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Tear meniscus height (TMH) is an important reference parameter in the diagnosis
of dry eye disease. However, most traditional methods of measuring TMH are
manual or semi-automatic, which causes the measurement of TMH to be prone to
the influence of subjective factors, time consuming, and laborious. To solve these
problems, a segmentation algorithm based on deep learning and image processing
was proposed to realize the automatic measurement of TMH. To accurately segment
the tear meniscus region, the segmentation algorithm designed in this study is
based on the Deeplabv3 architecture and combines the partial structure of the
ResNet50, GoogleNet, and FCN networks for further improvements. A total of 305
ocular surface images were used in this study, which were divided into training
and testing sets. The training set was used to train the network model, and the
testing set was used to evaluate the model performance. In the experiment, for tear
meniscus segmentation, the average intersection over union was 0.896, the dice
coefficient was 0.884, and the sensitivity was 0.877. For the central ring of corneal
projection ring segmentation, the average intersection over union was 0.932, the
dice coefficient was 0.926, and the sensitivity was 0.947. According to the evaluation
index comparison, the segmentation model used in this study was superior to
the existing model. Finally, the measurement outcome of TMH of the testing set
using the proposed method was compared with manual measurement results. All
measurement results were directly compared via linear regression; the regression
line was y 0.98x—0.02, and the overall correlation coefficient was r2 0.94. Thus,
the proposed method for measuring TMH in this paper is highly consistent with
manual measurement and can realize the automatic measurement of TMH and assist
clinicians in the diagnosis of dry eye disease.

tear meniscus height, dry eye disease, automatic diagnosis, deep learning,
segmentation

image

1. Introduction

Dry eye disease (DED) is a multifactorial disease of the ocular surface that is accompanied
by increased tear film osmolality and ocular surface inflammation, causing symptoms such as
visual impairment and tear film instability (1, 2) and potential damage to the ocular surface,
affecting the visual function of millions of people worldwide. In traditional diagnostic methods
for DED, Schirmer’s test, tear break-up time measurement, and ocular surface staining score are
commonly used to qualitatively and quantitatively analyze the tear film (3, 4). Tear meniscus
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height (TMH) can be used to assess the tear volume and tear
film status. The tear meniscus is located at the edge of the upper
and lower eyelids and accounts for 75-90% of the total tear
volume (5). The lower tear meniscus is more stable, and the DED
analysis mainly uses the lower tear meniscus index, which is also
aimed at the lower tear meniscus. Previous studies have reported
decreased tear meniscus parameters (TMH, tear meniscus volume,
and tear meniscus dynamics) in DED patients (6-8). Therefore, the
quantification of tear meniscus parameters is helpful in the diagnosis
of DED. As a crucial parameter of the tear meniscus, the TMH has
received extensive attention in recent years. In fact, in current clinical
studies, although screening of the tear meniscus is performed by non-
contact eye photography, the quantitative measurement of TMH is
mostly manual or semi-automated. For example, physicians need to
be involved in the assessment process of identifying and outlining
the upper and lower edges of the tear meniscus in the image, and
the measurement points of the TMH are empirically selected by
the physician. These subjective assessments may lead to inconsistent
results, reduced repeatability, and increased interobserver variability
(9, 10). Manual measurement of TMH is time consuming and
laborious if a large number of images are involved.

As a crucial parameter of tear meniscus, TMH has received
increasing attention in recent years, and screening for DED
can be achieved by assessing TMH. Stegmann et al. (11)
assessed TMH, tear meniscus area, tear meniscus depth, and tear
meniscus radius using image data acquired by ultra-high resolution
optical coherence tomography combined with conventional image
processing algorithms. In 2019, Yang et al. (12) from the Human
Research and Ethics Committee of Peking University Third Hospital
implemented a brand-new automated tear meniscus segmentation
and height measurement software Image]J based on a multi-threshold
segmentation algorithm and compared the Image] measurement
results with the manual measurement results. Arita et al. (13)
successfully segmented and measured the tear meniscus by
interference fringes using a DR-1a tear interferometer and achieved
high accuracy. However, this method is not fully automated and
requires manual selection of the measurement point. In 2020,
Stegmann et al. (14) improved the threshold-based segmentation
algorithm to a convolutional neural network segmentation algorithm
based on (11) and found that the use of deep learning segmentation
algorithm increased the operation speed by 228 times compared
with threshold segmentation algorithm. In 2021, researchers from
the School of Biomedical Engineering, Department of Medicine,
Shenzhen University (15) proposed a tear meniscus segmentation
algorithm based on a fully convolutional neural network and
combined with polynomial fitting of the upper and lower edges of
the tear meniscus to measure TMH, and the measurement results
of the TMH were compared with the manual measurement results.
However, it was easy to deviate when the tear meniscus edge was
fitted with the polynomial, and polynomial fitting was required for
each measurement of a picture.

There are two main findings of this study. First, combined with
the existing segmentation network structure and the characteristics
of ocular surface images, a segmentation network suitable for
this experiment is built to accurately segment the tear meniscus
region and the central ring of the corneal projection ring (CCPR).
Thereafter, combined with the image processing method, the center
point of the CCPR is located, and the region that needs to be
evaluated for the TMH is selected. Finally, the TMH measurement
method is continuously adjusted, and the final measurement method
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is determined. The processes of ocular surface image acquisition,
tear meniscus region segmentation, and TMH measurement are
fully automatic and noninvasive (16, 17). In addition, we compared
the measured results of TMH using the method proposed in this
study with those of experienced professional doctors to evaluate the
feasibility of the proposed method.

2. Dataset

In total, 325 ocular surface images were obtained. All images
were obtained from the Shenzhen Eye Hospital. All the data used
in this experiment explained the purpose and possible results to
the providers. All ocular surface images were acquired using a
Keratograph 5 M (K5 M), during which the patients needed to place
their chin on a stand in front of the K5 M, adjust the measured eye to
a distance of 100 mm from the camera, face the camera, and remain
still at the physician’s instructions. The images that caused unclear
shooting due to unfocusing and closing eyes in 325 ocular surface
images were manually eliminated. Finally, 305 clear images were
obtained for the experiment. All images used for the experiment were
in png format of 1,360 pixel x 1,024 pixel, as shown in Figure 1A.
Furthermore, 305 ocular surface images were divided into training
and testing sets, in which 270 ocular surface images were included in
the training set, and 35 ocular surface images were included in the
testing set. The training set is the data sample used for model fitting
that performs gradient descent of training error during training and
learns the trainable weight parameters. The testing set was a separate
set of samples left during model training, which could be used to
evaluate the performance of the model.

In the network training process, it is necessary to input the ocular
surface image and its corresponding labeling image. All ocular surface
images were labeled by a professional DED diagnostician. In the
labeling process, time is not limited, and the edge of the tear meniscus
region is accurately labeled to the extent possible. The labeled data are
transformed into binary images, in which the labeled target region
is represented by a pixel value of 1, and the background region

FIGURE 1

Ocular surface image data (A) Original ocular surface image

(B) Segmentation convolution neural network segmented tear
meniscus region and central ring of corneal projection ring (CCPR)
region (C) Schematic of selected TMH measurement region

(D) Schematic of physician assessment of TMH.
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is represented by a pixel value of 0, as shown in Figure 1B. To
measure TMH, we selected several measuring points, as shown in
Figure 1C, the physician selected several measuring points in the
tear meniscus region near the right underneath corresponding to the
center point of the CCPR, assessed TMH at these measuring points,
and subsequently averaged them as the final TMH measurement, as
shown in Figure 1D.

3. Materials and methods

In this study, the TMH was evaluated using the following steps:
(1) The original ocular surface image and its corresponding tear
meniscus region labeling mask in the training set were preprocessed,
data augmentation was performed, the processed data were sent into
the deep convolution neural network for network training, and the
network parameters of the optimal model were saved. (2) The original
ocular surface images and the CCPR in the training set were labeled
with a mask for preprocessing and data augmentation. The processed
data were fed into a deep convolution neural network for network
training, and the network parameters of the optimal model were
stored. (3) Load the network weights obtained in (1) and (2) to
predict the tear meniscus region and the CCPR region of the ocular
surface image in the testing set, respectively. (4) The center of CCPR
was located. In this study, the center of the CCPR was located by
considering the pixel coordinates and edge lengths of the upper left
corner of the rectangle through an external rectangle of the predicted
CCPR that requires circular fitting of the predicted CCPR to achieve a
more accurate center position. (5) Prediction of TMH. The main flow
of tear meniscus segmentation and height measurement is shown in
Figure 2.

3.1. Segmentation model structure

To achieve segmentation of the tear meniscus region, we built
a deep convolutional neural network based on the DeepLabv3 (18)
architecture, which was initially used for semantic segmentation. To

Crop to
uniform
size(480x480)

—

Original Image

Tear Meniscus <:_—_|
Height
FIGURE 2

Automatic measurement process of TMH.
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segment the tear meniscus region better, the DeepLabv3 network
was adjusted and improved in this study. The segmentation of the
tear meniscus region is performed through feature extraction and
image size restoration to obtain the final segmentation results, which
include the backbone module and ASPP (19) module. The backbone
module used in this study refers to resnet50 (20) and renders certain
improvements based on the characteristics of the tear meniscus
image. The entire backbone consists of a 7 x 7 convolutional layer,
maximum pooling layer, and four blocks. Each block consists of
bottleneckl and bottleneck2. Both bottleneckl and bottleneck2 are
residual blocks composed of several convolutional layers, linear
normalization layers, rectified linear units, and shortcut branches.
Bottlenboteckl differs from bottleneck2 in that a convolutional
kernel of 1 x 1 is added to the shortcut branch of bottleneckl
to reduce the dimension. The specific structures of bottleneckl
and bottleneck2 are shown in Figures 3B, C, respectively. Certain
common convolutional layers in block3 and block4 are replaced
by atrous convolutional layers (21), and the specific expansion
coeflicient setting is shown in Figure 3A. The ASPP module consists
of five parallel branches, which are a convolutional layer of 1 x 1,
three atrous convolutional layers of 3 x 3, and a global average
pooling layer that can increase global context information (followed
by a convolutional layer of 1 x 1, and subsequently, the size of the
input is restored by bilinear interpolation); thereafter, the outputs of
these five branches are concatenated along the channel direction, and
finally the information is further fused by a convolutional layer of
1 x 1. In addition, for the three parallel atrous convolutional layers,
we use the multi-grid strategy and experimentally found that in the
experiments performed in this study, the best results are obtained
when the multi-grid is set to (1, 1, 1). The structure of the entire
network is illustrated in Figure 3.

In the process of feature extraction, the pooling and
convolutional layers are generally used to increase the receptive
field; however, this also reduces the size of the feature map. For
segmentation, it is necessary to use upper sampling to restore the
size of the feature map, and the process of feature map reduction
and reamplification causes loss of accuracy. To solve this problem,
the concept of atrous convolution, which can increase the receptive

Convolutional
Neural Network

Edge Detection and
Locate the Pupil Center
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FIGURE 3

Segmented network structure diagram (A) Segmented network structure is composed of resnet50 module, ASPP module, and upper sampling. Panels
(B,C) are bottleneckl and bottleneck2, respectively, all of which are composed of several convolutional layers, batch normalization and ReLU.

fields while maintaining the size of the feature maps is proposed.
Atrous convolution introduces a hyperparameter called expansion
rate, which defines the spacing of each value of the convolutional
kernel when processing the data, as shown in Figure 4: (a) shows
a common convolutional kernel with a size of 3 x 3; (b) shows an
atrous convolution with a size of 5 x 5. The atrous convolutional
kernel enlarges the size based on the ordinary convolutional kernel;
however, the convolutional kernel unit that participates in the
operation does not change; only the light blue square in the figure is
the unit that participates in the operation, and the elements in the
white square are filled with 0. Atrous convolution increases receptive
fields by enlarging the size of the convolutional kernel, while neither
increasing the computational load nor reducing the resolution of the
feature map. The degree of expansion of the convolutional kernel can
be controlled by the expansion factor, assuming that the expansion
factor is S, the size of the common convolution kernel is Ky, and the
size of the convolution kernel after the expansion design is K, as

follows:
K. = S x (Kp—1)+1 (1)
A B
FIGURE 4
Convolutional kernel schematic: (A) Common convolution (B) atrous
convolution.
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In the process of restoring the image size, bilinear interpolation
is adopted in this study. To further optimize the segmentation
performance of the network, this study refers to the auxiliary classifier
structure in GoogleNet (22) and the FCN (23) network structure, and
the output of backbone’s block3 in the model leads to an FCN head as
an auxiliary output.

At present, many segmentation networks are based on the
improvement of Unet (24), which has also been widely used in
the field of biomedical image segmentation, and this method was
proposed at the MICCAI meeting in 2015 and has now reached more
than 4000 citations. Unet is characterized by an encoder-decoder
structure, and through the convolutional layer and pooling layer, the
input picture information is encoded into the feature information
that can be recognized by the computer, and subsequently, the
compressed feature map is also sampled. Compared with the
previous segmentation network, Unet fuses more low-level semantic
information starting from the first convolutional layer, and the
output feature maps of each layer are copied and concatenated
with the decoded information after the subsequent upper sampling
to generate a new feature map. In the last layer of the network,
Unet uses a convolutional layer of 1 x 1 instead of the fully
connected layer and uses a convolutional kernel of 1 x 1 to achieve
dimensionality reduction, which is a linear transformation and
superposition of the combination of information between different
channels. Unet plays an important role in the segmentation of
medical images owing to their lightweight network structure and
feature concatenation. Therefore, to further evaluate the performance
of the model used in this study, the Unet series network is selected as
the experimental contrast model.

3.2. TMH measurement method

When assessing TMH, a professional doctor mainly evaluates
the height of the tear meniscus region corresponding to the vicinity
directly below the center of the CCPR, that is, several measurement
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FIGURE 5

Loss of training process for tear meniscus segmentation by different models.
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FIGURE 6
Confusion matrix of tear meniscus segmentation.

points are selected in the tear meniscus region directly below the
center of the CCPR for TMH assessment, and the average value of
the assessment is the final TMH measurement result. Because each
assessment requires the physician to select the assessment point, not
only is it time consuming and labor intensive, but also the assessment
results are susceptible to subjective factors. After consultation with
experts in the field of DED diagnosis, this study used the method of
averaging multiple measurement points, which is realized as follows:
the pixel coordinate of the center of the CCPR is (x,y), the pixel
coordinate corresponding to the upper edge of the tear meniscus is

Frontiers in Medicine

(xi, vi), and the pixel coordinates corresponding to the lower edge of
the tear meniscus is (x—j—1, y—i—1). The pixel sets of |x;j — x| < = 100
and [x_j_1—x| < = 100 are calculated. Because the edge of the tear
meniscus includes the upper and lower edges, 400 pixel coordinates
can be obtained. Referring to the opinions given by professional
doctors, this study selects an upper tear river coordinate value(x;, y;)
and its corresponding tear river coordinate value (x—j—1, y—j—1) every
30 pixels to calculate the TMH. In addition, a previous study (15)
showed that TMH in the tear meniscus region 0.5-4 mm directly
below the center of the CCPR has strong robustness, and the TMH
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Confusion matrix of CCPR segmentation.

value in this region is insensitive to the selected measurement points.
Therefore, a total of seven TMH measurement points were selected
in the tear meniscus region 2 mm directly below the center of the
CCPR, and the pixel values corresponding to these seven TMHs were
averaged to obtain the final TMH, as shown in Equation 2. The height
and width of all pictures used during the experiment were measured
and averaged, and this step was repeated three times to finally obtain
the height and width of the ocular surface image as 11.85 mm and
15.75 mm, respectively, and subsequently, the pixel value could be
converted to a height value by the conversion formula of Equation 3,
as shown in Figure 1C.

7
1
PTMH = 5.211 lyj — y—j-1l 2

TMH = PTMH/86 3)

3.3. Criteria for model evaluation

The evaluation index is a key factor for measuring network
performance, and tear meniscus segmentation is of practical
significance only if the evaluation index meets the expectations
(25). In the field of image segmentation, many evaluation indices
can describe the network segmentation accuracy. Among them, the
commonly used evaluation indicators are the intersection over union
(IOU), dice coefficient, intra class coefficient (ICC) and sensitivity
(26-28). We recorded the target region in label A1 and the prediction
of the target region as A2.

(1)The IOU describes the ratio between the intersection and
merging of the real and predicted results, and the closer the ratio is
to 1, the higher the coincidence degree of the two. IOU is calculated
as

I0U = —— 4)

Frontiers in Medicine

(2) The dice coeflicient describes how similar the two samples are,
and the closer the two samples are, the closer the dice coefficient is to
1. The dice coefficient is calculated as follows:

_ 2|A1 N A2
Dice = ——— (5)

|[AT|+]A2]
(3) ICC = (variance of interest) / (total variance) = (variance of
interest) / (variance of interest + unwanted variance), ICC can be used
to evaluate the segmentation done by the models and the observers.
I would like to use ICC to evaluate my model proposed in the paper
compared with doctors in measuring TMH. The ICC ranges from 0

to 1, a high ICC close to 1 indicates high reliability of the model.

(4) In addition to the IOU and dice coefficient evaluation
index, the network performance can be measured using sensitivity.
TP: correctly predicted as tear meniscus/CCPR; EN: incorrectly
predicted background as tear meniscus/CCPR; FP: incorrectly
predicted as the background of tear meniscus/CCPR; TN: correctly
predicted background.

Sensitivity refers to the ratio of the predicted correct region to
the predicted total region in the prediction result, i.e., the accurate
measurement of the network segmentation, and its calculation
formula is as follows:

TP
SE = — (6)
TP + FN

3.4. Optimizer and learning rate updating
strategy

The optimizer provides a direction for adjusting the neural
network parameters in deep learning, which causes the loss function
to approach the global minimum continuously and determine the
global optimal solution. According to the different tasks, selecting
the appropriate optimizer to optimize the parameters is necessary;
otherwise, the loss function may remain in the local optimal solution,
resulting in non-convergence of the network. In this study, the
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TABLE1 mlOU, dice coefficient, and sensitivity for tear meniscus region
segmentation by different methods.

Unet 0.831 0.806 0.761
Resnet50-Unet 0.881 0.868 0.871
DeepLabv3 0.882 0.870 0.863
Ours 0.896 0.884 0.877

The bold values represent the best results for each metric.

TABLE 2 mlIOU, dice coefficient, and sensitivity for CCPR region
segmentation by different methods.

Unet 0.891 0.802 0.785
Resnet50-Unet 0.912 0.906 0.905
DeepLabv3 0.921 0.913 0.929
Ours 0.932 0.926 0.947

The bold values represent the best results for each metric.

stochastic gradient descent algorithm (29) was used as the optimizer.
The gradient is the vector pointing to the maximum value of the
derivative of a function in the direction of a certain function at this
point, that is, along this direction, the fastest change in the function
value. Let the mean-square loss function be

1O = 3 a0 - )

where 6 (w1, wa, w3, ..., w,) is the weight vector, and
a partial derivative of each component is determined using
function J(f) to obtain the gradient ¢ = J'(#); accordingly,

the updated 6 at the next moment is
6t+1 = et—OL - g, (8)

where6; is the last weight, 611is the updated weight, anda is the
learning rate that determines the step size for each parameter update.

The optimizer controls the direction of the parameter
optimization update, whereas the learning rate controls the
speed of the parameter optimization update. Generally, the learning
rate decreases with the number of iterations. At the beginning of
training the network, a larger learning rate can be set to allow the
network to swiftly adapt to the training samples. When training
to a certain extent, reducing the learning rate is necessary, which
finely adjusts the network parameters and avoids the network from
shaking. In this study, we used the cosine annealing (30) strategy
to update the learning rate. The learning rate decreases in the form
of a cosine function. According to the characteristics of the cosine
function, learning first gradually decreases, subsequently accelerates
the decline, and finally decreases slowly. The learning rate decay

) o

Lr; refers to the current learning rate, Lya and Lrp;, refer to the

formula is

1
Lry = eri,,—{—i (L7 max—Lrmin) (1—|—cos (

maximum learning rate and minimum learning rate that we set in
advance, and N, and N, refer to the current iteration times and
total iteration times, respectively.
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TMH-GT: 0.43mm
TMH-P: 0.43mm

TMH-GT: 0.31mm
TMH-P: 0.27mm

TMH-GT: 0.18mm
TMH-P: 0.22mm

FIGURE 8

Example of tear meniscus segmentation; TMH-GT indicates the TMH
of label, TMH-P indicates the TMH predicted in this paper: Panel (A) is
accurate segmentation (B) is under segmentation (C) is over
segmentation.

4. Results

The designed deep convolutional neural network can accurately
segment the tear meniscus region and CCPR in the ocular surface
image, and the TMH can be evaluated using the segmentation results.
First, the center of CCPR must be determined. To locate the center of
the CCPR more accurately, we performed circular fitting and cavity
filling of the CCPR followed by an external rectangle (actually a
square). The center of the CCPR can be located by the pixel value and
edge length of the left upper vertex of the rectangle. The upper and
lower edges of the tear meniscus were obtained using edge detection.

4.1. Segmentation of target region

Each tear meniscus ocular surface image and its corresponding
mask were uniformly cropped to 480 x 480, and subsequently, the
image contrast was enhanced by the HSV random enhancement
method. Data augmentation was achieved using rotation, translation,
and inversion (31, 32) to improve the generalization ability of the
model. Experimental hardware configuration during training and
testing: Intel (R) Core (TM) i7-6700 CPU @ 3.40GHz, GPUNVIDIA
GeForce RTX 1080. Experimental software configuration: The
operating system was Windows10 with 64 bits, PyCharm Community
Edition 2021.3, Python 3.6.13. All deep convolutional segmentation
neural networks were set as follows: (1) SGD (momentum = 0.9,
weight decay = 0.0001) was selected by the optimizer, and the learning
rate was set as 0.0001. (2) The batch size was set to 4, and the
maximum training epoch was set to 500. (3) A learning rate updating
strategy was applied during the experiment. This strategy allows the
learning rate to update every step instead of every epoch update, such
that the network can be trained more effectively. After building the
experimental environment and setting the initial learning parameters,
different models are trained using the training set, and different
models are used to segment the tear meniscus. The change in the loss
value during the training process is shown in Figure 5. After training
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Fitted linear regression of true value and predicted value of TMH; ordinate represents the true value of TMH, abscissa represents the predicted value of
TMH, and the blue line corresponds to regression liney = 0.98x —0.02,r2 = 0.94

for 500 epochs for the training set, the loss value of the network built
in this study decreased the fastest and dropped below 0.1.

The confusion matrix of tear meniscus segmentation and CCPR
segmentation used proposed network in this study showed in
Figures 6, 7, respectively. To evaluate the segmentation performance
of the deep convolutional segmentation neural network used in this
study, we used the popular segmentation networks Unet, Resnet50-
Unet, and DeepLabv3 to perform comparative experiments. In this
study, the segmentation performance of different models for the
tear meniscus region and CCPR were evaluated using IOU, dice
coefficient, and sensitivity. The segmentation results of different
models for the tear meniscus region are summarized in Table 1, with
an average IOU of 0.896, dice coefficient of 0.884, and sensitivity
of 0.887. The segmentation performance of our model was the best
when the tear meniscus region was segmented. The segmentation
results of the different models for the CCPR are summarized in
Table 2, where the average IOU was 0.932, the dice coefficient
was 0.926, and the sensitivity was 0.947. When the CCPR is
segmented, the model segmentation effect is optimal. In summary,
the proposed model can accurately segment the tear meniscus region
and CCPR, which is conducive to the accurate measurement of
the TMH.

4.2. TMH measurement

The trained segmentation network combined with the image
processing method was used to measure the TMH, and three ocular
surface pictures in the testing set were selected, as shown in Figure 8,
to show the prediction results of TMH. We outlined the labeled tear
meniscus region and the predicted tear meniscus region with red lines
and green lines, respectively. Figure 8A shows that the tear meniscus
region is accurately segmented, and both the true and predicted value
of TMH are 0.43 mm. Figure 8B shows that the tear meniscus region
is under segmented, the true value of TMH is 0.31 mm, and the
predicted value is 0.27 mm, which results in the predicted value
of TMH being less than the true value. Figure 8C shows that the
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tear meniscus region is over segmented, the true value of TMH is
0.18 mm, and the predicted value is 0.22 mm, which results in the
predicted value of TMH being greater than the true value. The true
and predicted values in all testing sets were compared using linear
regression, as shown in Figure 9, where the true and predicted values
of TMH in all images in the testing set remained consistent, with a
satisfactory regression line y 0.98x—0.02, and the overall correlation
coefficient was 72 0.94.The ICC is used to evaluated the reliability
of proposed model in the study, the ICC of TMH was 0.90, which
showed good reliability.

5. Discussion

DED is one of the most common ocular diseases affecting
visual function in 5-30% of the worlds population (33). DED
causes a series of subjective symptoms and visual damage due
to tear film instability accompanied by potential ocular surface
damage. As the incidence of DED increases, it affects the visual
quality of patients and thus affects their daily life; therefore, the
evaluation of visual quality of DED patients has gradually received
considerable attention. However, there are no uniform criteria for
the diagnosis of DED, and fluorescein tear break-up time (34) and
Schirmer test (35) are generally used to diagnose DED; however,
these traditional diagnostic methods are invasive and unrepeatable
(36-38). Studies have found that TMH is an important parameter
of tear meniscus, and its value can be used to distinguish normal
eyes from eyes affected by DED (39, 40); nonetheless, most of
the measurements of TMH are manual or semi-automatic; for
example, professionals are required to outline the upper and lower
edges of the tear meniscus and select the measurement point of
TMH, which is not only time consuming and laborious, but also
the measured TMH is unrepeatable, which may lead to inaccurate
diagnostic results. Therefore, it is highly important to design a
fully automatic, noninvasive method for measuring TMH. Based
on this, a method for measuring TMH is proposed in this study,
in combination with deep learning and image processing methods.
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The acquisition of ocular surface images, detection of the tear
meniscus region, and measurement of TMH are automatic and
noninvasive. The prediction results of the TMH were consistent
with the measurement results of professional doctors. The method
proposed in this study can accurately measure TMH and can be used
to assist doctors in the diagnosis of DED, which has important clinical
and practical significance.

In this study, we first obtained the ocular surface image using
K 5M equipment and eliminated the blurred image of the tear
meniscus region caused by closing the eyes and not focusing
during shooting. Subsequently, a deep convolutional neural network
was built to segment the tear meniscus and CCPR regions. The
segmentation network used in this study included two parts:
feature extraction and image size restoration. The feature extraction
part is composed of the adjusted Resnet50 and ASPP module
in DeepLabv3. Segmented image size restoration was realized by
bilinear interpolation sampling. In addition, an auxiliary output
was elicited at the feature extraction stage by referring to the
auxiliary output structure of GoogleNet and the output of the
FCN. Finally, circular fitting was performed on the segmented
CCPR to better locate its central point, and subsequently, the
upper and lower edges of the tear meniscus were detected by
edge detection to achieve the TMH, and after measuring the pixel
values corresponding to the TMH, the final TMH values were
obtained by 86 pixel/mm. The model used in this study exhibits
an average IOU of 0.896, dice coefficient of 0.884, and sensitivity
of 0.887 for the segmentation of the tear meniscus region and an
average IOU of 0.932, dice coefficient of 0.926, and sensitivity of
0.947 for the segmentation of the CCPR region. The model built
in this study can automatically identify and accurately segment
the tear meniscus region and the CCPR region. A trained deep
convolutional neural network was used to segment the ocular surface
images in the testing set and predict TMH in combination with
image processing methods; the regression line y = 0.98x—0.02
(> = 0.94) was used to fit the true and predicted values of the TMH
in the testing set.

The method proposed in this study for measuring TMH is
advantageous because it is noninvasive and fully automatic. The
ocular surface images used to assess the TMH were obtained
by a professional K5M shooting instrument without touching
the patient’s eyes throughout the procedure. Segmentation of
the tear meniscus region and measurement of the TMH were
achieved by a computer, the measurement method of TMH was
easily implementable. Furthermore, the amount of calculation
was small, and the physician was not mandated to select TMH
measurement points, which eliminated the problem of inconsistent
results owing to subjective assessments, reduced repeatability,
and increased interobserver variability. The method proposed
in this study can accurately measure TMH and assist doctors
in DED screening.

The shortcomings of this study are that the number of datasets is
small, and the quality is uneven, and certain images with eyes closed
and blurred shooting are extant, necessitating continued collection
of more high-quality images. The more datasets used to train the
network, the more accurate the segmentation results of the network,
such that a more accurate TMH is measured. As for segmentation
network, with the deepening of the convolutional layer, the obtained
feature map has a larger field of view, in which the shallow network
focuses on texture features and the deep network focuses on the
overall information of the picture. When pooling down sampling,
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it inevitably loses part of the edge information of the features, and
this lost information cannot be recovered by upsampling alone,
whereas the Unet network achieves the retrieval of edge features
through the concatenation of features, which significantly improves
the segmentation fineness. In the future, we can combine different
networks, such as the DeepLab series and the Unet series, to improve
and further improve the accuracy of segmentation.

6. Conclusion

In this paper, we propose a method to automatically measure
TMH using deep learning combined with image processing. The
measurement results of TMH obtained using the method proposed
in this paper are consistent with clinical data, and this is clinically
significant. In the future, with the continuous development and
optimization of algorithms and the acquisition of more high-quality
datasets, the accuracy of the measurement of TMH will increase, and
it can be used to screen DED.
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