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Peripheral and central capillary
non-perfusion in diabetic
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Capillary non-perfusion (CNP) is one of the key hallmarks of diabetic retinopathy

(DR), which may develop both in the periphery and at the posterior pole. Our

perspectives on CNP have extended with the introduction of optical coherence

tomography angiography (OCTA) and ultra-widefield imaging, and the clinical

consequences of peripheral and macular CNP have been well characterized.

Fluorescein angiography (FA) continues to be the gold standard for detecting

and measuring CNP, particularly when ultra-widefield imaging is available. OCTA,

on the other hand, is a quicker, non-invasive approach that allows for a three-

dimensional examination of CNP and may soon be regarded as an useful

alternative to FA. In this review, we provide an updated scenario regarding the

characteristics, clinical impact, and management of central and peripheral CNP

in DR.

KEYWORDS
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Introduction

Diabetes mellitus is a metabolic disease characterized by chronic hyperglycemia resulting
from various etiological factors. As per the International Diabetes Alliance, the global
prevalence of diabetes stood at 400 million in 2015 and is anticipated to escalate to
600 million by the year 2040 (1). Diabetic retinopathy (DR) is the primary cause
of vision loss in elderly individuals and the most commonly occurring microvascular
complication associated with diabetes mellitus. The vascular endothelium is damaged by
vascular hyperglycemia through pathogenetic pathways involving advanced glycation end
products, increased flux via the polyol pathway, activation of protein kinase C, and the
generation of reactive oxygen species (2). The hyperglycemia also leads to the formation
of microaneurysms and dot intraretinal hemorrhage, which are the early signs of non-
proliferative diabetic retinopathy (NPDR). As the disease progresses, vasoconstriction and
vascular occlusion lead to capillary non-perfusion (CNP) and ischemia, which can affect both
the macular and peripheral regions (Figure 1). Finally, the last stage of DR is characterized
by severe hypoxia, which causes an overexpression of vascular endothelial growth
factor (VEGF), ultimately leading to proliferative diabetic retinopathy (PDR). The latter
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FIGURE 1

(A) Ultra-widefield fluorescein angiography (FA) of the right (upper
image) and left (bottom image) eyes of a patient with extensive
peripheral capillary non-perfusion. The right eye is in the
non-proliferative stage, whereas proliferative diabetic retinopathy
has developed in the left eye, which also displays the highest
amount of non-perfusion areas. (B) Optical coherence tomography
angiography of a patient with diabetic macular ischemia. The
circularity of the foveal avascular zone is reduced, together with a
reduction in vessel density as well.

is defined by the growth of abnormal blood vessels and can
be complicated by vitreous hemorrhage and retinal detachment.
Additionally, widespread retinal edema caused by significant
capillary leakage provokes the formation of cystoid macular edema
(CME), which is the first cause of sight loss in DR (3).

In healthy eyes, the retinal capillary network that supplies
the inner retinal layers is composed by four different levels
of capillary plexuses: radial peripapillary capillaries, superficial
capillary plexus (SCP), intermediate capillary plexus (ICP) and
deep capillary plexus (DCP) (4). However, not all of them can
be traced in the whole retina, since significant differences exist
between specific areas: radial peripapillary capillaries are confined
solely to the retinal nerve fiber layer surrounding the optic nerve
head. Conversely, no plexuses are present in the rod-free central
macular area, specifically the foveal avascular zone (FAZ), in order
to maintain optimal visual acuity. Because of that and the high
metabolic demand, the macula is very vulnerable to ischemic
insults, resulting in FAZ enlargement (5).

Due to the epidemiological relevance diabetes is constantly
gaining, the aim of this review is to discuss about the current
knowledge regarding the pathophysiological mechanisms of CNP
in DR, their consequences on the visual function and possible
therapeutical repercussions on the patient management, based on
the latest evidence.

Methods

Publications in English between January 2017 and November
2022 were identified through the “advanced search” PubMed
engine using the following entries: “(“non-perfusion”) AND
(“diabetic retinopathy”),” yielding 87 results, and “(“diabetes”)
AND (“macular”) AND [(Ischemia) OR (non-perfusion)],”
resulting in 257 results. Studies published before 2017 were
considered for this review if they were cited in the papers found
through the aforementioned method. An individual selection of
the studies found this way was carried out by the authors and those
matching our scope were included in this review.

Imaging modalities of capillary
non-perfusion in diabetic
retinopathy

One of the main characteristics of DR is retinal CNP, which
can affect both the posterior pole and the periphery (6), with
the latter being more frequently involved (7, 8). To this date,
fluorescein angiography (FA) remains the gold standard for the
identification of peripheral and macular CNP (2), and the advent of
ultra-widefield (UWF) imaging has underlined its usefulness in the
diagnosis and classification of DR (8). However, the requirement
of an intravenous injection of dye, potentially leading to allergic
reactions (9), and the two-dimensional visualization of the retinal
vasculature, which does not allow to distinguish each vascular plexa
(10), represent two of the main shortcomings of this technique.
These limitations can be overcome with the use of optical coherence
tomography angiography (OCTA), which is a safer, highly
reproducible, non-invasive technique that allows a quantitative,
three-dimensional assessment of the retinal circulation (Figure 2)
(11). For these reasons, great effort in improving this technique has
been made in the latest years, in particular to reduce the impact
of its two greatest limitations: limited field of view and propensity
to artifacts. Indeed, the latest commercially available UWF swept-
source OCTA reaches a field of view up to 120◦ (12). Li et al.
(12) recently demonstrated that when UWF swept-source OCTA
is combined with UWF color fundus photograph, its detection rate
of DR lesions is comparable [and even slightly superior for non-
perfusion areas (NPAs)] to the classical combination of UWF color
fundus photograph + UWF FA. Conversely, UWF OCTA is less
capable of detecting microaneurysms in DR (12, 13). Nonetheless,
the potential of this technique as an imaging modality in DR
persists, particularly in terms of NPAs assessment, and may serve
as a possible substitute for FA in the future (14).
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FIGURE 2

Optical coherence tomography angiography (OCTA) with 9 × 9 mm
(upper row) and 3 × 3 mm (lower row) fields of view of an eye
affected by proliferative diabetic retinopathy. SCP, superficial
capillary plexus; DCP, deep capillary plexus; CC, choriocapillaris.

The role of capillary non-perfusion

Peripheral capillary non-perfusion

Ultra-widefield FA has become the most popular imaging
tool to visualize peripheral CNP, as it has been proved to
display almost four times more non-perfusion than the traditional
Early Treatment of Diabetic Retinopathy Study (ETDRS) seven-
field images (15). Since peripheral CNP has been shown to be
directly related to severity of the disease and the presence of
predominantly peripheral lesions (8, 16, 17), the growing interest
in its quantification is easily understandable. The most accepted
method for quantifying NPAs in retinal vascular diseases is the
ischemic index (ISI = NPA/retinal area) (7, 18, 19). Notably, CNP
has been shown to correlate to a decreased fractal dimension,
a surrogate measure of the complexity of vascular branching
patterns, which can be useful when a precise computation of CNP
is not possible (20).

With these tools, the role of peripheral CNP and its associations
have been carefully dissected by several authors in the latest years.
Results from the protocol AA, a 4 year prospective, longitudinal
study that aimed to investigate the association of UWF FA findings
with disease worsening in non-proliferative diabetic retinopathy
(NPDR), found that greater baseline retinal CNP is associated with
higher risk of DR progression (21).

In a recent study, the relation between DR severity and the
extension of CNP has been investigated by means of UWF OCTA
(11). In their study, Wang et al. (11) analyzed the correlation
between the ratio of non-perfusion and the field of view of OCTA
images and the severity of DR, with results comparable to those
obtained with UWF FA by previous studies; moreover, they found
that the peripheral region, especially the mid-periphery, is more
prone to show DR lesions, as previously hypothesized by other
authors (22).

Focusing on PDR, many attempts have been made to
understand the influence of peripheral CNP on various DR
biomarkers, such as VEGF levels and number and area of
neovascular lesions (18, 23–25). Several authors found a correlation

between the extent of NPAs and neovascular lesions area (25).
In particular, larger areas of CNP seem to be associated with
the presence of optic disc and posterior pole neovascularization
(18, 23, 26). Additionally, a quantitative analysis by Ra et al. (24)
unveiled that the extension of peripheral NPAs correlate with
neovascular lesions area and is the strongest predictor of VEGF
levels. Larger NPAs have also been correlated to increased level
of inflammatory cytokines, suggesting inflammation as a possible
target for suppressing non-perfusion-related PDR progression (27).

In a study conducted by Tong et al. (28) eyes with supra-
large range non-perfusion, defined as the absence of capillaries
beyond the posterior pole, were also at risk of ocular complications
beyond just DR. In particular, eyes with supra-large range non-
perfusion displayed higher incidences of neovascular glaucoma and
diabetic keratopathy before surgery, greater need for intraocular
tamponade during surgery, and higher probabilities of persistent
corneal epithelial erosion and neovascular glaucoma recurrence
after surgery (28).

Huang et al. (29) recently conducted a study focusing
exclusively on patients with severe CNP. In their investigations
they found that patients with extensively large areas of non-
perfusion, defined as over 70% area of CNP throughout the
whole image retina, are at high risk for rapid worsening of DR
and unfavorable visual prognosis, and could benefit from more
aggressive treatments (29).

On the contrary, a clear correlation between peripheral CNP
and the presence of diabetic macular edema (DME) is still lacking.
The DAVE study (7) investigated this topic and also addressed
several issues that were present in previous UWF FA studies that
aimed to understand the relation between peripheral CNP and
DME, such as non-linear image distortion (30), the extent of
the visible retinal area with non-montaged images (15) and the
sub-classification of distinct retinal areas, on the basis of their
different propensity for manifesting DR lesions (22). Results from
this study did not find any association between the extent of CNP
and the presence of DME, in accordance with a similar previous
investigation (8); however, when considering the mid-periphery,
CNP seemed to be negatively correlated with the presence of CME,
which led the authors to hypothesize that CNP could be the result,
rather than the cause, of VEGF production (7).

A novel approach developed by Jeong et al. (31) considered
not only the NPAs, but also the spacial density of rod, cones
and ganglion cells in the retina, to calculate the ratio of the
cell number in the non-perfused retina to the cell number in
the total retina, which they called “weighted ISI.” With this
technique, they were able to find a correlation between weighted
ISI, the level of various cytokines and DME, suggesting that the
damage of more metabolically active regions plays a pivotal role in
generating DME (31).

Finally, some authors also found that CNP can be used as a
biomarker for many other alterations in patients with DR, such as
white blood cell indexes (32) and renal function (33, 34).

Diabetic macular ischemia

Diabetic macular ischemia (DMI) is another important
complication of DR, often leading to visual loss in diabetic patients,
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which contrarily to DME is to this date irreversible (2). The first
imaging modality used to recognize DMI was FA, which allowed
the detection of an enlarged and irregular FAZ in patients affected
by DR (35, 36). In the ETDRS, DMI on FA was determined by FAZ
enlargement and outline disruption, and by capillary loss in the
central subfield (37). The FAZ area also correlates with DR severity,
increasing from NPDR to PDR (38). Finally, Sim et al. (39) found
that FAZ enlargement, happening at a rate of 5−10% per year, also
predicted progressive vision loss in eyes with overt DMI.

Even though FA proved to be useful in evaluating DMI,
the impossibility to provide three-dimensional images and to
assess the depth of the perfusion impairment represents an
important drawback of this technique. Indeed, FA observations
are mainly limited to the SCP, thus not allowing clear imaging
of the deeper capillary networks. Conversely, OCTA allows the
detection of SCP, DCP and ICP, making it possible to recognize
different types of DMI (2). Differentiating between SCP and DCP
has its relevance, since several studies have shown that DCP
impairment correlates better than SCP with visual loss in DR (40–
42). On the other hand, an impairment of both SCP and DCP
results in a severe loss of visual function even in the absence
of CME (43), and is often accompanied by structural changes
of both the inner and outer retina, such as disorganization of
the inner retinal layers (DRIL) and outer retinal atrophy (44).
With OCTA, DMI can be distinguished on the basis of the
predominant localization of ischemia (either the SCP or the DCP),
with consequences on its effect on visual function and macular
structure (2). In the predominant DCP-ischemia phenotype, there
is a greater reduction in the vessel density (VD) in the DCP
than the SCP (2), which seems to be a better predictor of DR
severity and visual loss risk (45, 46). Moreover, non-perfusion
in the DCP correlates with microstructural changes indicating
photoreceptor damage, such as ellipsoid zone and external limiting
membrane disruption and outer nuclear layer focal thinning
(47). Recent studies involving adaptive optics-OCT unveiled
severely altered morphology and density of cone photoreceptors
in areas of CNP, together with a strong reduction of retinal
sensitivity (48).

On the other hand, predominant SCP-ischemia is a phenotype
characterized by a relative sparing of the DCP, and may represent
a milder stage of the disease (2). This type of DMI preferentially
involves the inner retina in the form of DRIL development and
inner retinal thinning (49, 50). Tang et al. (51) found that a
reduction of the SCP VD correlates with a thinner ganglion cell-
inner plexiform layer (GC-IPL), suggesting a loss of ganglion cells.
Likewise, VD of the SCP is lower in cases of DRIL, which is in
turn associated with an enlargement of the FAZ (52). Nevertheless,
Nicholson et al. (53) found that not all CNP areas are associated
with DRIL, implicating that vascular impairment occur earlier
than structural changes. Dodo et al. (54) recently demonstrated
that NPAs in the SCP are associated to structural changes in
the corresponding neuroglial components, displayed as regions
with no boundary between the nerve fiber layer and the GC-IPL
and spots with inverted OCT reflectivity. In the same work, the
transverse length of NPAs in the DCP was associated with the
length of cystoid spaces in the inner nuclear layer or Henle’s fiber
layer (54).

Finally, DMI and DME seem to be strictly related with each
other. Spaide (44) showed that a mismatch between the VD of

the DCP and the SCP was associated with recurrent or persistent
DME. Perhaps, the responsiveness of DME may be influenced by
the degree of underlying DMI (55–57). In a study conducted by
Murakami et al. (58) foveal cystoid spaces were associated with
enlarged FAZ and microaneurysms in DME. Yalçın and Özdek (59)
found that patients with more severe DME had a 1.04-fold greater
chance of having macular ischemia on FA, and postulated that
macular ischemia would become more likely as the cyst’s diameter
grows. Furthermore, Mirshahi et al. (60) found that the presence of
DME was associated with more extensive CNP when compared to
DR eyes with no macular edema.

Despite its clinical relevance, there is still no consensus
regarding the definition of DMI (61). Therefore, recent studies
attempted to better characterize this entity, proposing more
objective parameters for DMI definition, analyzing factors
associated with its presence, and searching cut-offs to define vision-
threatening DMI (61–63). Yang et al. (63) reported a series of
associated factors of SCP-DMI and DCP-DMI, including older
age, poorer visual acuity, thinner GC-IPL, worsened DR severity,
higher hemoglobin A1c level, lower estimated glomerular filtration
rate and higher low-density lipoprotein cholesterol level. Moreover,
presence of DME and shorter axial length were associated with
DCP-DMI. At the same time, Tsai et al. (62) investigated the
correlation between microvascular parameters and visual function
in eyes with DMI to identify threshold values to better define visual-
threatening DMI. In a recent study, Terada et al. (61) demonstrated
that the intercapillary spaces, a recently proposed objective method
to quantify DMI, in the parafoveal and superficial vascular plexuses
have significant impacts on visual acuity in DR without DME.

Management of capillary
non-perfusion

Capillary non-perfusion in the absence
of treatment

Several studies have considered the presence of CNP in eyes
with DR and correlated it with various biomarkers, however, there
remains a notable lack of knowledge regarding its natural history
in DR, especially in the peripheral retina (25). Two studies have
analyzed CNP longitudinal changes in untreated eyes.

The quantification of macular CNP through 2 years was
performed in Reddy et al. (64) in a post hoc analysis of the phase
3 RIDE and RISE trials. These studies included eyes with DME,
that had received no treatment during the preceding 3 months.
Macular CNP was detected in 26.3% of sham eyes at baseline. On
FA images, they estimated the percentage of capillary loss in disc
areas at baseline, at 12 months and after 24 months, and observed a
steady non-significant increase in macular CNP area among sham
eyes at each time point.

In the AFFINITY trial (65), longitudinal variations of the non-
perfusion index were tracked on UWF FA images over 1 year in 20
eyes with areas of CNP but without center-involved DME. They did
not appreciate any rise of the non-perfusion index for their small
sample at the end of the follow-up, emphasizing the need of studies
with extended follow-up periods.
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Treatment of peripheral capillary
non-perfusion

Continuous wavelength laser
The treatment options for peripheral CNP have broadened

over the last decades. Historically, the effectiveness of laser therapy
for managing DR has been proven in several major clinical trials
(66, 67). Speculation surrounds the precise mechanism by which
retinal laser therapy with continuous wavelength effectively treats
and ameliorates retinal vascular disease. Regarding panretinal
photocoagulation for PDR, one potential mechanism is that
the damage induced by the treatment in poorly perfused areas
reduces the retinal cell oxygen demand and the level of hypoxia,
which results in a downregulation of angiogenic factors and
VEGF production by the retinal tissue, as well as an increase
in oxygen perfusion to the still-viable retina (68). Moreover, the
diminished VEGF production also reduces vascular permeability
and retinal edema.

The Diabetic Retinopathy Study, which evaluated the timing
of panretinal photocoagulation in eyes with advanced NPDR
and with PDR, was the first significant, prospective, multi-
center, randomized clinical trial investigating the efficacy of retinal
laser photocoagulation (67). In patients with high-risk PDR, this
research showed that PRP was very effective and decreased the
probability of severe vision loss by 60% at 2 years (67, 69).

However, conventional retinal photocoagulation has a number
of serious potential side effects and disadvantages, including
discomfort for the patient during the procedure, long treatment
times (sometimes requiring multiple sessions), the potential for
choroidal detachments after the procedure, increased intraocular
pressure, CME, and decreased peripheral, color, and night vision
for the patient (70, 71). Additionally, hemorrhage may occur
as a direct result of treating retinal blood vessels or retinal
neovascularization.

Anti-VEGF
Regarding the use of anti-VEGF agents, studies on peripheral

ischemia have so far shown contradictory findings, which mostly
depend on the imaging technique employed to measure it. Some
authors found no appreciable peripheral CNP improvement with
UWF FA in DR patients after anti-VEGF treatment over a follow-
up of 3 to 12 months (72–74). A prospective UWF FA study
comparing patients with PDR treated with intravitreal 2.0 mg
aflibercept either monthly or quarterly revealed stability in the
amount of CNP in patients receiving monthly aflibercept but not
in those with lower dosage, leading the authors to hypothesize that
the anti-VEGF agents dosage may affect the perfusion status (75).
Other investigations showed either a decrease in the mean ISI on
UWF FA or an improvement in retinal perfusion with promising
outcomes in terms of peripheral ischemia in individuals with DR
(25, 76–78). Similarly, Levin et al. (79) reported that 75% of eyes
with DME and PDR treated with at least one intravitreal injection
showed reperfusion of areas previously demonstrating CNP on
UWF FA after 5 months.

On the other hand, in a prospective investigation conducted by
Couturier et al. (73) despite a significant improvement in the DR
severity scale score on color fundus photographs, none of NPAs
present at baseline showed reperfusion in the arterioles, venules or

capillaries after 3 monthly injections of anti-VEGF agents, on both
UWF FA and UWF OCTA. According to their findings, anti-VEGF
drugs did not have a protective effect on peripheral CNP.

Dexamethasone implants

Querques et al. (80) evaluated early alterations in peripheral
CNP following treatment for DME with a dexamethasone (DEX)
implant on 9 eyes from 7 patients with NPDR. They assessed ISI
at baseline and 10 weeks after a single intravitreal injection of
DEX, which seemed to significantly improve retinal perfusion, with
stability of the clinical picture after 1 year. They hypothesized that
their outcome resulted from the favorable effects of corticosteroids
on leukostasis, that had been implied in the development of DR
for its effects vascular leakage and retinal non-perfusion (81, 82).
However, these observations obtained from a small cohort of eyes
have not found support by further studies. Hence, the low level of
evidence cannot support the positive role of DEX implant on retinal
perfusion status in DR.

Treatment of macular non-perfusion

To this date, there are no treatment or prevention option
available for DMI (2).

Anti-VEGF
It is widely known that VEGF-A plays a crucial role in

both pathological and physiological angiogenesis as a growth and
developmental factor. Furthermore, VEGF is expressed in retinal
neurons, glia, and retinal pigment epithelium and is a survival
factor for the retinal neurons and microvasculature (83, 84). It
primarily binds to VEGFR2 to support endothelial migration
and the integrity of the inner blood-retinal barrier. Therefore,
the hypothesis that anti-VEGF drugs have a protective impact
on DMI seems counter-intuitive. The current literature provides
inconsistent information regarding the impact of anti-VEGF
injections on macular CNP in patients with DR. Independent of the
anti-VEGF molecule utilized, some studies have revealed no change
in macular ischemia on FA after intravitreal injection in patients
with DME and DR (77, 85) or with DME alone (86–89).

A retrospective post hoc analysis of the prospective RISE/RIDE
studies, which included 666 DME patients treated with intravitreal
ranibizumab or sham, revealed that despite all groups showed a rise
in the percentage of patients with progressive posterior CNP from
baseline to month 24, the progression was significantly quicker in
the sham group at every time point between months 3 and 24,
indicating that patients with DME may benefit from monthly anti-
VEGF injections to delay the progression of retinal ischemia (64).

Conversely, in other studies involving either patients with (90–
92) or without (93) DME, anti-VEGF therapy worsened macular
CNP, with an expansion of the FAZ area seen on FA. In opposition
with these findings, OCTA studies investigating the FAZ area and
VD of the macular region in DME eyes with and without DR did
not find any alteration of OCTA parameters following anti-VEGF
treatment (78, 94–97). Noteworthy, a relatively short follow-up was
a common drawback of most of these investigations.
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A post hoc analysis of the RESTORE study revealed similar
findings, without any significant change over 3 years of repeated
ranibizumab injections in the FAZ area on OCTA (98). The possible
danger of worsening macular perfusion in DR eyes has been
pointed out by some authors who identified a considerable increase
in the FAZ area, as well as a drop in VD following an anti-
VEGF therapy course (86, 99). After three injections of 0.5 mg
intravitreal ranibizumab, only one retrospective research with 50
DME eyes reported a substantial decrease in the FAZ region with a
VD increase (100).

Dexamethasone implants

Steroid medications are an effective treatment for DME,
however, their effects on DMI are still unclear (101). It has been
suggested that anti-VEGF may not be as effective as steroids on
eyes with a predominance of inflammatory components. Eyes with
more severe DMI might elicit a greater inflammatory response,
which would then result in a worse outcome from anti-VEGF
therapy alone. Additionally, the degree of visual recovery that can
be attained may be constrained by the fact that DMI persists even
after DME has subsided following anti-VEGF therapy (2).

Novel approaches
There are not any preventative measures or treatments

available for retinal non-perfusion right now. To counteract
ischemia, some proposed therapies focused on neurodegeneration,
vasoregression, or pathological neovascularization (102). Lately,
high dose systemic oxygen administration showed promising
results in eyes with severe DMI (103). Another recently proposed
target is the pathway of the semaphorins (63), which have a role in
axonal growth cone guidance, immunological function, embryonic
development, and adult circulatory vascular maintenance. In
healthy adults, semaphorin levels are typically modest, while in
diabetic patients they have been observed to be higher (104).
Sema3a has been proposed to be a factor that specifically relates
to regions of CNP and may be limiting revascularization of
non-perfused tissues through its anti-angiogenic activities (5).
Preclinical mouse models have shown that reduction of Sema3a
increases rates of revascularization of avascular zones, which is
consistent with its involvement in inhibiting revascularization
of NPAs (5). Therefore, Sema3a is a possible target that might
be inhibited in an effort to encourage revascularization of CNP
regions. The lead compound of Sema Therapeutics, ST-102, is a
bispecific recombinant trap protein that binds both VEGF-A and
Sema3a and is currently undergoing pre-clinical testing for the
treatment of DME.

Finally, Faricimab, a humanized, bispecific immunoglobulin G
monoclonal antibody that binds and destroys Ang2 and VEGF-A
has been used with good results to treat DME (105).

By competitively binding to Tie2, Ang2 adversely controls
the Ang/Tie pathway by activating and destabilizing endothelial
cells. The upregulation of molecules like ICAM-1 and VCAM-
1 that results causes pericyte detachment, endothelial barrier
breakdown, and an increase in the transmigration of macrophages
and other inflammatory cells (106). The suggested Tie2 pathway-
based vascular stabilization method may help DMI.

Pathophysiological and
therapeutical implications of central
and peripheral capillary
non-perfusion: Final remarks

In the present review, we provided an updated scenario
regarding the characteristics, clinical impact, and management
of central and peripheral CNP in DR (Table 1). CNP is an
undoubtedly negative factor affecting diabetic retina, leading to the
further progression of DR, to the possible onset of complications
and to the overall worsening of retinal functionality. Indeed,
besides the major morpho-functional changes such as DME or
neovascularization, CNP has a functional negative impact on
retinal sensitivity and visual function, representing a major cause
of decreased quality of life of diabetic patients. To date, the
current therapeutic strategies do not allow to properly manage

TABLE 1 Overview of peripheral and central capillary non-perfusion.

Peripheral CNP Central CNP

Imaging

Most used tool UWF FA OCTA

Quantification Method Ischemic index
(ISI = NPA/retinal area)

Vessel density

Clinical implications

Relation to DR
Progression

Higher baseline CNP is
associated with higher risk of
DR progression

FAZ enlargement
predicts progressive loss
of visual acuity

Relation to PDR Larger areas of CNP associated
with optic disc and posterior
pole neovascularization,
neovascular lesion area and
VEGF levels

FAZ area correlates with
DR severity, enlarging
from NPDR to PDR

Associated ocular
complications

Higher risk of neovascular
glaucoma and diabetic
keratopathy

Irreversible visual acuity
loss

Visual Prognosis Extensively large areas of CNP
indicate unfavorable prognosis

The involvement of both
DCP and SCP can result
in severe vision loss even
in the absence of DME

Relation to DME Contradictory findings The degree of underlying
DMI may influence the
presence and
responsiveness of DME,
as well as the size of
foveal cystoid spaces.

Therapeutic options

Laser treatment Panretinal photocoagulation
lowers the probability of severe
vision loss

No available options

Anti-VEGF Contradictory findings Faricimab may promote
vascular stabilization

Dexamethasone Implant Contradictory findings Contradictory findings

CNP, capillary non-perfusion; UWF, ultra-widefield; FA, fluorescein angiography; OCTA,
optical coherence tomography angiography; ISI, ischemic index; NPA, non-perfusion area;
DR, diabetic retinopathy; PDR, proliferative diabetic retinopathy; NPDR, non-proliferative
diabetic retinopathy; FAZ, foveal avascular zone; DME, diabetic macular edema; DMI,
diabetic macular ischemia.
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CNP. Although some new therapies might represent meaningful
steps forward for the treatment and improvement of central and
peripheral CNP, the level of evidence is still too low to draw definite
conclusions about this topic. Anti-VEGF treatments showed no
effect on peripheral CNP (107) and DEX implants were not
investigated in deep. Laser treatment is still a valuable option,
especially for those patients showing low compliance to repeated
intravitreal treatments. However, the impact on peripheral visual
field should be carefully considered (108).

As outlined in the present review, multimodal retinal imaging
provides a very powerful set of diagnostic approaches to assess
the central and peripheral ischemic status of the retina in a
non-invasive way. These examinations can be easily repeated,
testing changes in the same retinal coordinates over time, thus
providing an irreplaceable follow-up tool. Although quantitative
multimodal retinal imaging has primarily been used for research
purposes, its implementation in clinical settings could lead to a
novel approach for patient classification and monitoring. This
technology could enable precise categorization of patients based on
their ischemic severity and allow for accurate monitoring of retinal
perfusion changes during treatments. These techniques will help
to better assess treatments efficacy and to customize therapeutic
strategies. In addition, these approaches will provide new
advances in knowledge regarding DR pathogenesis, contributing
on the development of new molecules and technologies, as
well as multitarget approaches to optimize DR management
and to improve patients’ quality of vision and quality of
life. Perhaps, the most interesting scenario would include the
improvement of multi-target therapeutic approaches, focused on
contrasting the pathologic cascades of mediators characterizing DR
pathogenesis and favoring the reperfusion of those retinal regions
affected by CNP.

As technical remark, it is important to consider that the current
diagnostic approaches for evaluating central and peripheral CNP
are prone to limitations. With respect to OCTA, the current
technologies cannot allow to distinguish the real macular CNP from
a displacement effect of macular capillaries secondary to DME;
on the other side, when the macula is dry, the detection of real

CNP is much more reliable (109). Looking at peripheral CNP,
from one side the introduction of UWF technologies remarkably
improved the amount of information achieved from the extreme
periphery: on the other side, a consensus definition of peripheral
CNP is still missed (109). Indeed, the previous definitions of 10-
disc areas or 30-disc areas of CNP are less applicable in a so
wide field of view. Moreover, the high curvature of the eye in
the periphery reduces the intensity of the fluorescent signal, thus
making less reliable the proper assessment of retinal perfusion in
the extreme periphery. For all these reasons, further technological
improvements are warranted to optimize the diagnostic workup of
DR-related central and peripheral CNP.
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