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Introduction: This study aims to develop a web application, TB-DRD-CXR, for the 
categorization of tuberculosis (TB) patients into subgroups based on their level of 
drug resistance. The application utilizes an ensemble deep learning model that 
classifies TB strains into five subtypes: drug sensitive tuberculosis (DS-TB), drug 
resistant TB (DR-TB), multidrug-resistant TB (MDR-TB), pre-extensively drug-
resistant TB (pre-XDR-TB), and extensively drug-resistant TB (XDR-TB).

Methods: The ensemble deep learning model employed in the TB-DRD-CXR 
web application incorporates novel fusion techniques, image segmentation, 
data augmentation, and various learning rate strategies. The performance of the 
proposed model is compared with state-of-the-art techniques and standard 
homogeneous CNN architectures documented in the literature.

Results: Computational results indicate that the suggested method outperforms 
existing methods reported in the literature, providing a 4.0%-33.9% increase in 
accuracy. Moreover, the proposed model demonstrates superior performance 
compared to standard CNN models, including DenseNet201, NASNetMobile, 
EfficientNetB7, EfficientNetV2B3, EfficientNetV2M, and ConvNeXtSmall, with 
accuracy improvements of 28.8%, 93.4%, 2.99%, 48.0%, 4.4%, and 7.6% respectively.

Conclusion: The TB-DRD-CXR web application was developed and tested with 
33 medical staff. The computational results showed a high accuracy rate of 96.7%, 
time-based efficiency (ET) of 4.16 goals/minutes, and an overall relative efficiency 
(ORE) of 100%. The system usability scale (SUS) score of the proposed application 
is 96.7%, indicating user satisfaction and a likelihood of recommending the TB-
DRD-CXR application to others based on previous literature.
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1. Introduction

In several developing countries, the prevalence of tuberculosis 
(TB) and the growing elderly population have resulted in a shortage 
of drug susceptibility testing (DST) for the Mycobacterium tuberculosis 
(Mtb) strain, leading to inappropriate treatment and increased drug 
resistance (1, 2). The World Health Organization (WHO) has 
categorized drug resistance into five types based on severity: drug-
sensitive TB (DS-TB), drug-resistant TB (DR-TB), multidrug-resistant 
TB (MDR-TB), pre-extensively drug-resistant TB (pre-XDR-TB), and 
extensively drug-resistant TB (XDR-TB) (3).

Thailand faces a significant public health challenge with drug-
resistant TB, with studies reporting high rates of multidrug-resistant 
TB ranging from 2.9 to 14.7% (4–6). Research in Thailand has 
primarily focused on understanding drug resistance, including 
specific mutations in genes associated with resistance (7). Recent 
studies have identified novel mutations in drug-resistant TB strains 
across different regions of Thailand (8). Additionally, drug-resistant 
TB has been observed among Thai children (5). Molecular methods 
for TB diagnosis and drug susceptibility testing have played a crucial 
role in identifying genetic mutations associated with drug resistance 
in Thai TB strains.

In Nigeria, the prevalence of DR-TB is significant among newly 
diagnosed TB cases and previously treated TB cases (9). However, 
traditional drug sensitivity testing (DST) is limited due to resource 
constraints and the need for advanced laboratory infrastructure, 
leading to delayed results. Early detection and treatment of DR-TB are 
crucial to prevent complications and improve outcomes. Chest X-ray 
(CXR) has proven effective in diagnosing and evaluating tuberculosis, 
and it has been used in TB screening, triage, and diagnosis (10–14). 
Various studies have explored the use of CXR images in computer-
aided diagnosis (CAD) for drug-resistant TB, achieving notable 
accuracies (15–19).

Existing research has primarily focused on binary classification of 
DR-TB (20–22), while practical applications require identifying 
specific drug resistance classes from a single CXR image, highlighting 
the need for multiclass classification models. Multiclass classification 
is challenging but attainable, as demonstrated by previous studies 
(17–19). To enhance model performance, ensemble deep learning, 
which combines multiple distinct models, could be  utilized for 
classifying drug-resistant TB types, potentially achieving higher 
accuracy (23). Ensemble deep learning has shown promise in various 
medical applications, surpassing the performance of single deep 
learning models (24).

Computer-aided diagnosis (CAD) technologies can aid in 
automated detection and screening for drug-resistant TB, particularly 
in areas lacking radiological expertise (25, 26). Lung and mediastinal 
areas play crucial roles in TB detection, and combining their 
differences has been shown to improve diagnostic accuracy (27–29). 
Image segmentation techniques, such as ensemble models and lung 
segmentation, have been employed to enhance classification outcomes, 
yielding promising results (30–34).

Previous studies have employed various machine learning and 
deep learning approaches, achieving accuracies between 66.0 and 
94.9% (35–40). However, there is room for improvement, as multiclass 
classification accuracy may be lower compared to binary classification. 
Evaluating ensemble deep learning models using key performance 
indicators such as AUC, F-measure, and accuracy provides insights 

into their effectiveness (41, 42). Decision fusion strategies and 
preprocessing techniques influence the performance of ensemble deep 
learning (43, 44).

In this research we developed multiclass classification models for 
drug-resistant TB using CXR images. After obtaining classification 
model, the web application was developed. The application is capable 
of diagnosing drug-resistant strains from a single CXR sample, with 
the program’s output recommending an appropriate treatment 
regimen. The application is referred to as “TB Drug Resistance 
Diagnosis System-CXR,” or “TB-DRD-CXR” for short.

Nonetheless, this article makes the following contributions:

 1. This is the first-time multiclass classification has been used to 
categorize drug-resistant strains.

 2. Initially, heterogeneous ensemble deep learning was utilized to 
categorize drug-resistant organisms.

 3. This is the first web application that can classify drug resistance 
in “live” mode and provide the user with a recommended 
regimen based on the detected drug resistance class.

 4. Four classification procedures for “live” classification were 
proposed in order to identify the most promising strategies for 
classifying drug resistance “live.”

This work aimed to construct the application TB-DRD-CXR, 
which incorporates a deep learning model, in order to provide 
physicians with additional information regarding the CXR analysis 
performed by AI. If the physicians obtain sufficient and more reliable 
results, they are not required to adhere to the treatment plan or 
classification. The structure of this study is as follows: Sections 2 and 
3 present the materials/methods and computational results, 
respectively, while Sections 4 and 5 delve into the discussion 
and conclusion.

2. Related articles

A chest X-ray is the basic radiologic evaluation that is performed 
when tuberculosis (TB) is either suspected or confirmed (10). When 
used in conjunction with other symptoms and signs, a CXR offers 
high sensitivity in the diagnosis of tuberculosis (11). Infection with 
the human immunodeficiency virus (HIV), the degree of 
immunosuppression prior TB treatment, and a microbiological profile 
that is drug-sensitive (DS), have all been shown to change CXR 
outcomes in patients who have tuberculosis (12). Some studies have 
indicated that DS-TB and DR-TB manifest differently on a CXR in 
terms of the shape, size, and location of the lesions (12, 13), and CXRs 
have played a significant role in the screening, triage, and diagnosis of 
TB (14).

Computer-aided diagnosis (CAD) technologies have been used to 
reduce human error while extracting information from CXR images 
(25). These technologies can aid in the automated detection and 
screening of populations for drug-resistant tuberculosis, particularly 
in locations devoid of radiological expertise. The primary components 
of a CAD system are region-of-interest (RoI) segmentation, feature 
extraction from the RoI, and feature-based classification (26). The 
lungs and the mediastinal area are extracted from the CXR image. 
When searching for tuberculosis, specialists must examine these two 
locations thoroughly. The lungs surround the thoracic mediastinum, 
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which is located at the top of the chest (18). Lung and mediastinal 
deformation have been associated with the most common TB 
abnormalities, such as pleural effusions, consolidation, cardiomegaly, 
fibrosis, infiltration, bronchial dilation, and mediastinal lesions (27). 
Both Cheng et al. (28) and Cha et al. (29) concluded that combining 
lung and mediastinal differences can improve the diagnostic accuracy 
when identifying whether a patient has a different medication response.

As explained in Rahman et  al. (30), the ensemble image 
segmentation model combines two models into a single system to 
classify image patches and merge them into a pre-segmentation. The 
first model is a traditional convolutional neural network (CNN). The 
second model is a tweaked version of the U-Net architecture (31), 
which first separates the patches and then merges them into a single 
image. The initial segmentation is created by joining these two 
pre-segmented images using a binary disjunction operation; the final 
segmentation is obtained via postprocessing. The postprocessing 
stages include standard image processing methods such as erosion, 
dilation, connected component identification, and region-filling 
algorithms. The computed results highlight the significance of lung 
segmentation in enhancing classification outcomes. Accordingly, 
scientists think that a good classification result can be achieved by 
paring down a CXR image to its essential components (32–34).

In Tulo et al. (16), as the primary contribution to the proposed 
research, the authors employed image segmentation and machine 
learning (ML) to classify four categories of drug resistance. The 
machine learning algorithms that were proposed to distinguish 
between TB-negative, DS, and DR-TB included K-nearest neighbor 
(KNN), multilayer perceptron (MLP), support vector machine (SVM), 
and linear discriminant analysis (LDA) (20, 35). Deep learning 
approaches utilizing various CNN architectures were used to construct 
an AI drug resistance categorization model (15). Li et  al. (27) 
transformed CT images to the coronal plane using a pretrained 
ResNet50 convolutional neural network (CNN). Cheng et al. (28) and 
Cha et al. (29) employed an ensemble of 3D CNNs and a 3D texture-
based graph model, and support vector machines (SVMs), respectively, 
for the same problem. Govindarajan et  al. (36) addressed this 
classification task by replacing the softmax function of a 3D CNN 
architecture with an SVM. All entries showed minimal success, 
resulting in AUCs of roughly 0.60. Previously, numerous studies had 
classified small cases. In Kukker and Sharma (35), the authors 
examined DR-TB and DS-TB cases from a single hospital, while 
Toğaçar et al. (25) presented a large study in which the number of 
DR-TB cases increased from 183 to 468. Using information from 144 
individuals, Ramaniharan et al. (26) determined that the existence of 
numerous cavities is a strong predictor of DR-TB. Thacker et al. (37) 
compared 516 instances of DR-TB to 1,030 cases of DS-TB. The AUC 
of all proposed approaches was restricted to 0.83, which had the 
potential to increase.

Ensemble deep learning is a new deep learning architecture that 
combines multiple distinct CNN models to improve the effectiveness 
of the existing model. Using a hybrid ensemble feature extraction 
approach, Talukder et al. (38) was able to effectively diagnose lung and 
colon cancer. This approach combines deep feature extraction and 
ensemble learning with a high performance, and the mode can detect 
lung, colon, and lung and colon cancer with accuracies of 99.05, 100, 
and 99.30 percent, respectively. Using pretrained DenseNet-121, 
DenseNet-201, ResNet-101v2, and ResNet-50 architectures, Barsha 
et al. (39) proposed an ensemble model for the evaluation of invasive 

ductal carcinoma (IDC). The model was inferred from two cohorts of 
validation. On one validation cohort, the model had overall accuracy 
values of 69.31, 75.07, 61.85, and 60.50% for patch-level classification 
and 62.44, 79.14, 76.67, and 71.00% filtering for cancer image datasets. 
The three-stage ensemble-boosted convolutional neural network 
model was presented in Kalaivani and Seetharaman (40).

In the initial step of processing CXR datasets, a traditional 
segmentation model (ResUNet) is employed to enhance the model’s 
performance. The proposed model has an accuracy of 99.35%, which 
is superior to the traditional model currently in use (40).

The AUC, F-measure, and accuracy are the three KPIs used to 
assess the quality of ensemble deep learning employed in this research 
(41, 42). Accuracy measures the number of positive and negative 
observations that are correctly categorized. Since the precision score 
is based on the predicted classes, the F-measure is computed as the 
harmonic mean of precision and recall, giving each variable equal 
weight. It enables a model to be  evaluated by considering both 
precision and recall using a single score, which is useful when 
summarizing the performance of a model or comparing models. The 
AUC (area under the curve) is a performance metric for classifying 
issues with different threshold values. The receiver operating 
characteristic (ROC) curve is a probability curve, whereas the area 
under the curve (AUC) shows the degree or measure of separability. 
It indicates how well a model can differentiate between classes. The 
larger the AUC, the more accurately a model predicts 0 classes as 0 
and 1 classes as 1. The quality of ensemble deep learning is dependent 
on numerous parameters, such as the preprocessing techniques (43), 
the CNN architecture (44), and the model’s decision fusion strategy 
(38). Long short-term memory (LSTM)-based classifiers improve the 
usual majority voting approach by proposing the best–worst weighted 
voting technique to enhance network generalization performance. A 
heterogeneous ensemble network comprising convolutional neural 
networks (CNN) and random forest models was used to learn distinct 
features from acoustic emission (AE) data and categorize the AE 
signals into their respective phases, as proposed in (41). The results 
indicated that the suggested model outperformed the conventional 
model and classified signals into their allocated phases with 
greater precision.

3. Materials and methods

The creation of the CAD to classify the drug resistance types of 
tuberculosis patients necessitated three research stages. The 
subsequent actions were as follows: (1) collecting the dataset from 
previous research; (2) designing an effective ensemble deep learning 
approach; and (3) developing the Tuberculosis Drug Resistance 
Diagnosis System-CXR (TB-DRD-CXR). These methods were carried 
out in order to achieve the research objective.

3.1. Dataset and comparing method

This research utilized the Portal dataset, which can be obtained at 
http://tbportals.niaid.nih.gov (accessed on 2 September 2022). It was 
formerly employed in Rosenthal et al. (44) and Karki et al. (15). The 
dataset included 5,039 CXR images associated with tuberculosis, 
comprising 1,608, 470, 2098, 108, and 755 images for DS-TB, DR-TB, 
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MDR-TB, pre-XDR-TB, and XDR-TB, respectively. All CXRs used in 
this study were frontal, AP, or PA views with varying resolutions 
(206 × 115 to 4,453 × 3,719 pixels). The intensity ranges identified in 
the photographs varied as well, with 1,177 images with low dynamic 
ranges, with intensities in the range of 0–255, and 579 images 
exhibiting high dynamic ranges, with intensities in the range of 
0–65,536. The dataset was divided into two groups: the training 
dataset (80%; 4,030 images) and the testing dataset (20%; 
1,009 images).

3.2. Developing an effective CNN model to 
classify drug resistance types

The generic model that is explained in this section is shown in 
Figure  1. The model was constructed using two preprocessing 
techniques, two decision fusion methodologies, and three distinct 
CNN architectures, as depicted in Figure 1. This research used two 
preprocessing techniques: (1) image segmentation, which was used to 
extract only the important part of the CXR, and (2) image 
augmentation, which was used to increase the quality and quantity of 
the input images. Later on, two learning rate strategies were applied. 
These two methods were an adaptive learning rate (ADADELTA) and 
a cyclical learning rate (CLR). Three effective CNN architectures were 
used to build the promising classification model. They were 
EfficientNetV2B3, EfficientNetV2M, and ConvNeXtSmall. Finally, 
two fusion strategies were applied to execute the final 
classification of DR.

3.2.1. Image segmentation
The segmentation of the lungs employed in this study is a variant 

of that proposed in (42). By first breaking the original CXRs into 
smaller image patches, segmenting each one separately, and then 

piecing them back together, full segmentation can be achieved. This 
method employs a two-model ensemble, with the first model being a 
conventional convolutional neural network (CNN) that is used to 
categorize the image patches and then integrate them to generate a 
pre-segmentation. The second model is a custom version of the U-Net 
architecture that is used to perform the patch-based segmentation and 
then combines the results to produce a prior segmented image. The 
first segmentation is obtained by combining these two pre-segmented 
images via a binary disjunction operation; the final segmentation is 
obtained with postprocessing. Conventional image processing 
methods, such as erosion, dilation, connected component labeling, 
and region-filling algorithms, are used in the last steps of the process.

Figure 2 illustrates a modified framework for lung segmentation 
developed from TB-Portal (44). Due to the fact that (in reality) CXRs 
may originate from various sources using various technologies, the 
quality of the image transmitted between the lab and the physician 
may vary. Therefore, good image preparation is needed to obtain input 
data with a steady quality. For image preparation, downscaling, 
resizing, normalizing, and extract patching were applied. For the 
U-Net architecture (31), the patch size needed to be large enough to 
be  compatible with the downsampling and upsampling blocks. 
Therefore, we picked a 64*64 patch size for the U-Net layer. Similarly, 
while cropping the patches from the X-ray images, the patches from 
the respective masks were also cropped. This was performed to 
maintain the ground truth for each patch in the supervised training 
procedure. The CNN model was used to divide the image into lung 
and no-lung regions after the preprocessing steps had been completed. 
During the process of extracting the patches from the original X-ray 
images, they were categorized as either lung or nonlung. To accomplish 
this, patches were successively cropped from identical locations in the 
original X-ray and mask images. The lung-to-nonlung pixel ratio was 
then determined by comparing the cropped regions. If at least 20 % of 
the pixels in a given area were lung, we classified it as lung. It would 

FIGURE 1

Generic framework of the proposed ensemble deep learning.
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not be dubbed a lung patch if it did not alleviate lung difficulties. 
Multiple experiments led to the empirical conclusion of a 20% lung 
patch threshold. After cropping and labeling the image, a customized 
CNN was utilized to identify CXR patches.

3.2.2. Image augmentation
Image augmentation is a method for generating more training 

data for a model via the modification of existing data. In other words, 
it is the technique of artificially enlarging a dataset used to train a deep 
learning model. Using the following data augmentation approaches, 
the number of images within the employed datasets was increased in 
this study. The first group (A1-Aug) in image augmentation were 
random reflections of the original images in the left-to-right and 
top-to-bottom directions. The images were then linearly scaled along 
both axes using two random variables taken from a uniform 
distribution (45, 46). Figure 3 depicts an illustration of A1-Aug-type 
data augmentation.

Image rotation, translation, and shear made up the second set of 
data augmentation techniques, which are denoted as “A2-Aug.” The 
angle of rotation was decided at random and could be  anywhere 
between −10 and 10 degrees. The translation shifted along both axes 
by a value that was randomly chosen from an interval that ranged 
from 0 to 5 pixels. Random samples were taken from the range [0, 30 
degrees] for both the vertical and horizontal shear angles. The method 
of principal component analysis (PCA) that was described in Nanni 
et al. (47) was used for the third group in data augmentation, which is 
denoted as A3-Aug. Only the training data were used during the PCA 
space construction process. Three perturbation approaches were used 
to modify the PCA coefficients reflecting the original image vector; 
these perturbations yielded a new feature vector and, as a result, a new 
image once the perturbed vector was rebuilt. The first perturbation 
technique involved setting each element of the feature vector to zero 
at random (with a chance of 0.5). Five images were chosen at random 

from the same class as the original image for the third perturbation 
procedure. All six images were PCA-transformed, and some of the 
original image’s components were swapped with their matching 
components from the five remaining feature vectors. Each element of 
the five images had a 0.5% chance of replacing the original element. 
Since each color image had three channels, each channel was 
perturbed separately. This method augmented each original image 
with three additional images.

3.2.3. Learning rate optimization
When training a convolution neural network (CNN), the learning 

rate hyperparameter is crucial. Adaptive learning rate algorithms seek 
to automate the process of figuring out the appropriate learning rate, 
as doing so manually remains a time-consuming operation. Two 
learning rates were employed in this study to enhance the precision of 
the classification. The first strategy was based on the work of 
ADADELTA (48). ADADELTA is an innovative gradient descent 
approach that accounts for learning rates in each dimension. Using 
only first-order data, the method dynamically adjusts over time, with 
very little additional processing burden compared to a standard 
stochastic gradient descent. The approach seems to be resilient in the 
face of noisy gradient information, alternative model architecture 
choices, diverse input modalities, and the selection of hyperparameters, 
and it does not necessitate any manual adjusting of the learning rate. 
ADADELTA outperformed competing single-machine and distributed 
cluster algorithms on the MNIST digit classification problem and a 
large-scale speech dataset. To avoid the drawbacks associated with 
using a fixed or exponentially falling value throughout training, Smith 
(49) proposed a cyclical learning rate (CLR) that changes within a 
range of values. The learning rate oscillates between its critical values 
as it follows the shape of a triangle window, Welch window (parabolic), 
or Hann window (sinusoidal). The rate of assimilation varies in a 
triangular window. The critical values are determined in advance. 

FIGURE 2

Framework of the lung segmentation.
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However, the CLR may momentarily lower the accuracy, despite being 
computationally easier than adaptive learning rates.

3.2.4. CNN architectures
This study used three CNN architectures: EfficientNetV2B3, 

EfficientNetV2M, and ConvNeXtSmall. These three architectures were 
heterogeneously assembled into a single model, which was used to 
classify the type of medication resistance in patients based on their 
CXR images. We intended to develop an ensemble model with high 
precision and a low computational time. Using large CNN 
architectures increases the likelihood of achieving high accuracy (50). 
A combination of small, medium, and large architectures could 
produce an excellent categorization result, according to Xie et al. (51). 
However, in our suggested model, we selected the effective small CNN 
architecture as the base architecture and two effective large CNN 
architectures to increase the ensemble model’s performance.

DenNet-121 surpassed mobileNetV2 and ResNet101  in 
discovering the correct classification of drug resistance when 
combined with ensemble deep learning, according to Prasitpuriprecha 
et al. (21, 22). According to Chollet et al. (52), among all existing CNN 
architectures with a model size of less than 60 MB, EfficientNetV2B3 
has the highest level of accuracy. It provides a 3.792% better answer 
than DenNet121, which corresponds to the outcome found in Liu 
et al. (53). Therefore, for the small CNN architecture, EfficientNetV2B3 
was selected. Due to our desire to lower the computing time of the 
ensemble model, we restricted the size of the chosen model to no 
more than 250 MB for CNN architectures with larger sizes. According 
to Chollet et al. (52), the accuracy to model size ratio can be ranked 
from highest to lowest (top five highest ratios) as follows: 
ConvNeXtSmall (0.427), EfficientNetV2M (0.387), 
InceptionResNetV2 (0.373), ResNet152V2 (0.336), and ResNet152V2 
(0.336). Incorporating the top two highest ratios into the suggested 
model was, therefore, the next step. The selected CNN architectures 
have the following details.

A new family of convolutional networks, the EfficientNetV2 
series, outperforms its predecessor, EfficientNet version 1, in both 
training time and parameter efficiency. These models were created 
using a mixture of training-aware neural architecture search and 
scaling to simultaneously improve the training throughput and 
parameter efficiency. EfficientNetV2 uses an enlarged search space 
that includes novel operations such as Fused-MBConv to locate 
models. Experiments published in (54) demonstrated that 
EfficientNetV2 models train considerably faster than contemporary 
models while being up to 6.8 times smaller. Increasing the image size 

during training can help to accelerate the training process but often 
results in a loss of precision.

EfficientNetV2 suggests an enhanced approach to progressive 
learning that automatically modifies regularization as the image size 
increases to counteract this accuracy reduction. An EfficientNetV2 
that was trained using reinforcement learning achieved dramatic 
improvements in performance over prior models on the ImageNet 
and CIFAR/Cars/Flowers datasets. An EfficientNetV2 that was 
pretrained on the same ImageNet21k dataset achieved 87.3% top-1 
accuracy on the ImageNet ILSVRC2012 dataset, beating the latest ViT 
by 2.0% while training 5x-11x faster using the same computer 
resources. EfficientNetV2B3 has a size of 59 MB, while 
EfficientNetV2M has a size of 220B. The ConvNeXtSmall architecture, 
which is also utilized in this research, has a size of 192.29 MB.

ConvNeXtSmall (53) is a state-of-the-art image classification 
model. A vanilla vision transformer (ViT), on the other hand, faces 
difficulties when applied to general computer vision tasks such as 
object detection and semantic segmentation. It was the hierarchical 
transformers that reintroduced several prior ConvNets, making 
transformers practically viable as a generic vision backbone and 
demonstrating remarkable performances on a wide variety of vision 
tasks. ConvNet re-examines the design spaces and tests the limits of 
what a pure ConvNet can achieve. Constructed entirely from 
standard ConvNet modules, ConvNeXts compete favorably with 
transformers in terms of accuracy and scalability, achieving 87.8% 
ImageNet top-1 accuracy and outperforming transformers in COCO 
detection and ADE20K segmentation while maintaining the 
simplicity and efficiency of standard ConvNets. Figure 4 shows the 
architecture of a ConvNeXt.

3.2.5. Decision fusion strategy
In this phase, the hybrid variable neighborhood strategy adaptive 

search (VaNSAS) (55) and artificial multiple intelligence system 
(AMIS) (56) (HyVaN-AMIS) was used to determine the proper fusion 
weight approach. A decision fusion strategy (DFS) handles combining 
the solutions from many CNN architectures into a single solution that 
represents the proposed model’s solution. First, the unweighted 
average model (UAM) was used to combine the answers. Then, 
HyVaN-AMIS was used to decide the best weight for the UAM in 
order to improve the quality of the final solution.

Numerous studies on deep learning and machine learning have 
made substantial use of the well-known unweighted average model 
(UAM) (54, 57, 58). The key idea is to give each prediction value (Yij ) 
the same weight, where I is the CNN label and j is the prediction class. 

FIGURE 3

Example of left–right, top-bottom and linearly scaled method.
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Further in this study, the HyVaN-AMIS was integrated with the UAM 
to provide the ideal weight for the final forecast 
(HyVaN-AMIS-OptW).

The UAM used Eq. 1 for the fusion operations, while HyVaN-
AMIS-OptW used Eq. 2 to determine the final weight. Let us define 
Yij as the predicted value of CNN i class j prior to the application of 
Eqs 1, 2 .Vj is the value used to classify class j following the fusion of 
multiple CNN results. Wi is CNN i’s weight. I is the quantity of CNNs 
utilized by the ensemble model.
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I

ij
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The prediction is carried out by the class j with the highest value, 
as determined by the variable Vj. The optimal value of Wi is determined 
with the help of HyVaN-AMIS-OptW. HyVaN-AMIS-OptW is a 
process with five stages: (1) generating an initial set of tracks (Trs), (2) 
selecting an improvement box (IB), (3) having all tracks execute the 
chosen IB, (4) updating heuristics data, and (5) repeating stages (2)–
(4) until the termination condition is met. In this study, the number 
of iterations serves as the model’s termination condition. D is the 
dimension of the Tr, which equals the number of CNNs (I). NP is the 
number of Trs that are constructed. An example of the Trs when M = 5 
is {0.4,0.4,0.7,0.8,0.9}.

Each Tr makes a separate decision for which IB will be used to 
improve the current solution. As can be seen in Eq. 3, there is a clear 
probability function associated with choosing which Tr to employ. The 
IB is be  chosen by the Tr in each repeat using a roulette wheel 
approach (46).
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The probability of IB b in iteration t is denoted by Pbt. F is the 
scaling factor, which is set to 0.7 according to the recommendation in 
Ganaie et al. (23). Abt−1 is the average objective function of all Trs that 
chose IB b from iteration 1 to iteration t-1. K is a predetermined 
integer value set to 3 (23). Ubt−1 is a positive integer that rises by 1 if 
the iteration’s best solution is in IB b. Nbt−1is the total number of Trs 
that selected IB b from iteration 1 to iteration t-1, each of which has 
to be iteratively updated.

Pbt is the probability of IB b occurring at iteration t. Scaling factor 
F was recommended by Pitakaso et al. (56) to be 0.7. The objective 
function Abt−1 is the weighted average of all Trs’ objective functions 
from iteration 1 through t-1 when they choose IB b. K is an 
unchanging integer, and it was set to 3 (56). If the best solution of the 
iteration is in IB b, then Ubt−1 increases by 1. The total number of 
iterations from the first iteration to iteration t-1 in which Tr chose IB 
b is denoted by Nbt−1. Each of these variables must be  iteratively 
updated. Once the Tr has determined which IB will be  used to 
improved itself, it will make that decision using the probability 
function provided in Eq. 4. Three improvement boxes, as listed in 
Table 2, were used in this research (Eqs 4–6), as recommended in 
Pitakaso et al. (55, 56).
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FIGURE 4

Confusion matrices of the classification result shown in Table 1.
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The IB equations are identical to the equations shown in Pitakaso 
et al. (55, 56), and they were designed in accordance with multiple 
intelligence theory. Xelt  is the value of Tr e element l in iteration t, 
whereas r, n, and m are non-equal elements of Tr (1 to E) not equal to 
e. Bl

gbest is the global best Tr, i.e., the Tr that delivers the best solution 
out of all generated solutions (iteration 1 to the current iteration).

Hel  represents a random number of Tr e element l. F1 and F2 are 
the scaling factors, which are defined as 3 [as recommended by (45)], 
and CR is the crossover rate, which Pitakaso et al. (56) suggested is 
equal to 0.8. Relt is a Tr produced arbitrarily from Tr e element l during 
iteration t. Tr e discovers Bel

pbest  to be the best answer. Eq. 7 is used to 
update the value of Xelt+1,and Xelt+1 is related to the values of Wi, as 
indicated in Eq. 8.
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This paper investigated image segmentation (Seg), augmentation 
(Aug), ensemble deep learning with a heterogeneous ensemble 
architecture, two learning rate techniques, and decision fusion 
procedures. Table  1 depicts the experimental design of the 
recommended methods for classifying the medicine resistance level. 
Nevertheless, as seen in Table 3, this study included 16 experiments.

3.3. TB drug resistance diagnosis 
system-CXR (TB-DRD-CXR) design

TB-DRD-CXR was designed to help medical staff in the drug 
resistance diagnosis process. Web applications are programs that may 

be accessed and used exclusively online. Online programs are hosted 
on a remote server, as opposed to being downloaded, installed, and 
run locally on the user’s machine. In order to view them, all you need 
is a computer equipped with a web browser and a connection to the 
internet. To improve the usability of a website or web application for 
its visitors, professional web designers focus on the interface as well as 
the experience they have there. Web design is distinct from software 
development because it focuses on the website’s functionality, 
accessibility, and esthetics. This system’s web application architecture 
design is shown in Figure 5 below.

According to Figure 5, the web application was built using HTML, 
JavaScript, and TensorFlow, adhering to the principles of responsive 
design so that it would work properly on any modern web-enabled 
device. It is possible for users (medical professionals) to submit an 
image file for further analysis on their own PCs. A server receives this 
image file in order to make a diagnosis and provide medication 
recommendations. The pharmacist who handles this matter updates 
the treatment plan. Once a picture is obtained, the system uses a deep 
learning model to make a diagnosis as to what ailment is present. 
Once the disease classification is determined, it returns to the user’s 
side with specific information and recommendations regarding 
treatment options. The users’ interface that we used in this research 
was composed of two ways to insert images into the system for 
diagnoses. These two methods were selecting an image from the 
sources in the computer and via a live insertion of an image (fast 
image analysis). For the selecting image input, the result was displayed 
once to the user when the operating system had completed classifying 
the drug resistance type. The live input data reported the outcome 
multiple times throughout the live image input process. The live input 
procedure concluded when the user pressed the camera’s shutter 
button. The reporting strategy for the live camera segment consisted 
of four tactics, including (1) reporting the last classification result 
when the user pressed the camera’s shutter; (2) reporting the class of 
drug-resistant organisms with the highest likelihood during the entire 

TABLE 1 Accuracy of the classification using different strategies in fast image analysis.

Number of 
input images

Number of correct 
classification

% Correct 
classification

Number of wrong 
classification

% Wrong 
classification

Strategy 1 414 378 91.3 36 8.7

Strategy 2 414 403 97.3 11 2.7

Strategy 3 414 401 96.9 13 3.1

Strategy 4 414 380 91.8 34 8.2

TABLE 2 KPIs result in comparing with the state-of-art methods.

CNNs 
architecture

KPIs Model 
size (MB)

Model 
Size (6 
CNN)

Training time 
(minutes)

Testing time 
(seconds per 

dataset)AUC F-Measure Accuracy

DenseNet201 (59) 75.4 73.8 72.5 80 480.00 240.7 30.3

ResNet101 (60) 72.8 71.2 69.4 171 1,026 512.5 68.7

NASNetMobile (61) 52.7 50.4 48.3 23 138.00 80.5 10.8

EfficientNetB7 (62) 93.1 91.9 90.7 256 1,536.00 778 42.1

EfficientNetV2B3 (54) 67.4 65.4 63.1 59 354.00 210.7 94.5

EfficientNetV2M (54) 92.8 90.4 89.5 220 1,320.00 684.5 78.4

ConvNeXtSmal (57) 90.3 87.9 86.8 192.29 1,153.74 601.2 68.9

Proposed Method 95.1 94.8 93.4 130.26 781.58 301.4 38.4
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live camera session; (3) reporting the class of drug-resistant organisms 
with the longest stable likelihood during the live camera session; and 
(4) reporting the class with the highest average likelihood during the 
live camera session. Table 4 illustrates an example of a class decision 
for a live camera, whereas Figure 6 illustrates an example of the user 
interface for a live camera.

Using strategies (1), (2), (3), and (4), as shown in Figure 6, the 
final decision classes were DR-TB, MDR-TB, XDR-TB, and MDR-TB, 
with probabilities of 79, 100, 82, and 46%, respectively.

Figure 6 demonstrates that if various methods are employed to 
forecast the final drug resistance class using the live camera, the 
outcome is entirely different. In this section, however, we randomly 
selected 414 images from the Portal dataset in order to determine 
which of the proposed classification algorithms had the highest 
accuracy. This strategy was then utilized to categorize drug-resistant 
patients within the proposed application. The method analyzed the 
system’s efficiency, the quality of the user experience, and the 
likelihood that consumers would employ TB-DRD-CXR as a tool to 

TABLE 3 Detail of the 16 experiments.

#Experiment No Seg Seg No Aug Aug ADADELTA CLR UWA HyB

1 √ √ √ √

2 √ √ √ √

3 √ √ √ √

4 √ √ √ √

5 √ √ √ √

6 √ √ √ √

7 √ √ √ √

8 √ √ √ √

9 √ √ √ √

10 √ √ √ √

11 √ √ √ √

12 √ √ √ √

13 √ √ √ √

14 √ √ √ √

15 √ √ √ √

16 √ √ √ √

FIGURE 5

The design framework of web application for the case study.
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FIGURE 6

Example of the live camera (fast image analysis).

TABLE 4 AUC, F-Measure, and accuracy of 16 experiments utilizing Multiclass DR Classification.

#Experiment AUC (%) F-measure (%) Accuracy (%)

1 67.4 63.8 65.1

2 68.8 65.9 66.4

3 70.3 68.3 67.8

4 71.4 70.2 68.3

5 73.5 67.4 69.4

6 75.9 72.9 71.7

7 77.3 71.3 73.0

8 79.6 77.8 75.8

9 83.5 80.1 81.1

10 87.4 85.4 83.9

11 88.9 86.9 85.4

12 89.4 87.8 87.3

13 90.5 89.3 88.9

14 92.9 91.4 90.2

15 93.5 91.9 91.7

16 95.1 94.8 93.4

Conclusion

No Seg Seg No Aug Aug ADADELTA CLR UWA HyB

AUC 73.0 90.2 78.4 84.8 80.0 83.2 80.6 82.6

% Diff-AUC 23.6 8.2 4.0 2.5

F-Measure 69.7 88.5 76.1 82.1 77.0 81.1 77.4 80.8

%Diff F-measure 27.0 7.9 5.3 4.4

Accuracy 69.7 87.7 75.7 81.8 77.1 80.3 77.8 79.6

%Diff -Accuracy 25.8 8.1 4.2 2.3
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aid in the medical staff ’s TB drug resistance diagnosis decision 
making. An example of the user interface is shown in Figure 7.

The choice of usability measures for the study was based on ISO 
9241-11:2018 (63), an updated version of ISO9241 (64). The 
methodology that we used to reveal the effectiveness of the application 
was the method that was used in Escanillan-Galera et al. (65). It was 
suggested that the usability measures should be effective, efficient, and 
comfortable. These measures were chosen because the properties of 
mistakes from the model in (64) were related to efficacy. The 
participants were medical personnel from the 14 large hospitals in 
northeastern Thailand. In total, 33 physicians attempted to employ 
TB-DRD-CXR.

The participants were users of both mobile devices and computers 
who ranged in age from 28 to 58. Before beginning the usability test, 
the participants were given forms and instructions outlining what 
would take place. The researcher was also available to address any 
questions participants might have had. An assortment of assignments 
was handed out to the participants. Since TB-DRD-CXR only allows 
one user account per medical staff, they had to complete the required 
steps one at a time. The participants utilized a designated smartphone 
or a computer that was online.

Users had already been provided CXR images prior to the test via 
the app. Using the system usability scale (SUS) form created by Brooke 
(65), the participants rated their level of contentment and overall 
experience with the mobile web application. Each trial participant was 
given a separate evaluation sheet that included ten (10) different tasks 
that required them to execute a task in TB-DRD-CXR. The test results 
for the user interface are shown in Figure 8. Ten minutes were allotted 
for each person to fill out the evaluation form. The success rate was 
calculated by tallying the number of objectives that were met. 
Examples of the tasks include “Open browser and go to https://itbru.
com/TDRC/index.html” and “Select to detect by selecting the image 
from computers/mobile.” The effectiveness of the model (EM) was 
calculated using Eq. 9.

 

     100%
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Total number of tasks

=

×
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The effectiveness of the program was evaluated based on how 
quickly the task could be completed by the user. Eq. 10 demonstrates 
how to do so in terms of time-based efficiency (ET), and Eq.  11 
demonstrates how to do so in terms of overall relative efficiency (ORE).
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nij: user’s performance on task i, where J = total number of users 
and I = total number of tasks (j). nij: 1 if the task is completed; 

otherwise, nij: = 0. The amount of time it took for user j to finish the 
task is tij . If the user quit before the work was finished, the clock 
stopped ticking at the time of their last action.

In the second experiment, the SUS score was determined by 
having participants rate 10 items on a 5-point scale ranging from 1 
(“Strongly disagree”) to 5 (“Strongly agree”) (66). In total, there were 
5 affirmative sentences and 5 negative ones. Each item’s score was 
added together, and the SUS score was determined. The weight of each 
factor in the total score varied from 0 (no weight) to 4 (high weight). 
To calculate a score, 1 was subtracted from the scale position for items 
1, 3, 5, 7, and 9. The contributions of items 2, 4, 6, 8, and 10, with 
negative wordings, were 5 minus the scale position. An SUS value 
could be calculated by multiplying the sum of the scores by 2.5. The 
percentile scores on the scale used to rate the usability of the system 
varied from zero to one hundred. An acceptable SUS score scale was 
developed in Bangor et al. (67). In general, if the SUS sum is in the 
85–100 zone, it means that customers enjoy using the system and are 
likely to recommend it to others. When the SUS score is in the range 
of 70 and 85, the usability of the system is very good. A score between 
50 and 70 indicates that the system is generally acceptable but not 
without problems for its users. Finally, a score below 50 indicates that 
users did not enjoy using the system, indicating that there is a problem 
with the system that needs to be  addressed. For the sake of this 
analysis, we employed this scale of suitable SUS scores. Examples of 
positive questions include “the user anticipates they will use this 
system regularly” and “the interface was straightforward,” while 
examples of negative questions include “the application seemed overly 
complicated and time-consuming” and “this app seems too 
inconsistent for my liking.”

4. Computational results and 
framework

In this part, we provide the results of our computational analysis 
in two parts: the results of (1) an experiment to prove the viability of 
the proposed methods and (2) the effectiveness of the development of 
a web application for the categorization of preventable adverse drug 
reactions. All experiments were executed using a PC that had an Intel 
i7 2.1 GHz (8 core) CPU, 32 GB of RAM, and a Tesla V100 GPU 
(16 GB of GPU RAM). The experimental framework is shown in 
Figure 8.

4.1. Evaluating the performances of the 
suggested approaches

In Section 4.1.1, we determine which of the possible combinations 
shown in Table 2 is the best way to classify the type of medication 
resistance of a patient. In Section 4.1.2, we evaluate the suggested 
model’s efficacy in light of the existing heuristics.

4.1.1. Evidence for the most promising alternative 
strategies

The experimental batch sizes for EficientNetV2B3, 
EficientNetV2M, and ConvNeXtSmall were 16, 2, and 8, respectively. 
To train the model, 200 epochs were used (68). The computational 
outcomes of all 16 experiments are shown in Table 4.
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The % difference was calculated using Eq. (12). ObjC  is the 
objective function (KPI) of the challenger method. ObjD is the 
objective function of the defender method. The defender methods are 
models that have no segmentation, have no augmentation, use 
ADADELTA, and use UWA. The % difference and average AUC, 
F-measure, and accuracy values of all methods are shown in Table 4.

 
% %diff Obj Obj

Obj

C D

D=
−

×100

 
(12)

Using the AUC, F-measure, and accuracy as the KPIs, Tables 1, 4, 
demonstrate that the image segmentation technique improved the 

quality of the solution by 23.6, 27.0, and 25.8% when compared to the 
solution that did not employ image segmentation. The image 
augmentation enhanced the accuracy by 8.1% compared to the control 
group. CLS provided 4.2% greater accuracy than ADADELTA, 
whereas HyVaN-AMIS provided 2.3% greater accuracy than 
UWA. The experiment that provided the highest AUC, F-measure, 
and accuracy values was experiment number 16, which used image 
segmentation, augmentation, CLR, and HyVaN-AMIS in the model. 
We used this model to compare with other methods found in the 
literature. A confusion matrix of the multiclass classification model is 
shown in Figure 4.

DS-TB, DR-TB, MDR-TB, and XDR-TB had accuracy values of 
92.2, 97.1, 88.7, and 91.1 percent, respectively, as shown in Figure 4. 

FIGURE 7

User interface of TB-DRD-CXR.
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There was a 0% mistake rate when classifying non-TB and DS-TB but 
2, 1, and 1% error rates when the results were DR-TB, MDR-TB, or 
XDR-TB instead of non-TB. However, the prediction error for classes 
DR-TB, MDR-TB, and XDR-TB was greater than for classes DS-TB, 
XDR-TB, and DR-TB, respectively. The DS-TB prediction class had 
the greatest classification error if it was classified as MDR-TB.

The proposed methods were compared with the traditional 
homogeneous ensemble deep learning in the next experiment. The 
CNN architectures that were compared with the proposed methods 
included EfficientNetV2B3, EfficientNetV2M, ConvNeXtSmall, 
DenseNet201 (69), NASNetMobile (61), and EfficientNetB7 (59). All 
methods were executed for two hundred epochs using batch sizes of 
2, 3, 5, 12, 10, and 8 for EfficientNetV2B3, EfficientNetV2M, 
ConvNeXtSmall, DenseNet201, NASNetMobile, and EfficientNetB7, 
respectively. The results of the comparison are shown in Table 2.

Table 2 demonstrates that the proposed strategy, which employs 
heterogeneous ensemble deep learning, as opposed to homogeneous 
ensemble learning, was superior. It was proven that the proposed 
method required a 125.2% longer training and testing time than 
DenseNet201, but the proposed methods provided 128.8% higher 
accuracy than DenseNet201; in other words, the proposed method 
increased the accuracy by 3.6% more than the increase in 
computational time. Compared to previous methods such as 
NASNetMobile and EfficientNetV2M, the suggested method increased 
the accuracy by 13.43% and the computing time by 3.47%. The 
proposed method was, on average, 30.6% more accurate than the 
state-of-the-art methods.

4.1.2. Comparing the results with the existing 
drug resistance classification methods

The following experiment evaluated the efficacy of the proposed 
model compared to the state-of-the-art methods found in the 

literature by using the proposed model to classify a binary classification 
model and comparing it to the existing methods; the results are shown 
in Table 5.

We determined, based on the computational results, that when 
classifying DS-TB versus DR-TB, the proposed model was 33.9% 
more accurate than the existing method. The suggested approach 
improved the solution quality by 12.48% for identifying DS-TB 
versus MDR-TB compared to (5). The suggested approach increased 
the classification accuracy by 4.0% when comparing DS-TB to 
XDR-TB and by 12.2% when classifying MDR-TB and 
XDR-TB. However, we can infer that the proposed strategy beat all 
state-of-the-art methods reported in the literature for classifying the 
categories of drug-resistant patients.

4.2. The testing of TB-DRD-CXR

TB-DRD-CXR, which was designed utilizing the framework 
described in Section 3.2, will be tested by distributing the program to 
expert TB physicians. Once the TB-DRD-CXR system’s design is 
finished, three studies will be run with volunteers (users) to test its 
efficacy. To begin, 760 CXR images were chosen at random from the 
Portal dataset. Similar CXR images were used as inputs in a test to see 
how well TB-DRD-CXR can categorize CXR images. The test 
outcomes are summarized in Table 6.

Table 6 shows that the suggested method had a 96.1% success rate 
in testing in a real implementation, resulting in just a 3.86% failure 
rate when classifying TB-DRD-CXR images. The next phase of 
TB-DRD-CXR testing focused on the reaction of users to the device. 
In the next stage of the study, TB-DRD-CXR testing was conducted. 
An assignment was given to 33 participants. The results of the 
assignment showed that the average time it took for all 33 participants 

FIGURE 8

Experimental framework of the proposed model & application.
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to finish all 10 activities was 7.57 min. The time-based efficiency (ET) 
yielded a goal/min value of 4.16 and an overall relative efficiency 
(ORE) of 100% when assessing the mobile web application, with a 
goal/min value of 4.16 indicating high relative efficiency. The typical 
time required to complete each activity is depicted in minutes in 
Figure 9.

According to Figure 9, “opening the application” was the most 
time-consuming task for all users, requiring 0.34 min. “Finding the 
CXR from their computers” took 0.29 min but could take longer if the 
user could not recall where they saved the images. The shortest 
amount of time needed to complete a task was 0.20 min; this was the 
amount of time it took to select a browsed image, which required only 
one click to select. In total, 12 out of 33 people had an SUS score of 
100 percent using TB-DRD-CXR, according to the computed result, 
which indicates that 52 percent of participants appreciated the 
suggested application completely. In addition, 100% of the 
TB-DRD-CXR scores were greater than 90 SUS points. TB-DRD-CXR 
had an overall SUS score of 96.7, which indicates that customers 

enjoyed using the system and are likely to recommend it to others, per 
the suggestion in (67).

In the final research study, we used four different methods to 
determine how the quick image analysis system’s classification results 
should be interpreted. We provided four strategies: (1) reporting the 
last classification result when the user presses the camera’s shutter; (2) 
reporting the class that has the highest likelihood during the whole 
live camera session (LCS); (3) reporting the class with the longest 
stable likelihood during the LCS; and (4) reporting the class with the 
highest average likelihood during the LCS. A set of 414 images from 
the Portal dataset were chosen at random and checked for accuracy. 
Table 1 shows the results of the experiments.

Based on the information in Table 1, we can conclude that the 
optimal method for determining the result of the fast image analysis 
mode is strategy 2, which reports the drug resistance type with the 
highest probability throughout the whole live camera session. Because 
of this method, the AI should be able to extract the best result possible 
from the current image.

TABLE 5 The classification result of the proposed method comparing with various previous methods.

DS-TB vs. DR-TB

Research
Type of 
classification

Classes Features Region in CXR AUC F-measure Accuracy

Ureta and Shrestha (6) Binary class DS vs. DR CNN Whole 67.0 – –

Tulo et al. (7) Binary class DS vs. DR Shape Mediastinum+ Lung 93.6%

Kovalev et al. (8) Binary class DS vs. DR Texture and Shape Lung – – 61.7

Karki et al. (4) Binary class DS vs. DR CNN Lung excluded 79.0 – 72.0

The Proposed Method Binary class DS vs. DR Ensemble CNN Lung excluded 97.8 97.4 96.4

DS-TB vs. MDR-TB

Jaeger et al. (9) Binary class DS vs. MDR Texture, Shape and 

Edge

Lung 66% 61% 62%

Tulo et al. (5) Binary class DS vs. MDR Shape Mediastinum+ Lungs 87.3 82.4 82.5

The Proposed Method Binary class DS vs. MDR Ensemble CNN Lung excluded 94.1 93.5 92.8

DS-TB vs. XDR-TB

Tulo et al. (5) Binary class DS vs. XDR Shape Mediastinum+ Lungs 93.5 87.0 87.0

The Proposed Method Binary class DS vs. XDR Ensemble CNN Lung excluded 94.9 94.7 93.1

MDR-TB vs. XDR-TB

Tulo et al. (5) Binary class MDR vs. XDR Shape Mediastinum+ Lungs 86.6 81.0 81.0

The Proposed Method Binary class MDR vs. XDR Ensemble CNN Lung excluded 92.2 91.5 90.9

TABLE 6 TB-DRD-CXR accuracy result.

Number of input 
images

Number of correct 
classification

% correct 
classification

Number of wrong 
classification

% Wrong 
classification

DS-TB 173 167 96.5 6 3.5

DR-TB 128 124 96.9 4 3.1

MDR-TB 196 187 95.4 9 4.6

Pre-XDR-TB 84 81 96.4 3 3.6

XDR-TB 179 171 95.5 8 4.5

Total 760 730 480.7 30 19.3

Average 152 146 96.1 6 3.86
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Explainable AI (XAI) techniques, such as Grad-CAM (62), have 
become increasingly important in improving the interpretability and 
trustworthiness of deep learning models. Grad-CAM is a technique 
utilized to generate heatmaps that explain the predictions made by 
deep learning models, such as the one employed in the TB-DRD-CXR 
application for classifying different types of drug-resistant tuberculosis 
(TB) using chest X-ray images. By capturing the gradient information 
of the model’s output with respect to the final convolutional layer of 
the network, Grad-CAM identifies and highlights the regions in the 
input image that had the most significant influence on the prediction, 
visualized as heatmaps with brighter areas indicating 
higher importance.

In the context of the TB-DRD-CXR application, the use of 
Grad-CAM heatmaps provides valuable insights into the important 
regions in the chest X-ray image that influenced the model’s 
classification of various drug-resistant TB types. These heatmaps 
provide visual explanations of the model’s decision-making process, 
enhancing the interpretability and understandability of the 
predictions, resulting in improved transparency, explainability, and 
trustworthiness of the application. By incorporating Grad-CAM 
heatmaps into the TB-DRD-CXR application, users can gain a better 
understanding of the model’s decision-making process, enabling 
better decision-making in the context of TB classification and 
enhancing the overall usability and effectiveness of the application for 
identifying different types of drug-resistant TB cases.

Figure 10 showcases the application of Grad-CAM heatmaps to 
visualize the classification of different drug-resistant types of 
tuberculosis, providing a clear and interpretable representation of the 
model’s classification process. The developed model utilizes all six 
areas of the lung for non-TB classification, while focusing on specific 
lung sectors for identification of different drug-resistant TB types. The 
use of Grad-CAM heatmaps in this study confirms the accuracy of the 
model’s decision-making process, verifying the reliability of its 
predictions. As illustrated in Figure 10, the model demonstrates a high 
degree of accuracy in identifying the relevant regions, effectively 
highlighting the innermost area of the lung for DR-TB, the upper 
regions of both left and right lungs for MDR-TB, the middle to lower 

innermost area of the lung for Pre-XDR-TB, and the lower innermost 
areas of both left and right lungs for XDR-TB. These findings 
unequivocally affirm the effectiveness of the model in accurately 
identifying various types of drug-resistant TB cases. The heatmap and 
accompanying explanation are coherent, enhancing trust in the 
interpretability of the proposed model and addressing concerns 
regarding the opacity of deep learning models. The use of Grad-CAM 
heatmaps in this study demonstrates the value of Explainable AI 
(XAI) techniques in improving the interpretability and trustworthiness 
of deep learning models, enabling better decision-making in the 
context of TB classification.

5. Discussion

Comparing the maximum accuracy of the binary classification, 
which is 96.4%, to the greatest accuracy of the multiclass classification, 
which is 93.4%, the multiclass classification has 3.21% less accuracy. 
This is due to the fact that multiclass classification is more difficult 
than binary classification. This result is consistent with the model 
described in Iqbal et al. (70) to distinguish between TB and non-TB 
patients based on a CXR. This study employed the same model to 
classify the binary class with an accuracy of 99.17%, while the 
multiclass classification model provided an accuracy of 95.10%, which 
was approximately 4.27% higher than the multiclass classification 
model. Since a multiclass classifier typically gives more weight to the 
largest classes, its global performance may not be indicative of how 
well it classifies a subset of the data (e.g., it may have 90% accuracy 
simply because class B is 90% of the data, but this does not prove 
anything about another class). The success of a binary classifier, on the 
other hand, can only ever be measured in relation to that class.

Table 4 shows that when data augmentation was used, the solution 
quality (accuracy) was greater than when data augmentation was not 
implemented. The variance was 8.1% (the classification with 
augmentation had higher accuracy). This conclusion is consistent with 
those obtained in Monshi et al. (71) and Barshooi et al. (72). To train 
our deep learning model, we  needed more data, and image 

FIGURE 9

Average time used by all participants to execute each task.

https://doi.org/10.3389/fmed.2023.1122222
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Sethanan et al. 10.3389/fmed.2023.1122222

Frontiers in Medicine 16 frontiersin.org

augmentation techniques provided this. We did not have to go out of 
our way to manually collect these new images because they were 
generated using the existing collection. When using augmentation 
techniques, more features can be gleaned from the primary dataset. 
Sometimes, image augmentation is used to prevent overfitting a model 
due to a small dataset. A deep learning model cannot learn so many 
patterns from a limited dataset. As a result, the model’s accuracy will 
suffer when applied to the classification of data not included in the 
training set. For this reason, image augmentation is commonly used 
to improve classification accuracy.

According to the findings of our study, lung segmentation 
improved the accuracy by around 27% compared to models that do 
not employ lung segmentation. This outcome is supported Karki et al. 
(15) and Tulo et  al. (16). In these studies, an effective lung 
segmentation was established and incorporated into the model, with 
the results greatly outperforming those of prior studies. In our 
research, we partitioned the lungs using the U-Net model (31). As 
shown in Moor et al. (31), EfficientNetB7 was utilized in place of 
EfficientNetB4. The computational results of Moor et al. (31) also 
demonstrated that modified U-Net lung segmentation was successfully 
implemented and significantly improved the accuracy. Segmentation 
was a crucial step in the image recognition process, as it allowed us to 
isolate the features of interest in preparation for subsequent analyzes 
(description, recognition, etc.). Segmentation is frequently used for 
pixel classification in images. Segmentation techniques allowed us to 
isolate the object of interest in an image by erasing its surrounding 
context. Because of this, the accuracy of the categorization was greatly 
improved when lung segmentation was performed.

Adjusting the learning rate is another method to improve 
classification precision. Using CLR improved the classification 
accuracy by 5.3%. This result agreed with Smith (49). CLR was shown 
to be superior to the standard implementation of the learning rate. 
Due to the fact that saddle points, rather than local minima, are the 
primary challenge in optimizing deep neural networks, CLR stands 
out among the other types of learning rates. The learning process can 
be slowed by the insufficient slopes at saddle points. On the other 
hand, if the rate of learning is accelerated, saddle point plateaus can 
be  quickly overcome. Our results showed that the new fusion 
technique, called HyVaN-AMIS, was superior to the standard UWA 
model. Using this method, the UMA’s solution quality could 
be boosted by 4.4%. It is assumed that various CNNs will be better fits 
for certain classes in the classification model; hence, HyVaN-AMIS 
assigns different weights to each CNN. According to Tiberi et al. (73), 
we can draw this conclusion. This study’s primary objective was to 
devise efficient fusion mechanisms for combining data from many 
intelligence boxes. The hybrid version of AMIS and VaNSAS was the 
most effective at finding the optimal solution without becoming 
trapped in the local optima because their structures were flexible 
enough to allow them to escape from the local optima (55, 56).

Deep ensemble learning models combine the benefits of both 
deep learning and ensemble learning, resulting in a model with 
superior performance (23). Depending on how it integrates the 
predictions of sub-models, ensemble learning can take several forms. 
Unweight average (UWA), or the averaging ensemble, aggregates the 
predictions from numerous trained models, although this method has 
the drawback that each sub-model contributes the same amount to the 

FIGURE 10

Heatmap of the classification model.
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ensemble prediction, regardless of how well that sub-model performed 
individually. A weighted average ensemble is an approach for decision 
fusion in which the contribution of each sub-model is weighted based 
on the expected performance of the model on a portion of the test 
dataset. This ensures that sub-models with better performances 
contribute more, while sub-models with poorer performances 
contribute less. Any deep learning technique is offered to replace the 
linear weighted sum model used to integrate the predictions of the 
sub-models (74). This method is known as stacked generalization and 
employs the idea of the multilayer perceptron (MLP) (74).

In this stacking strategy, an algorithm takes the outputs of 
sub-models as inputs and attempts to learn how to optimally combine 
the input predictions to produce a more accurate output prediction. 
Three CNN-based models were utilized as sub-models, and a dense 
neural network was employed as a meta-learner that received input 
from all three sub-models and attempted to combine their predictions 
to outperform them separately (75). The stacked ensemble model 
suggested by Xie et al. (51) was constructed by stacking three distinct 
convolutional neural network (CNN) models. Electrocardiogram 
(ECG) signals were employed as inputs for training and evaluating the 
model. The outcome indicated that the suggested model can predict 
stroke with 99.7% accuracy. The F1 score, precision, and recall were, 
respectively, 99.69, 99.67, and 99.71%. This study concluded that with 
their approach, ECG can provide highly effective assistance in the 
identification of stroke. Therefore, the categorization of medical 
images using MLP-based techniques, such as stacking generalization 
and stacked ensemble models, has been shown to be advantageous. 
Additionally, CXR can be utilized efficiently for the categorization of 
drug-resistant tuberculosis. Effectively substituting the HyVaN-AMIS 
strategy for decision fusion with the MLP-based method is possible.

Patients were assigned a TB type at the time of data entry based 
on the profile of a drug sensitivity test (DST). TB types were defined 
by the WHO 2021 criteria (76) as follows: DS-TB has no resistance to 
anti-TB drugs, mono-DR-TB has resistance to only one first-line 
anti-TB drug, poly-DR-TB has resistance to more than one first-line 
anti-TB drug (other than isoniazid and rifampicin), MDR-TB has 
resistance to at least isoniazid and rifampicin, pre-XDR-TB is 
MDR-TB with additional resistance to any fluoroquinolone, and 
XDR-TB is pre-XDR-TB that is also resistant to one additional group 
A anti-TB drug (bedaquiline or linezolid). Compared to the latest 
WHO schema of drug-resistant TB classification (76), rifampicin-
resistant (RR) and isoniazid-resistant (Hr) TB were not assigned to 
any TB Portals dataset. Due to the lack of detailed DST profiles to 
reorganize these cases, the information on TB types provided by the 
dataset was used without alteration. In addition, as RR-TB can overlap 
with other types of drug-resistant TB, while Hr-TB can be regarded as 
a subtype of mono-DR-TB, the two groups were not intended to 
be part of this TB classifier implementation.

The regimen that is used to treat drug-resistant patients changes 
from time to time. The regimen may be different when used with 
different patients at different times. The recommended regimen needs 
to be  updated regularly according to country announcements or 
WHO announcements regarding the most updated regimen. The 
effectiveness of the medicine depends on the health condition of the 
patient and the medicine itself, which must be  suitable for the 
condition of the patient (73). The pharmacist needs to regularly check 
the recommended regimen and update the application. The doctor or 
medical staff could use information from the recommended regimen 
given by the application as a guideline for the treatment program, but 

the medical staff also needs to consider the patient‘s personal 
information, individual drug response, and condition in order to 
provide the right medicine to that patient.

Artificial intelligence (AI) is becoming a more powerful tool in 
healthcare, offering new techniques to detect and suggest the option 
treatment of a variety of ailments. The AI application, TB-DRD-CXR 
assists physicians in diagnosing tuberculosis drug resistant types and 
making therapy suggestions. These apps can deliver results in a 
relatively short period of time, making them a cost-effective choice for 
healthcare professionals. The speed and accuracy of the results are two 
of the key advantages of adopting AI mobile applications for disease 
classification. These programs can analyze vast amounts of data in real 
time, allowing doctors to identify and treat ailments more rapidly and 
effectively. Besides speed and accuracy, AI mobile applications can 
also give clinicians with particular information and treatment 
recommendations. This can assist clinicians in making more informed 
treatment decisions and enhance patient outcomes. Another key 
benefit of adopting AI mobile applications for disease classification is 
their low cost. The TB-DRD-CXR can deliver accurate results without 
the need for costly equipment or considerable training. As a result, 
they are a viable option for healthcare practitioners, particularly those 
working in resource-constrained environments. Furthermore, by 
enhancing diagnostic accuracy and treatment suggestions, these apps 
have the potential to save healthcare costs by reducing unnecessary 
tests and procedures.

Trustworthiness is an important aspect in the successful adoption 
of TB-DRD-CXR in healthcare. To ensure widespread adoption, 
patients and healthcare professionals must have faith in the accuracy 
and dependability of these applications. Developers must guarantee 
that these applications are transparent, safe, and conform to privacy 
and ethical norms in order to build confidence. Finally, TB-DRD-CXR 
is a significant tool for supporting physicians in diagnosing drug 
resistance and offering precise treatment recommendations. Because 
of their speed, precision, and cost-effectiveness, they are an appealing 
choice for healthcare practitioners, particularly those working in 
resource-constrained situations. Therefore, it is critical to guarantee 
that TB-DRD-CXR are successfully integrated into clinical practice.

6. Conclusion and outlook

For this study, the TB-DRD-CXR web application was created. It 
is used to categorize TB patients into subgroups according to their 
level of drug resistance. The web app uses ensemble deep learning to 
categorize TB strains into five subtypes: DS-TB, DR-TB, MDR-TB, 
pre-XDR-TB, and XDR-TB. The ensemble deep learning now includes 
image segmentation, data augmentation, and several learning rate 
strategies in addition to an effective novel fusion technique. The 
suggested model was compared to both state-of-the-art approaches 
and to the standard homogeneous CNN architectures using different 
types of CNN architectures that are found in the literature.

The effectiveness of the model embedded in TB-DRD-CXR was 
subjected to various types of tests. First, the computational results 
indicated that the proposed model improved the accuracy by 33.9, 
12.48, 4, and 12.2% over previous models for the binary classification 
of DR_TB, DS-TB, MDR-TB, and XDR-TB. In a second experiment, 
the multiclass classification model was tested. Sixteen combinations 
of parameters were tested, which were (1) using image segmentation 
vs. not using image segmentation, (2) using image augmentation vs. 
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not using image augmentation, (3) using ADADELTA vs. CLR for 
learning rate optimization, and (4) using UWA vs. HyVaN-AMIS as 
the decision fusion strategy. The computational result showed that the 
model that used (1) image segmentation; (2) image augmentation; (3) 
CLR, for learning rate optimization; and (4) HyVaN-AMIS, as the 
fusion strategy, was the best model for classifying multiclass drug-
resistant TB. The model provided a 21.86% better solution, on average, 
compared to other models, with maximum and minimum percentages 
of 1.9 and 43.5 percent, respectively. The use of image segmentation 
and data augmentation increased the solution quality by 25.8 and 
8.1%, respectively. Using CLR increased the accuracy of the drug 
resistance classification by 4.2%. The new decision fusion strategy, 
which was HyVaN-AMIS, was presented in this paper, and it could 
increase the solution quality of the model by 2.3%.

In the third experiment, the proposed model was tested and 
compared with homogeneous ensemble deep learning using different 
CNN architectures. The computational result showed that the 
proposed model provided a superior solution for the multiclass 
classification model compared to DenseNet20 (69), NASNetMobile 
(61), EfficientNetB7 (59), EfficientNetV2B3 (77), EfficientNetV2M 
(77), and ConvNeXtSmal (53), with improvements of 28.8, 93.4, 2.99, 
48.0, 4.4, and 7.6%, respectively.

The online application was created for usage by 33 medical 
personnel in Thailand’s northeastern region. The application’s 
performance metric was comprised of two or three KPIs. First, the 
accuracy of the web application was determined by randomly selecting 
760 images from the Portal dataset; it was discovered that its accuracy 
in classifying drug-resistant organisms was 96.1%, with an error rate 
of 3.86%. Eventually, we  tested how the users felt while using the 
application. We gave 10 tasks to users and determined that the average 
execution time for all tasks across all users was 7.57 min. When 
evaluating the web application, the time-based efficiency (ET) 
produced a goal/min value of 4.16 and an overall relative efficiency 
(ORE) of 100 percent. The final evaluation of the provided application 
displayed the SUS score that users assigned to the application. Ten 
negative and positive questions were provided to users, and the SUS 
score of the program was found to be  96.7 percent, which was 
relatively high. Therefore, it can be concluded that TB-DRD-CXR is 
an application that users will like using and will likely recommend to 
others. The best strategy to interpret the result of the fast image 
analysis is to report the drug resistance type with the highest 
probability throughout the whole live camera session.

When we utilized TB-DRD-CXR in the fast image analysis model, 
the results were relatively unstable. This is a shortcoming of this study. 
In order to achieve the most effective classification results, it is 
necessary to conduct in-depth research on how to categorize rapid 
picture analysis. In addition, research related to various CNN 
architectures should be integrated into the ensemble deep learning to 
achieve the greatest model performance. For instance, in order to save 
computational time, should we merge CNNs with sizes that are not 
significantly different, or should we  ensemble architectures with 
diverse sizes? This field is still available for further research.

One of the drawbacks of this study is the fact that the Portal dataset 
does not include all types of drug resistance documented in the primary 
literature in medical journals. Therefore, in the future, the proposed 
model should be  retrained with new data in addition to the data 
provided in the Portal dataset so that the classification result corresponds 
to the DR-TB types that are most common in the real world.

The second limitation relates to the drug-resistant TB protocol. 
Since the emergence of rapid molecular diagnostic tests and new and 
repurposed drugs, the treatment and management of drug-resistant 
tuberculosis (DR-TB) have developed significantly. Recent updates to 
the WHO’s treatment guidelines for MDR-TB are evidence-based. An 
administrator must follow the WHO or another health organization’s 
treatment regimen guidelines and regularly update the recommended 
regimen to ensure that it is the most recent regimen available when 
the DR-TB treatment regimen has changed. If the treatment regimen 
is not up to date, our proposed software will not be an auxiliary aid for 
physicians but rather a source of distraction.

As a potential extension of the current TB-DRD-CXR application, 
it would be beneficial to explore the possibility of implementing an AI 
system that can automatically detect drug-resistant types in photo 
galleries and provide the results in a more user-friendly manner. 
While the current application requires the user to browse and select 
the relevant image, an automated system that can recognize drug-
resistant types directly from the phone’s photo album could 
significantly improve the efficiency and usability of the application. To 
achieve this goal, several steps can be  taken, including providing 
camera capabilities in the user mobile app, integrating image 
recognition capabilities using machine learning or computer vision 
techniques, and activating image recognition when taking a photo. 
Such an extension would further enhance the transparency and 
explainability of the AI system, promoting its practical application in 
the field of TB classification.

In addition, as the datasets used in this study were labeled and 
their classifications were already known, it would be interesting to 
explore the potential of unsupervised learning techniques to further 
analyze the data. Unsupervised learning has been widely used in 
various domains, including computer vision and natural language 
processing, and can help discover hidden patterns and relationships 
in data without relying on labeled output. Applying unsupervised 
learning methods, such as clustering, to the labeled datasets used in 
this study could potentially reveal new insights into drug-resistant 
types and improve the accuracy of classification results. Specifically, 
exploring clustering algorithms, such as k-means, hierarchical 
clustering, and DBSCAN, could help group data points or objects 
based on their similarities or distances in a feature space, which could 
lead to the discovery of new drug-resistant types not previously 
identified by the label-based classification. Investigating these 
possibilities could be an exciting direction for future research in the 
field of TB classification and AI.

In computer vision and image processing, image augmentation 
and segmentation are two crucial techniques. Augmentation creates 
new training images by applying various transformations, while 
segmentation divides an image into multiple regions corresponding 
to objects or backgrounds. Combining these techniques can 
significantly improve the accuracy and robustness of image 
classification models. Segmentation identifies relevant image regions 
for classification, while augmentation improves generalization to input 
data variations. Consequently, models developed using effective 
augmentation and segmentation techniques produce superior results 
on real-world images. Such models are highly valuable in fields like 
medical imaging, autonomous vehicles, and surveillance. Therefore, 
exploring the development of models that leverage these techniques 
represents a promising research direction for enhancing image 
classification quality.
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