent analysis using single cell RNA sequencing 
has identified transcriptional changes in LECs that suggest that 
crosstalk between the lymphatic endothelium and LAM cells may 
play an important role in the pathogenesis of this disease (138), 
representing a novel therapeutic target.

Lymphatic anomalies

Complex lymphatic anomalies (CLAs) are rare disorders of 
embryonic lymphatic development and overlapping clinical 
symptoms caused by defects in the central collecting lymphatics 
(139–142). Generalized lymphatic anomaly (GLA) has multiorgan 
manifestations including in the lung, and is characterized by 
diffuse or multicentric proliferation of dilated lymphatic vessels 
(141, 143). The thoracic involvement in GLA can cause respiratory 
failure and is associated with poor prognosis (144). Kaposiform 
lymphangiomatosis (KLA) is another disease of abnormal 
lymphatic development and is characterized by foci of abnormal 
“kaposiform” spindle LECs (145, 146). Dilated and malformed 
lymphatic channels lined by a single layer of endothelial cells, 
pleural and pericardial effusions, and multiorgan involvement are 
common to both GLA and KLA, however patients with KLA 
exhibit more severe features and have coagulation disorders, 
hemorrhagic pericardial and pleural effusions, and some degree 
of fibrosis (139, 146). CLAs are generally caused by somatic 
mutations in genes that encode components of oncogenic growth 

factor signal transduction pathways, including PIK3/AKT/mTOR 
and RAS/MAPK (145, 147, 148). Accordingly, sirolimus, an 
inhibitor of mammalian target of rapamycin (mTOR), a kinase in 
the PI3K/AKT/mTOR pathway, appears effective at stabilizing 
signs/symptoms of disease in patients with GLA with mutations 
in this pathway (149, 150).

Lymphatic vessels and iBALT/TLOs

Tertiary lymphoid organs (TLOs), which in the lung are also 
known as inducible bronchus-associated lymphoid tissue 
(iBALT), are accumulations of lymphoid cells and resemble LNs 
in their cellular content, organization, high endothelial venules, 
and the presence of lymphatic vessels (151–153). Lymphatic 
vessels and lymphangiogenesis are key features of TLOs (152, 
154) and presence of iBALT are a hallmark of chronic 
inflammatory lung diseases (155). iBALT are not present at the 
time of birth, however they can develop at any time postnatally 
after a pulmonary insult (156). iBALT formation is seen in 
association with diverse lung diseases including COPD, infection, 
rheumatoid arthritis-associated lung disease, and lung 
transplantation (157–162). They can be protective for lung injury 
in the case of infection, where iBALT result in improved viral and 
bacterial clearance in animal models (163–165). Conversely, 
iBALT can be a source of autoreactive antibodies and autoimmune 
lung injury in other settings, including COPD and rheumatoid 
arthritis (161, 166–169). In models of lung transplantation, 
iBALT are associated with development of antibody-mediated 
rejection (170, 171), however other models indicate that iBALT 
may be a source of regulatory T cells that promote graft tolerance 
(172–174). The ways in which the pathogenicity of iBALT is 
regulated is of great importance for studies of the role of these 
structures in lung disease. Interestingly, lymphatic dysfunction 
alone in mice is sufficient to cause iBALT formation, in the 
absence of any other inflammatory insult (7). Lymphatic function 
is also implicated in the formation of TLOs in the gut, where 
TLOs restrict lymphatic drainage and immune cell migration in 
a model of inflammatory bowel disease (175). Crosstalk between 
the lymphatics and immune cells may play an important role both 
in the formation of these structures and their function, and is 
subject of ongoing investigations.

Conclusion

Rather than passive conduits, the lymphatic vasculature is 
increasingly recognized for its role in modulating organ function and 
disease pathogenesis. Indeed, changes in lymphatic morphology or 
function have been observed in nearly every lung disease in which 
they have been studied. The explosion of research indicating the 
critical role of these vessels in other organs is a model on which to 
build more thorough and mechanistic studies of the lung lymphatics. 
Novel tools for imaging these vessels, identification and isolation of 
lymphatic endothelial cells, and animal models for manipulating lung 
lymphatic function will greatly aid in our ability to investigate 
lymphatic function in lung homeostasis and disease. Unpacking the 
molecular mechanisms that govern lymphatic function and how these 
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changes in setting of lung disease will undoubtedly lead to new 
therapeutic targets.
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