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In the past few decades, according to the rapid development of information 
technology, artificial intelligence (AI) has also made significant progress in 
the medical field. Colorectal cancer (CRC) is the third most diagnosed cancer 
worldwide, and its incidence and mortality rates are increasing yearly, especially 
in developing countries. This article reviews the latest progress in AI in diagnosing 
and treating CRC based on a systematic collection of previous literature. Most 
CRCs transform from polyp mutations. The computer-aided detection systems can 
significantly improve the polyp and adenoma detection rate by early colonoscopy 
screening, thereby lowering the possibility of mutating into CRC. Machine learning 
and bioinformatics analysis can help screen and identify more CRC biomarkers to 
provide the basis for non-invasive screening. The Convolutional neural networks 
can assist in reading histopathologic tissue images, reducing the experience 
difference among doctors. Various studies have shown that AI-based high-level 
auxiliary diagnostic systems can significantly improve the readability of medical 
images and help clinicians make more accurate diagnostic and therapeutic 
decisions. Moreover, Robotic surgery systems such as da Vinci have been more 
and more commonly used to treat CRC patients, according to their precise 
operating performance. The application of AI in neoadjuvant chemoradiotherapy 
has further improved the treatment and efficacy evaluation of CRC. In addition, AI 
represented by deep learning in gene sequencing research offers a new treatment 
option. All of these things have seen that AI has a promising prospect in the era 
of precision medicine.
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1. Introduction

Colorectal cancer (CRC) is a common disease that threatens the public health. According 
to the International Agency for Research on Cancer, there were an estimated 1.93 million 
new cases of CRC worldwide in 2020, making itself in the third place in the most common 
cancer list (Figure  1A). The incidence of CRC is particularly significant in countries 
undergoing social and economic transition. In China, there were about 560 thousand newly 
diagnosed cases of CRC in 2020, second only to lung cancer in terms of morbidity (1) 
(Figure 1B). Based on the GLOBOCAN 2020 cancer assessment and population data from 
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the World Health Organization (WHO), the number of new cases 
of CRC in China is estimated to reach 590 thousand in 2022, more 
than any other countries in the world (2). Besides smoking, obesity, 
and unhealthy lifestyle, the incidence of CRC is also related to 
gender, genetic cause, and family factors (3–6). Currently, the main 
diagnostic methods for CRC include laboratory tests, endoscopy, 
imaging and histopathology examination, etc. Traditional ways of 
treating CRC entail surgery, radiotherapy, and post-metastasis 
therapy, among others (7–10). Despite all these tools, the rise in 
CRC incidence and mortality is alarming. With the recent attention 
of early screening and the rapid development of precision medicine 
(4, 11), a new diagnosis and treatment model for CRC is on 
the horizon.

Artificial intelligence (AI) can be  understood as studying the 
principle of human intelligence activities, constructing an artificial 
system with certain intelligence, and studying how to let computers 
complete the work that requires human intelligence in the past. 
Nowadays, with the rapid development of computer technology and 
the vigorous promotion of precision medicine, the application of AI 
in medicine is also in full swing (12, 13). AI applications in medicine 
are now divided into virtual and physical branches (12). Machine 
learning (ML) is an essential subbranch of AI. It also can be divided 
into subsets such as deep learning (DL), supervised learning (SL), 
semi-supervised learning (SSL), support vector machine (SVM), 
random forest (RF), and convolutional neural network (CNN) (14–
17) (Figure 2). Among them, DL and CNN are representatives of the 
most successful algorithms used in medicine in recent years (17, 18). 
They play a very broad role in data management (19), information 
control (20), diagnosis prediction (21), and drug delivery (22). The 
branches of physics mainly include medical equipment (23) and robot 
applications, such as da Vinci robot system, which is widely used 
today (24, 25). This article mainly discusses the development of AI and 
its application in the diagnosis and treatment of CRC.

2. The development of AI

It is generally believed that the development of AI evolved from 
robots. The word “robot” first appeared in the works of the Czech 
dramatist Karel Capek in the early 20th century, referring to forced 
labor or compulsory work (26). However, the topic about robots has 
been popular in Chinese and Western cultures for a long time. 
Hephaestus and his robotic dogs constantly featured in ancient Greek 
and Roman myths. Aristotle’s genius prediction for robots in his 
Politics also reflected people’s beautiful vision of robots at that time. 
There are also many stories about automata in ancient China. More 
than 3,000 years ago, a mechanic named Yan Shi presented King Mu 
of Zhou to a human-size mechanical device. To drink and recite 
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FIGURE 1

(A) Estimated number of new cases in 2020, World, both sexes, all ages. (B) Estimated number of new cases in 2020, China, both sexes, all ages. (Data 
source: GLOBOCAN 2020).
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FIGURE 2

(A) The concept and relationship of Artificial intelligence (AI), 
machine learning (ML), and deep learning (DL). (B) Common types of 
machine learning (ML): supervised learning (SL); deep learning (DL); 
semi-supervised learning (SSL); support vector machine (SVM); 
random forest (RF); and convolutional neural network (CNN).
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poems with Liu every day, Emperor Yang of the Sui Dynasty ordered 
the craftsman to create a wooden mechanical man according to Liu’s 
figure. This wooden man could kneel and toast like Liu (12, 26, 27). 
Leonardo da Vinci also made a major contributor to medical physics. 
He presented his invention of automata robots, a mobile knight, in 
1495. In the da Vinci notebook, we  found details and sketches of 
manufacturing robots. With the approval of the FDA, the first 
generation da Vinci surgical system was manufactured and put on the 
market in 1999. So far, robot-assisted surgery has been widely used 
(12, 26–28).

In 1950, Alan Turing experimentally detected some machines that 
showed intelligent behavior like human, which we call the “Turing 
test.” At the Dartmouth conference in 1956, John McCarthy and his 
team officially proposed the concept of AI (13, 29–31). Over the past 
60 years, AI has made great progress in all walks of life. AI has 
apparent advantages in solving complex nonlinear parameter 
problems, and its accurate prediction ability has made it widely used 
in waste generation, collection, management, and conversion 
processes (32). AI is also considered to play an important role in 
addressing rising demand, road forecasting, planning, and 
management, self-driving and safety (33, 34). The development of 
educational AI can reduce the expenditure budget and the burden on 
teachers and provide more personalized teaching services for each 
student. On the other hand, it can also help realize educational 
opportunities for more students (35). Over the past few years, the AI 
player represented by AlphaGo has defeated the world Go champions, 
including Jie Ke, indicating that we have made exciting progress in the 
computer Go. These results are primarily based on the creative 
combination of deep convolutional neural networks (DCNN) and 
Monte Carlo tree search (MCTS). We still need to further understand 
the working mechanism of the model through the visual operation 
(36). AI can also have an impact on monitoring and controlling the 
spread of the virus. Vaishya et  al. have obtained a result-driving 
technology through experiments, which can play a role in the early 
screening of COVID-19, the detection and tracking of infected 
patients, the formulation of adjuvant treatment plans, as well as the 
development of vaccines (37).

With the development of ML and DL, AI has become more and 
more widely used in medicine and has bright prospects in disease 
prediction, treatment, and prevention (29, 38, 39). This article mainly 
reviews the diagnosis and treatment of AI in CRC.

3. The application of AI in CRC 
diagnosis

The application of AI in CRC screening can improve the early 
screening rate and thus significantly reduce the incidence and 
mortality of CRC patients. The bioinformatics tools embedded in AI 
can help screen and identify more CRC biomarkers. AI assisted 
pathology recognition technology can help pathologists improve 
efficiency, reduce workload, and lower the rate of misdiagnosis and 
missed diagnosis. ML, widely used in AI image recognition, can 
greatly improve the readability of medical images, reduce empirical 
errors, objectively provide reliable and comprehensive reference 
opinions, and help doctors make more accurate clinical decisions 
(Figure 3). Common AI models for CRC diagnosis are summarized 
in Table 1.

3.1. Endoscopic diagnosis

Colonoscopy has long been regarded as the gold standard 
procedure for diagnosing colorectal diseases, and it is strongly 
recommended as an early screening criterion by national associations 
(85). Due to the high operator variability of quality, challenging and 
frequently inadequate preparation, high loss of work productivity, and 
so on, the detection rate of polyps and adenomas in early colorectal 
screening often varies greatly (86).

Researchers have used computer-aided detection (CADe) systems 
and AI, based primarily on DL algorithms, to improve the speed and 
accuracy of clinical detection of CRC and reduce the detection of 
missed lesions (50). The adenoma detection rate (ADR) is a reliable 
indicator for CRC detection. A higher ADR is often linked to a lower 
incidence and mortality in CRC patients (87). The combination of AI 
and colonoscopy can effectively improve ADR. It not only reduces the 
risk of CRC but also achieves the purpose of accurate resection, 
avoiding excessive burden on clinical work caused by the resection of 
many non-neoplastic polyps. A YOLOV3 AI algorithm was utilized to 
detect real-time polyps via media. It could accomplish an excellent 
effect in a short time. It was economical and affordable, making it 
suited for large-scale promotions in underdeveloped areas (88). Some 
adenomas and polyps detected by the real-time CADe system are 
small and low risk. Such adenomas and polyps are also easily ignored 
by endoscopists using traditional colonoscopy. Therefore this CADe 
system increases the incidence of CRC to a certain extent (49). A large 
number of studies are supporting AI-assisted colonoscopy in the 
diagnosis of CRC. Some optical biopsy techniques, which can capture 
real-time images manually, have also been proved to have a lot of 
potential in medical applications (45, 89). Another widely recognized 
colonoscopy index is adenoma miss rate (AMR), which refers to the 
difference between the lesions detected by consecutive endoscopy. 
Kamba et al. established a CADe system that uses the CNN algorithm 

FIGURE 3

Common types of CRC diagnostic images: (A) Endoscopy; (B) CT; 
(C) MRI; (D) pathology image (HE×100). The arrow indicates the 
location of the lesions. (Image source: The First Affiliated Hospital of 
Dalian Medical University.)
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TABLE 1 The summary of the application of AI in the diagnosis of CRC.

Theme Year Subject Model Sample Result Ref

Endoscopic 

diagnosis

2018 Polyp detection CNN 155 videos AUC = 0.87 (40)

2019 Neoplasia detection CNN 685 subjects ADR = 54.8% (41)

2020 Adenoma detection DL 386 patients AMR = 13.89% (42)

2022 Neoplasia detection CNN 230 subjects AMR = 15.5% (43)

2020 Polyp and adenoma detection CNN 308 patients ADR = 0.289;0.367(polyp; adenoma) (44)

2020 Polyp detection YOLO 150 patients PDR = 38.7% (45)

2022 Polyp and adenoma detection CNN 1,434 patients PDR = 40.8% ADR = 20.1% (46)

2021 Adenoma detection CADe 1,076 patients ADR = 21.27% (47)

2021 Polyp DL 2,352 patients detection PDR = 38.8% (48)

2019 Polyp and adenoma detection DL 522 patients ADR = 29.1% PDR = 64.93% (49)

2021 Adenoma detection CNN 358 patients AMR = 13.8% (50)

Non-invasive 

screening

2022 Cancer diagnosis and stage RF/SVM/

DT

521 samples Average accuracy = 99.81% F1 value = 0.9968 

accuracy = 99.88%recall = 99.5%

(51)

2021 Biomarkers screening SVM/LR/

RF/kNN/NB

1,164 electronic medical 

records

AUC = 0.849 (52)

2019 Cancer detection LR/SVM 817 plasma samples Mean AUC = 0.92 mean sensitivity = 85% 

specificity = 85%

(53)

2020 Cancer screening ML 289 healthy individuals 

and 983 patients

Specificity = 0.89 sensitivity = 0.72 (54)

2019 Mutation detection CP-ANN 312 tissue samples Sensitivity = 100% specificity = 87.5% 

accuracy = 93.8%

(55)

2020 Gene detection DL 8,836 samples Mean AUROC = 0.92 AUPRC = 0.63 (56)

2020 Gene identification LASSO 480 CRC and 41 normal 

tissues

AUC = 0.6923 (training set; 3-year) 

AUC = 0.7328 (training set; 5-year) 

AUC = 0.6803 (testing set; 3-year) 

AUC = 0.7035 (testing set; 5-year)

(57)

2021 Gene detection CGANs 256 patients (training 

cohort 1) 1457 patients 

(training cohort 2)

AUROC = 0.742 (training cohort 1) 

AUROC = 0.757 (training cohort 2) 

AUROC = 0.743 (synthetic data) 

AUROC = 0.777 (mixed data)

(58)

Histopathologic 

diagnosis

2021 Image learning DELR 500–3,000 samples AUC > 0.95 (59)

2022 Histopathologic segmentation CNN/TL 25 WSIs DSI = 82.74% ± 1.77 accuracy = 87.07% ± 1.56 

f1-score value = 82.79% ± 1.79

(60)

2021 Distinguish CRLM DL/CNN/

ICC

93 CRLM patients AUC = 0.69 (61)

2020 Histopathologic classification CNN/RNN 4,036 WSIs AUC = 0.96; 0.99(adenocarcinoma; adenoma) (62)

2021 Histopathologic segmentation PCA/DWT 351 specimens Dice = 0.804 ± 0.125 (63)

2021 Image classification ANN/SVM 5,000 histopathology 

image tiles

Performance accuracy = 95.3% (64)

2022 Histopathologic screening DL/ML 294 WSIs AUC = 0.917 sensitivity = 97.4% (65)

2022 Histopathologic classification DL/CNN 1,865 pathological images AUC = 0.995; 0.998 (66)

2022 Image grading CNN/

HCCANet

630 images Overall accuracy = 87.3% average AUC = 0.9 (67)

2019 Survival prediction TL/CNN 862 HE images Accuracy>94% (68)

2019 Cancer diagnosis CNN/RE/

kNN/LR/

NB/SVM

357 images Accuracy = 87–95% (69)

(Continued)
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to aid in the detection of AMR. The result demonstrated that the AMR 
of the CADe-assisted group was 22.9%, which was lower than that of 
the standard colonoscopy group. At the same time, the difference in 
ADR between the two groups was also only 10.9% (Figure 4). These 
results showed that AMR has greatly decreased with the assistance of 
AI. The AMR was more sensitive in detecting lesions than ADR 
indicators (50).

In addition, after the colorectal polyps are screened out, it is also 
very necessary to identify benign and malignant polyps. As endoscopic 
tools，including magnifying endoscopy, chromoendoscopy, confocal 
laser endomicroscopy, and autofluorescence endoscopy, continue to 

advance, the combination of AI and colorectal endoscopy has injected 
new impetus for future diagnosis (90). Japanese experts previously 
used narrow-band imaging (NBI) to classify magnifying endoscopes. 
They were earlier to apply NBI imaging technology and magnifying 
endoscopes in the clinical application (91). By combining NBI with 
magnification endoscopy, Gonai et  al. calculated the difference 
between microvessel density in colorectal lesions, which was used as 
the differential point for the diagnosis of CRC and adenoma (92). In 
the same year, some experts in the United States developed CADe 
algorithms to distinguish tumor polyps and non-tumor polyps based 
on probe confocal laser endoscopy. The sensitivity, specificity and 

TABLE 1 (Continued)

Theme Year Subject Model Sample Result Ref

Radiologic 

diagnosis

2019 Preoperative Assessment MLP/LR/

SCM/DT/

RF/KNN

3T-MRI imaging from 152 

patients

AUC = 0.809; 0.746 sensitivity = 76.2%; 79.3% 

specificity = 74.1%; 72.2% (MLP; RF)

(70)

2021 Cancer response prediction ML MRI scanning from 72 

patients

AUC = 0.793 (71)

2021 Image segmentation U-Net T2WI segmentation from 

300 LARC patients

Mean DSC = 0.675 median DSC = 0.702 (72)

2020 RC Circumferential 

Evaluation

Faster 

R-CNN

detect 12,258 T2WIs Accuracy = 0.932 sensitivity = 0.838 

specificity = 0.956

(73)

2022 CRCLM early diagnosis FM CT scan from 30 patients Precision = 100% overall accuracy = 93.3% 

recall = 77.8%

(74)

2021 Tissue assessment ResNet OCT differentiate from 

43, 968 cancer and 41, 639 

norm ROIs

AUC = 0.975 (75)

2021 Diagnosis detection DLLD 4,386 CT images from 502 

patients

Sensitivity = 81.82% false positives = 1.330 (76)

2021 Metastasis prediction DLRS Collect and predict from 

235 nCRT patients

AUC = 0.894 (77)

2019 Accurate segmentation LAGAN CT scan and segment 

from 223 CRC patients

DSC = 90.82%; 91.54% (FCN32; U-Net) (78)

2020 Metastasis prediction ResNet CT scan from 192 CRLM 

patients

AUC = 0.903 (79)

2022 Cancer segmentation U-Net/CNN Analysis 201 MRI images DSC = 0.727; 0.930; 0.917 (tumor; rectum; 

mesorectum)

(80)

2020 Predict response DL T2W MRI predict 383 

participants

AUC = 0.99 (81)

2021 Detect differentiation RF 169 CT images 

segmentation from 63 

patients

AUC = 0.91 sensitivity = 82% specificity = 85% (82)

2021 Improve prognostication RF MRI identifies 94 lesions 

from 55 patients

AUC = 0.94 (83)

2020 Real-time diagnosis DL 26,000 OCT images AUC = 0.998 (84)

ADR, adenoma detection rate; AUC, area under the curve; AMR, adenoma miss rate; AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating characteristic; 
ANN, artificial neural network; CADe, computer-aided detection; CRCLM, colorectal cancer liver metastasis; CNN, convolutional neural network; CGANs, conditional generative adversarial 
networks; CRC, colorectal cancer; CP-ANN, counter propagation artificial neural network; DL, deep learning; DSI, dice similarity index; DWT, discrete wavelet transform; DELR, deep 
embedded-based logical regression; DLLD, deep learning based lesion detection algorithm; DLRS, deep leaning radiomic signature; DSC, dices similarity coefficient; DT, decision trees; FCN, 
fully conventional network; FM, Formal Methods; ICC, intra-class correlation coefficient; kNN, nearest neighbors; LR, logical regression; LARC, local advanced rectal cancer; LASSO, least 
absolute shrinkage and section operator; LAGAN, label assignment generative adverbial network; ML, machine learning; MSI, microsatellite instability; NB, naive baves; OCT, optical 
coherence tomography; PCA, principal component analysis; PDR, polyp detection rate; RNN, recurrent neural networks; RC, rectal cancer; RF, random forest; ResNet, residual network; SVM, 
support vector machine; TL, transfer leaning; TWI, T2-weighted images; U-net, U-shaped neutral network; WSI, whole slide images.
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FIGURE 4

The basic workflow of CNN (15).

sensitivity are more than 90% (93). It is expected that the use of AI can 
greatly improve the accuracy of endoscopic diagnosis, and reduce the 
misdiagnosis rate and overtreatment.

3.2. Non-invasive screening

The main form of non-invasive screening is the detection of 
various relatively specific tumor markers from ascites, feces, blood, 
and other samples. Compared with colonoscopy screening, the 
non-invasive screening is not only lower risk, but it’s preparation time 
is shorter (94). However, there are few effective tumor markers for the 
detection of early CRC. Common non-invasive screening methods 
such as fecal occult blood test (FOBT) and carcinoembryonic antigen 
(CEA) have low sensitivity and specificity (95–97). In recent years, ML 
has been widely used in medical data analysis, which can help us 
improve the accuracy of existing biomarkers and screen out more 
potential marker genes (51).

CEA is one of the most studied colorectal tumor markers, but 
the screening of serum CEA has limited sensitivity in 
asymptomatic people (97). Li et al. extracted some of the most 
common markers from the laboratory blood tests and used five 
ML models to identify CRC patients from healthy people. The 
results showed that the logistic regression model could greatly 
improve the sensitivity and specificity of CEA. The model was an 
effective, economical, and non-invasive method for CRC 
identification (52). Common genes used for CRC DNA mutation 
detection include BRAF and KRAS, but these tumor markers are 
not sensitive or specific enough to show CRC (98). In 2019, Zhang 
et  al. used near-infrared (NIR) spectroscopy combined with 
counter propagation artificial neural network (CP-ANN) to 
distinguish a BRAF V600E mutant from wild-type samples in 
CRC tissues. This method had a sensitivity of 100% and specificity 
of 87.5% for detecting the BRAF V600E mutant in CRC. It could 
be used for the auxiliary diagnosis of the BRAF mutation in CRC 
(55). The detection of abnormal DNA methylation markers in 
plasma or feces is a promising approach for the non-invasive early 
diagnosis of CRC. The SEPT9 gene methylation test has been used 
commercially as an alternative for CRC screening (94, 99, 100). 
However, the specificity of detection methods based on single 
DNA methylation sites is limited (101). In 2019, Kel et al. used a 
method called “Walking away” to collect data samples from 300 

CRC patients, analyzing the data by ML and bioinformatics 
methods. They ultimately selected six DNA methylation epigenetic 
biomarkers for optimal cancer detection potential (102). The 
combined detection of abnormal DNA methylation markers can 
improve the detection rate of CRC.

Bioinformatics tools are increasingly used to analyze the 
pathogenesis of cancer. The effective combination of bioinformatics 
analysis and ML can screen and identify early CRC biomarkers, 
playing a role in evaluating the prognosis of CRC patients (51, 103). 
Hammad et al. recently identified 105 differentially expressed genes 
(DEGs) and 10 hub genes through bioinformatics analysis of gene 
expression microarray data in the Gene Expression Omnibus (GEO) 
database. The researchers used these tools, including SVM, Receiver 
operating characteristic curve (ROC), and survival analyses, to predict 
the diagnostic value of hub genes as CRC biomarkers. The results 
showed that the area under ROC curve (AUC) values of all genes were 
more than 0.92, confirming that these genes are expected to 
be biomarkers for CRC (98) With the development of sequencing 
technology, many non-coding RNAs (ncRNAs) have been discovered. 
The ncRNAs include messenger RNAs (mRNAs), microRNA 
(miRNAs), long non-coding RNAs (lncRNAs) and so on. Their 
extracellular properties are stable, easy to extract and preserve, and 
thus they can be  studied in different body fluids (54, 104–106). 
MicroRNAs (miRNAs) are a class of endogenous ncRNAs with a 
length of about 22 nucleotides. They have a variety of important 
regulatory functions in the cell and are associated with the 
development and metastasis of cancer. There is increasing evidence 
that miRNAs are potential biomarkers of CRC (105, 106). In 2019, 
Zhang et al. identified whether miR-31 could be used as a biomarker 
for the diagnosis of CRC lymph node metastasis (LNM) through 
bioinformatics analysis techniques, including Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis, correlation 
analysis, survival analysis, validation of expression levels, protein–
protein interactive (PPI) network construction, and Gene ontology 
(GO). These researchers found that miR-31 was significantly increased 
in the plasma and tissue of CRC patients with LNM. They predicted 
that TNS1 might be  a targeted protein for miR-31, which has an 
important prognostic value for patients (105). Wang et al. also found 
that the expression level of miR-1-3p was down-regulated in CRC by 
the bioinformatics analysis, suggesting that the miR-1-3p may have 
the potential to diagnose CRC and inhibit tumor cells 
progression (106).
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3.3. Histopathologic diagnosis

Pathology is the gold standard for tumor diagnosis. It can identify 
the tumor cell types, stage the tumor and guide the treatment plan of 
patients. Meanwhile, it can also be used as a prognosis and tumor 
recurrence predictor. Now, a lot of diagnostic work still needs to 
be completed by pathologists alone. With the continuous breakthrough 
of digital pathology (DP) technology, it is expected to become the 
development direction of pathology in the future. DP can be used in 
image retrieval, pattern recognition, ML, and DL. By extracting 
corresponding quantitative features or identifying specific regions of 
interest (ROI), DP can build AI computer-aided diagnostic system 
with automatic recognition functions. Many studies have proved that 
the application of AI technology can help pathologists improve 
diagnosis efficiency, reduce workload, and improve the working 
environment, increasing diagnosis rate and reducing misdiagnosis 
rate (107). Kasahara et al. used AI to collect 146 T1 CRC cases. They 
analyzed the nuclear morphological characteristics in hematoxylin 
and eosin (HE)-stained slide images. The results suggested that the 
model could increase the accuracy of preoperative lymph node 
metastasis prediction, which needs to be further verified in clinical 
practice (108).

One of the most successful examples of DL’s widespread 
application in medicine is CNN, which has virtually reinvented 
image analysis technology. In a retrospective study, researchers 
obtained more than 100,000 HE  image patches from 86 CRC 
tissue slides, and they used these images to train CNN based on 
transfer learning (TL). The results showed a nine-class accuracy 
of over 94% in 7180 independent data sets of 25 CRC patients. It 
does confirm that CNN can separate histological images and 
predict the survival rate of CRC patients after treatment (68). 
High-intensive workload and accuracy requirement for reading 
pathological images sometimes lead to the misdiagnosis of 
pathologists. Wang et  al. proposed a CNN-based method to 
classify a large number of histopathological images. The AUC of 
this model was up to 0.988, with the ability to distinguish CRC 
from other benign tissues (18). Furthermore, by using CNN, some 
researchers proposed a clinically comparable technology. This 
model could be used to stage tumor and classify HE-stained colon 
histopathological images. They confirmed that the model’s 
classification could reach more than 90% equally by processing 
four different data sets (109).

Nowadays, most AI-assisted pathology recognition technologies 
are achieved by SL. In order to address the problem of massive data 
markers in SL, an SSL based on the average teacher structure was 
proposed. A series of expansion experiments also confirmed that 
SSL significantly reduces the amount of impractical labeled data and 
expands the fundamental reality of AI in medical work. SSL 
achieved the comparable effect as SL with less labeled data (110). 
More interestingly, an monogram model combined with 
ML-pathomics, immunoscore, radiomics, and clinical factors, was 
proved to effectively predict the postoperative prognosis of patients 
with CRC lung metastasis (111). These indicate significant progress 
in AI-assisted pathological reading. The AI-assisted pathology 
recognition is expected to break the current limitations that are 
only applied to the primary screening stage, providing more 
guidance and decision-making for treatment and prognosis of the 
CRC patients.

3.4. Radiologic diagnosis

Radiomics refer to a technology that converts medical images into 
high-dimensional available data for cancer diagnosis and prognosis 
(112). At present, Methods commonly used for CRC imaging 
evaluation include MRI, CT, and ultrasonography. Conventional 
imaging evaluation methods have certain shortcomings, such as 
limited local tumor evaluation, low tumor staging accuracy, and 
excessive reliance on the clinical diagnose of imaging physicians (113). 
Although functional magnetic resonance including diffusion-
weighted imaging (DWI), T2-weighted imaging (T2WI) shows high 
predictive performance (112, 114). AI systems will learn to extract and 
integrate a large amount of imaging information to achieve a more 
accurate diagnosis.

The combination of AI and radiomics can extract information 
from various imaging data. It can be used for tumor segmentation, 
feature extraction, and the model establishment, eventually achieving 
the purpose of tumor quantitative evaluation. It has gradually become 
a crucial component of CRC precision diagnosis and treatment. In 
2018, Liu et al. proposed a label assignment generative adversarial 
network (Lagan), and accurately segmented ROI in the analysis and 
diagnosis of CRC with CT. The application of this computer-aided 
segmentation can save time and labor costs. It has been proved that 
Lagan is a robust model that can be applied to more medical physics 
network tasks (21). Not long ago, Hamabe et al. developed a rectal 
cancer segmentation software based on a U-Net deep neural network. 
They used this software for MRI image simulation analysis of 201 
preoperative patients. It segmented the rectum, mesorectum, and 
tumors respectively, and eventually obtained DICE similarity 
coefficients (DSC) to artificial segmentation (rectum: DSC = 0.930, 
mesorectum: DSC = 0.917, tumor: DSC = 0.727) (80). Compared with 
MRI radiomics, which has been studied more in CRC, ultrasound is 
mainly used for early diagnosis of CRC. Song et al. designed a deep 
multi-view fusion network system based on endorectal 
ultrasonography (ERUS) to identify benign and malignant colorectal 
tumors, which could effectively reduce the workload of ultrasonic 
experts and the misdiagnosis rate (115).

Radiomics prediction of local advanced rectal cancer (LARC) 
after treatment is another crucial application. The ERUS can be used 
to identify early CRC, however, the diagnostic value for metastasis of 
advanced CRC is limited (113). The MRI examination after 
neoadjuvant treatment may be unreliable for pathologic complete 
response (PCR) identification (116). Interestingly, we can predict and 
stratify the risk of patients after neoadjuvant chemoradiotherapy 
(NCRT) by establishing a nomogram. This nomogram combines 
multi-parametric MRI information and clinicopathological factors, 
eliminating the effects of PCR intervention and helping to choose 
more accurate treatment options (77). Similarly, Farri et al. established 
an AI model based on the MRI image texture features to evaluate the 
PCR of 55 LARC patients after NCRT. The results showed that the 
AUC of 0.86, confirming that it is valuable in speculating PCR patients 
after NCRT (117). Radiomics is still widely used in the study of distal 
metastasis. Last year, Rocca et al. proposed to use the formal methods 
(FMS) combined with CT to monitor the liver metastasis of CRC. The 
overall accuracy rate reached 93.3%. The FMS appears to 
be  trustworthy and valuable (74). There were also the combined 
models of radiomics, immunomics, and pathomics. They were 
beneficial in predicting lung metastasis of CRC (111).
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4. The application of AI in CRC 
treatment

The treatments for CRC include surgical therapy, chemotherapy, 
targeted therapy, and other combined therapies. The application of AI 
in the treatment of CRC can design appropriate therapeutic plans for 
patients, providing patients with more personalized and precise 
medical decisions, and improving the prognosis. Common AI models 
for CRC treatment are summarized in Table 2.

4.1. Surgical treatment

In recent years, with the development of minimally invasive 
surgery, the application of AI in the field of surgery has also been 
gradually valued. Compared with more complicated CRC surgery, AI 
was applied earlier in lung cancer and breast cancer surgery (138). 
Notably, people have begun to study the application of AI in colorectal 
surgery, and gradually realize that AI can provide a new direction for 
the development of colorectal surgery. Much research data on CRC is 
pouring out. Computer vision (CV) is a subfield of AI that can be used 
to analyze and evaluate video data (138). Some researchers in Japan 
have collected and analyzed 300 videos of laparoscopic colorectal 
surgery, hoping that these data sets may be employed to optimize the 
CNN performance in CV (118). South Korean scholars also conducted 
AI-based research on the perfusion of the indocyanine green (ICG) 
angiography system under laparoscopic colorectal surgery in the same 
year. They collected 200 ROIs from every 50 patients, a total of 10,000 
ICG curves. And then they classified these data sets into 25 curve 
modes, confirming that the virtual microcirculation analysis system 
is more accurate with the assistance of AI (24).

Now, robotic surgery also achieves more remarkable development 
in the field of colorectal surgery, especially in rectal surgery. Even in 
the relatively difficult and complex transanal total mesorectal excision 
(taTME), which requires rich experience in laparoscopic operation, 
the robotic surgery has also been proved feasible (139). Compared 
with open surgery and laparoscopic surgery, robotic surgery has many 
advantages, such as shorter hospital stay, less perioperative bleeding, 
fewer complications, and improved postoperative quality of life. At the 
same time, it also can reduce the difficulty of the surgeon’s operation 
and relieve fatigue (140–142). In terms of long-term effects, the 
robotic surgery’s recurrence rate and mortality rate are comparable to 
that of laparoscopic surgery (143, 144). Recently, Igaki et  al. 
successfully developed a flat image navigation system, which could 
be used to help surgeons identify anatomical tissue during TME. This 
system needs more image data to improve the accuracy of its 
recognition for future evaluation (120).

At present, the most widely used robot on the market is the da 
Vinci robot system, which has developed to the fourth generation 
(Figure  5). The fourth-generation robot has been dramatically 
improved in the cantilever system, with more subtle vision and precise 
operation, caring more about personalized needs. However, some 
problems remain, such as extended operation time, limited movement 
range, and poor sensory system (25, 145). The da Vinci SP system is a 
single-hole robot. It has only one robotic arm and three surgical 
instrument arms, which can be connected to three machines through 
one port. Experiments have confirmed that the da Vinci SP system is 
an excellent model for taTME and natural orifice specimen extraction 

(139, 145, 146). One of the biggest problems of robotic surgery is the 
high cost (145, 147). It indicates that the promotion of robotic surgery 
requires government financial support. With the progress of science 
and technology and establishment of a unified market, the cost of 
robotic surgery will also be reduced.

4.2. Chemoradiotherapy

NCRT is of great significance for CRC treatment, especially for 
patients with rectal cancer. Adjuvant chemotherapy is primarily used 
in the patients who are classified as intermediate risk (148). However, 
most patients do not need additional chemotherapy, so an accurate 
clinical decision-making is particularly important. The addition of AI 
is helpful for the treatment decision and efficacy evaluation of NCRT 
patients. In recent years, as one of the tools that can effectively reduce 
medical malpractice, AI-based clinical decision support systems 
(CDSSs) have attracted widespread attention. Experts in South Korea 
processed a chemotherapy recommender for CRC. This is the first 
CDSS in the country to reflect real data. It has satisfactory accuracy 
(AUC > 0.95), but the drawback is that the data source is relatively 
specific and single (149). Recently, kleppe et al. invented a DoMore-
v1-CRC marker, developing the CDSSs based on DL to make a new 
risk division for patients after colectomy. When patients were classified 
as low risk, they could be  exempted from NCRT. As a result, the 
survival rate of these patients improved significantly (148).

The prognosis evaluation of CRC patients is an important part for 
clinical doctors to choose appropriate treatment plans. DL-based 
assisted MRI can predict the metastasis of LARC patients receiving 
NCRT, which is a hot topic of current research (77, 124). Notably, 
Farrando et al. developed a classifier to predict the response of LARC 
patients who underwent NCRT. By evaluating the expression of 
lncRNAs, the researchers achieved satisfactory results (AUC = 0.93) 
(150). The researchers used biomarkers with significant stability, such 
as lncRNAs, in combination with available massive computational 
power to accurately predict drug resistance (151).

4.3. Targeted therapy

Targeted therapy is one of the effective methods for the treatment 
of CRC. Epithelial growth factor receptor (EGFR) is one of the vital 
drug targets. KRAS gene is highly sensitive to EGFR (152). However, 
the non-invasive prediction of the KRAS mutation state inCRC is 
considered as a significant challenge. Recently, some scholars have 
used the DL method based on a residual neural network to achieve 
this goal, attaining high predictive performance (AUC = 0.90) on the 
axis. This is helpful for further targeted treatment of CRC (153). The 
mutation rate of the BRAF gene in CRC can be as high as 10%. In 
another study, Beal et al. used a simpler RF data model to predict the 
V600E mutation in the BRAF (153). Many studies have supported that 
using AI to detect genetic mutations in CRC is a reliable way (151). 
These simple and cheap models will be the right choice for patients.

Abnormal mutations in genes and chromosomes can also cause 
drug resistance, which brings many obstacles to the treatment of 
CRC. In such an environment, the targeted therapy through drug 
delivery platform will contribute to precision medicine in the future 
(22, 151). Russo et al. used AI-based prediction model to analyze the 
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TABLE 2 The summary of the application of AI in the treatment of CRC.

Theme Year Subject Model Sample Results Ref

Surgical treatment 2020 AI-assisted surgery CNN 300 videos in operation Accuracy = 81.0%; 83.2% (phase; action) (118)

2019 Robot-assisted 

surgery

da Vinci Analyze from 206 RACRS 

patients

RM = 99.3%; 89.6% LN = 16 ± 6; 16 ± 8 

LRR = 3.8%; 9.5% (colon; rectal)

(119)

2021 AI-assisted LCRS da Vinci Analyze 600 images in 32 videos DC = 0.84 (120)

2022 Evaluate short 

outcomes

Senhance Review outcomes in 55 Senhance 

assisted LCRC patients

Ileocecal resection = 32.7% high anterior 

resection = 20% D3 dissection = 74.5%

(121)

2020 Automatic 

recognition

CNN Recognize 71 Lap-S videos Accuracy = 91.9% (122)

2021 Liver segment 

resection

da Vinci Xi Present a video in a 54-year-old 

male patient

Operative time = 205 min estimated 

blood loss = 310 mL

(123)

2020 Operation analysis AIRAM Test 25 ICG curve patterns Processing time = 48.03 s (24)

Chemoradiotherapy 2019 Assess therapy effect RF Assess performance from 55 

patients

AUC = 0.86 (117)

2022 Predict PCR after 

nCRT

RAPIDS Study 933 patients AUC = 0.812; sensitivity = 0.888 

specificity = 0.740; NPV = 0.929 

PPV = 0.512

(124)

2021 Assess therapy effect FFN/LR/SVM Study 226 LARC patients Accuracy = 0.67–0.75% AUC = 0.76–

0.83% positive = 67–74%; NPV = 70–78% 

sensitivity = 68–79% specificity = 66–75%

(125)

2018 Predict nCRT effect DNN Study 95 patients Accuracy = 80% (126)

2020 Predict PCR after 

nCRT

ANN Analyze 270 LARC patients VSR = 1.57 (CEA levels) (127)

2022 Predict nCRT effect MSCNN Assess 150 WSI AUC = 0.9337; 0.9091 (Camelyon; 

MSKCC)

(128)

2019 Predict CRT response CNN Study 51 RC patients AUC = 0.83 (129)

2019 Predict nCRT effect LR Study 136 RC patients AUC = 0.751; 0.831; 0.873 

sensitivity = 66%; 71%; 75% 

specificity = 87.22%; 86.11%; 91.67% 

(pre-nCRT; early; combined)

(130)

2020 Predict PCR,TRG, 

and NAR

LR Collect and classify 132 nCRT 

and TME patients

AUC = 0.66; 0.80; 0.80 (NAR; PCR; TAG) (131)

2021 Predict and treat 

nCRT response

CFs-SVM Analysis 428 patients AUC = 0.834; 0.854 (training; validation) (132)

Targeted therapy 2022 Identify therapy 

targets

MCODE Extract four gene expression 

profile from database

Identify 8,931 DEGs in CRC patients (133)

2022 Design CAD 

approach

RF/SVP/CNN Scanning 1,443 approved drugs CAD design approach target p53 for 

treatment

(134)

2022 Monitoring gene 

expression and drug 

effect

MLP Study CRC cells genes phenomics Mean accuracy = 9.48%↑(single track VS 

MLP)

(135)

2021 Medicine precision ML Study STNs of CRC The model with novel event freesurvival 

has a greater prediction

(136)

2019 Tumor target 

segmentation

CAC-SPP Evaluate two segmentation of 

tumor targets

DSC = 0.78 ± 0.08; 0.85 ± 0.03 (137)

AIRAM, artificial intelligence based real-time analysis microperfusion; AUC, area under the carve; ANN, artificial neural network; CNN, convolutional neutral network; CAD, computer aided 
drug; CAC, cascaded atrous convolution; DC, dice coefficient; DNN, deep neural network; DEGs, differential expressed genes; DSC, dice similarity coefficient; FFN, feedforward neural 
network; ICG, indocyanine green; LN, lymph nodes; LRR, locoregional recurrence rate; LCRS, laparoscopic colorectal surgery; Lap-s, laparoscopic sigmoidoscopy; LR, logistic regression; 
LARC, local advanced rectal cancer; MSCNN, multi-scale convolutional neural network; MCODE, molecular complex detection algorithm; MLP, machine learning phenomics; ML, machine 
learning; nCRT, neoadjuvant chemoradiotherapy; NPV, negative predictive value; NAR, neoadjuvant rectal score; PCR, pathological complete response; PPV, positive predictive value; RACRS, 
robot-assisted colorectal surgery; RM, radical margins; RF, random forest; RAPIDS, radiopathomics integrated prediction system; SVM, support vector machine; STNs, signal transduction 
network; SPP, spatial pyramid pooling; TRG, tumor regression grade; TME, total mesorectal excision; VSR, variable sensitivity ratio.
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FIGURE 5

The fourth generation da Vinci. (Image source: The First Affiliated 
Hospital of Dalian Medical University.)

patients who may have drug resistance before and after treatment. 
They achieved a sound effect (average AUC = 0.90) in the classification 
and targeted precision treatment (154). Interestingly, with the help of 
artificial algorithms, Hu et al. studied the competitive endogenous 
RNA (ceRNA) network about lncRNA and proposed 144 core genes 
for the first time, which could be used as target drugs for the treatment 
of CRC (155). The CRC research at the genetic scale can help us to 
understand the pathogenesis of tumors at the molecular level well, 
thus providing theoretical support for the diagnosis and 
treatment of CRC.

5. Discussion

Recently, the application of AI in CRC surgery has dabbled in 
various fields, and it has also achieved satisfactory results. There are 
indeed some challenges that we  need to face and overcome. The 
development of AI needs to be supported by three elements: big data, 
computing power, and algorithm model. Today, the development of 
big data in China is still in the primary stage. More high-quality data 
is needed, and the interaction between data centers should be stronger. 
Without a large amount of high-quality data as the basis, even the 
most advanced algorithm model will not help. Therefore, we urgently 
need to standardize big medical data and increase interoperability 
among multiple centers (90, 147, 156). Moreover, there are specific 
problems in various imaging omics and AI models. For example, most 
models are based on retrospective data. The cases have strict admission 
and exclusion criteria. But there are more or fewer differences in the 
imaging standards of each center. Therefore, the repeatability of these 
models and the effectiveness of their application in the real world have 
yet to be fully evaluated (156).

Furthermore, the results obtained through the DL still lack 
interpretability. It cannot correctly judge the cause and give a 
reasonable explanation of the process and internal information of the 
algorithm. This phenomenon is called the “black box” problem in 

DL. Although there are still different opinions on the application of 
the black box in medicine, the transparency and interpretability of the 
algorithm have been taken as the core principles. It ensures that 
medical staff, patients, and other relevant personnel can fully 
understand clinical decisions, avoiding infringement of patients’ 
privacy, unclear responsibilities, and other ethical issues (156, 157). 
Now scholars have begun to study how the DL model makes decisions 
based on images and additional information, analyzing the causal 
relationship in its black box. Shao et  al. used the DNN model to 
predict the survival rate of more than 20,000 patients within a year 
after major cardiovascular surgery. An impact score was defined 
innovatively to explain the results of the model prediction. The 
research on an interpretable DL is becoming more and more 
popular (158).

The development of AI in medicine still faces several limitations, 
and its application in colorectal surgery is also in its infancy. AI has 
indeed provided broad prospects for development in this field. This 
does not mean that AI can replace the role of clinicians. There is a 
need to strengthen cooperation between clinicians and computer 
experts to break through various transformation barriers. 
We  should also evaluate clinicians’ acceptance of different AI 
systems and minimize the interference of AI in diagnosis 
and treatment.

6. Conclusion

With the continuous improvement of big clinical data, AI will 
develop rapidly in medicine. AI-based on various algorithms that 
combine with multiple medical imaging big data help to improve 
the early detection rate and diagnosis of CRC, conducting the early 
and systematic evaluation of patients. Moreover, it enhances the 
effect of adjuvant therapy, such as NCRT and targeted treatment, 
strengthening patients’ prognosis monitoring. Through continuous 
optimization and development, AI will make greater contributions 
to the diagnosis and treatment of CRC in the era of 
precision medicine.
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