
TYPE Original Research

PUBLISHED 09 March 2023

DOI 10.3389/fmed.2023.1132676

OPEN ACCESS

EDITED BY

Abraham A. Pouliakis,

National and Kapodistrian University of

Athens, Greece

REVIEWED BY

Meng Luo,

Harbin Institute of Technology, China

HaiHui Huang,

Shaoguan University, China

*CORRESPONDENCE

Weimin Kong

kwm1967@ccmu.edu.cn

SPECIALTY SECTION

This article was submitted to

Obstetrics and Gynecology,

a section of the journal

Frontiers in Medicine

RECEIVED 12 January 2023

ACCEPTED 20 February 2023

PUBLISHED 09 March 2023

CITATION

Zhang H, Kong W, Xie Y, Zhao X, Luo D, Chen S

and Pan Z (2023) Telomere-related genes as

potential biomarkers to predict endometriosis

and immune response: Development of a

machine learning-based risk model.

Front. Med. 10:1132676.

doi: 10.3389/fmed.2023.1132676

COPYRIGHT

© 2023 Zhang, Kong, Xie, Zhao, Luo, Chen and

Pan. This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Telomere-related genes as
potential biomarkers to predict
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response: Development of a
machine learning-based risk
model
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Shuning Chen and Zhendong Pan

Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal

and Child Health Care Hospital, Capital Medical University, Beijing, China

Introduction: Endometriosis (EM) is an aggressive, pleomorphic, and common

gynecological disease. Its clinical presentation includes abnormal menstruation,

dysmenorrhea, and infertility, which seriously a�ect the patient’s quality of life.

However, the pathogenesis underlying EM and associated regulatory genes

are unknown.

Methods: Telomere-related genes (TRGs) were uploaded from TelNet. RNA-

sequencing (RNA-seq) data of EM patients were obtained from three datasets

(GSE5108, GSE23339, and GSE25628) in the GEO database, and a random forest

approach was used to identify telomere signature genes and build nomogram

prediction models. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes,

and Gene Set Enrichment Analysis were used to identify the pathways involved in

the action of the signature genes. Finally, the CAMP database was used to screen

drugs for potential use in EM treatment.

Results: Fifteen total genes were screened as EM–telomere di�erentially

expressed genes. Further screening by machine learning obtained six genes as

characteristic predictive of EM. Immuno-infiltration analysis of the telomeric genes

showed that expressions including macrophages and natural killer cells were

significantly higher in cluster A. Further enrichment analysis showed that the

di�erential genes were mainly enriched in biological pathways like cell cycle and

extracellular matrix. Finally, the Connective Map database was used to screen 11

potential drugs for EM treatment.

Discussion: TRGs play a crucial role in EM development, and are associated

with immune infiltration and act on multiple pathways, including the cell cycle.

Telomere signature genes can be valuable predictive markers for EM.
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1. Introduction

A common gynecological disease, endometriosis (EM),

characterized by chronic pelvic pain, dysmenorrhea, and infertility,

affects 10% of women of reproductive age worldwide and

dramatically reduces their quality of life (1). EM is defined as the

presence of endometrial tissue (glands and mesenchyme) with a

growth function outside the uterus. About 1% of EM cases may

develop malignant changes (2). Currently, the two main EM

treatment types are surgical excision and hormonal drug therapy.

These are challenging due to their high recurrence rate and

ovarian function suppressive effects, respectively (3). Therefore,

newly identifying the molecular features of EM and elucidating

its underlying mechanisms will aid development of novel and

practical therapeutic approaches.

Telomeres, nuclear protein complexes at the ends of human

chromosomes, consist of guanine-rich 5′-TAGGG-3′ repeat

sequences and shelter proteins (4). Telomeres are essential for

chromosome stability, protecting the genome from nucleolytic

degradation, undesired recombination, repair, and end-to-end

chromosome fusion (5). Abnormalities in telomeres can lead

to many health issues, including tumors, heart disease, and

mental health problems (6). Telomere lengths shorten following

cell division and some disease states, but are protected by the

specialized enzyme telomerase. Human telomerase consists of three

core subunits: (1) the telomerase RNA component, (2) the catalytic

subunit telomerase reverse transcriptase (hTERT), and (3) the

dyskerin protein (7).

Telomerase activity (TA) is a dynamic process in the human

endometrium. This process is influenced by the ovarian cycle

and hormone levels (8). In particular, the highest TA levels

are found in endometrial epithelial cells during the proliferative

phase. Elevated TA in endometrial epithelial cells protects their

telomeres from shortening to a critical length (9). The ectopic

endometrium of women with EM may have specific aberrations,

such as high TA levels, elevated hTERT gene expression, and

increased mean endometrial telomere length (TL), compared with

the endometrium of healthy women (10, 11). These abnormal

ectopic endometrium-specific features are generally associated with

a significant increase in telomeres and telomerase-related genes

in the ectopic endometrium (12). These features also enhance the

capacity of the endometrium to grow ectopically.

Abbreviations: RNA-seq, RNA-sequencing; AUC, area under the curve;

CIC, clinical impact curves; CMAP, connective map; DCA, decision curve

analysis; DEGs, di�erentially expressed genes; EM, endometriosis; EMT,

epithelial-mesenchymal transition; ESR1, estrogen receptor alpha; GEO,

Gene Expression Omnibus; GO, Gene Ontology; GRHL2, grainyhead-like

2; GSEA, Gene Set Enrichment Analysis; KEGG, Kyoto Encyclopedia of

Genes and Genomes; MAP, microtubule-associated protein; PCA, principal

component analysis; RARRES2, retinoic acid receptor response protein 2;

REV3L, protein reversionless 3-like; RFE, recursive feature elimination; RFM,

random forest model; ROC, receiver operating characteristic; SVM, support

vector machine; TA, telomerase activity; TL, telomere length; TMM, telomere

maintenance machinery; UCHL1, ubiquitin carboxyl-terminal hydrolase-L1;

IgG, immunoglobulin.

EM is also known as the “non-fatal cancer” because of its

tumor-like biology of local infiltration, distant metastasis, and

ease of recurrence. Much recent research has focused on the

role of telomeres in tumor development. For example, telomere

shortening may act as a tumor suppressor by preventing cell

proliferation. Telomere shortening may also lead to widespread

genomic instability, promoting cancer development (13, 14).

However, no systematic studies have been conducted to clarify the

role of telomere-related genes (TRGs) in the development of EM.

Herein, a risk model was constructed using TRGs to predict EM,

and then assessed the potential role of this risk model for, among

other things, immune response.

2. Materials and methods

2.1. Data collection

RNA-seq data for EM were downloaded from the National

Center for Biotechnology Information Gene Expression Omnibus

(GEO) (https://www.ncbi.nlm.nih.gov/geo/) (15, 16). Data were

collected and analyzed using R 3.6.3 software. The GEOquery

package was used to download the Matrix file from the GEO

database (17).

2.2. Data pre-processing and di�erentially
expressed gene analysis

The TRGs were obtained from TelNet (http://www.

cancertelsys.org/telnet/) (18), a database of genes involved in

telomere maintenance, including a systematic assessment of

the telomere maintenance machinery (TMM) signature and its

inclusion in TMM pathway models or genome-wide mutational

analyses of the cancer genome.

The R package sva was used to remove batch effects

from different datasets (19). Inter-sample correction effects were

calculated using principal component analysis (PCA) clustering.

The R package limma (20) was used to screening for differentially

expressed genes (DEGs) and telomerase-related genes. The package

ggplot2 was used to plot volcanoes of DEGs to visualize differential

expression patterns. Genes with adjusted P (Padj) < 0.05 and

|log2FC| > 1 were considered statistically significant.

2.3. Machine learning-based variable
screening

Two machine learning methods, random forest model (RFM)

and support vector machine (SVM)-recursive feature elimination

(RFE), were used to screen for TRGs in EM. RFM is a classifier

consisting of multiple decision trees, which ranks the importance

of genes in regulatory relations. The SVM-RFE algorithm identifies

the optimal variables by eliminating the feature vectors generated

by the SVM (21). Receiver operating characteristic (ROC) curves

and area under the curve (AUC) were used to evaluate the models’

screening powers, resulting in a final set of EM telomere-associated

signature genes.
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2.4. Establishment and clustering of
telomere-associated gene sets

A nomogram model was developed using the rms and rmda

software packages to assess the predictive power of EM signature

genes. Model accuracy was assessed using calibration curves, the

Hosmer–Lemeshow test, clinical impact curve (CIC), and decision

curve analysis (DCA) (22).

Unsupervised cluster analysis was applied to identify the

different telomere gene subtypes and to classify samples for further

analysis (23). The consensus clustering algorithm determined

the number of clusters and their stability. The R package

ConsensuClusterPlus was used to perform these steps, with 1,000

replications to ensure classification stability (24).

2.5. Establishment of C57BL/6
experimental mouse endometriosis model

C57BL/6 mice (specific pathogen-free, female) were obtained

from the Department of Laboratory Animals, Capital Medical

University. The animal experiment protocol used herein was

approved by the Animal Ethical Use Committee of Capital

Medical University (Ethical Number: AEEI-2021-219). Five

C57BL/6 mice were housed in a well-controlled, pathogen-free

environment in a barrier unit with a regulated light/dark cycle

(12/12 h, 23–25◦C). One mouse was used as the endometrial

tissue donor after euthanization. The donor uterus was evenly

divided into 8 endometrial fragments of 2mm diameter

using a disposable biopsy punch (2mm) (Integra Miltex,

Shanghai, China). These were injected into the peritoneal

cavities of anesthetized mice (∼100mg tissue/0.5mL PBS per

mouse) via a 2ml syringe. All mice survived the duration

of the experiment. There were no significant between-mouse

growth rate differences. Mice were euthanized 4 weeks

later and both EM and uterine tissues were collected for

immunohistochemical analysis.

2.6. Immunohistochemistry

Mouse EM and uterine specimens were fixed in 4% neutral

paraformaldehyde solution, followed by paraffin embedding. Serial

sections (5µm) were then dewaxed. The fixed endometrial

and EM lesion sections were incubated overnight at 4◦C with

anti-microtubule-associated protein (MAP) 7 (1:400, Servicebio,

Wuhan, China), anti-grainyhead-like 2 (GRHL2) (1:100, Affinity,

Changzhou, China), anti-retinoic acid receptor response protein

2 (RARRES2) (1:50, ABclonal, Wuhan, China), anti-ubiquitin

carboxyl-terminal hydrolase-L1 (UCHL1) (1:1,000, Servicebio),

anti-estrogen receptor alpha (ESR1) (1:1,000, Servicebio), and anti-

protein reversionless 3-like (REV3L) (1:100, Affinity). Horseradish

peroxidase-labeled goat anti-mouse IgG (immunoglobulin) (1:200,

Servicebio) was then added and incubated for 50min at

room temperature. Sections were washed with distilled water,

counterstained with hematoxylin, dehydrated, and mounted for

microscopy. Colored areas were quantified using SlideViewer

and Image Pro Plus software. The whole tissue sections were

scored for staining intensity and percentage. The scoring scale

was: 0 (no staining), 1 (light brown staining), 2 (brown

staining), and 3 (dark brown staining). The percentage of

positive cells was graded into one of 4 levels: 1 (<5%),

2 (5–30%), 3 (31–60%), 4 (61–100%). Immunohistochemistry

staining score was calculated as follows: intensity score ×

percentage score.

2.7. Gene set enrichment analysis

An ordered list of genes was generated based on correlations

between all genes and telomerase-related gene expressions

using Gene Ontology (GO), Kyoto Encyclopedia of Genes

and Genomes (KEGG), and Gene Set Enrichment Analysis

(GSEA). The GO knowledgebase is the world’s largest

gene function information source (http://geneontology.

org/) (25–27). KEGG is a collection of databases dealing

with genomes, biological pathways, diseases, drugs, and

chemical substances (www.kegg.jp/kegg/kegg1.html) (28–30).

DEGs were defined by an absolute fold change >1.5 and

Padj <0.05.

The GSEA computational method allows determination

of overrepresented classes in large sets of genes or proteins

that may be significantly association with disease phenotypes

(31). The predefined gene set is from the MSigDB database

(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) (32).

Herein, an ordered list of genes was generated based

on the correlation between all genes and telomerase-

related gene expressions using GSEA. Enriched pathways

were determined based on P-values and normalized

enrichment scores.

2.8. Gene expression–immunity correlation

The Alizadeh Lab CIBERSORT analytical tool was developed

by Newman et al. to estimate the abundances of member cell types

in a mixed cell population using gene expression data (33). It was

used herein to assess the relative proportions of the 24 immune

infiltrating cells in the telomerase and gene clusters of EM samples

(33, 34). Correlation analyses were then performed between these

24 immune cells and critical genes.

2.9. Potential drug identifications

To identify potential EM therapeutic agents, DEGs were

uploaded to the connective map (CMAP) database (https://clue.

io/) (35). Enrichment analysis was used to screen for relevant

drugs with therapeutic potential (36). A negative enrichment value

generally indicates that the drug is more likely to treat the disease,

and a larger absolute value means that it is more disease-specific.
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Based on this, we screened for drugs with enrichments of <

−0.5.

3. Results

3.1. Data collection and de-batch
processing

The study flowchart is shown in Figure 1. Using key words

“endometriosis, Homo sapiens,” the GEO database expression

profile was searched and the following datasets were selected

for inclusion:

A: GSE5108: 11 normal and 11 disease samples; sequencing

platform: GPL2895 (37).

B: GSE23339: 9 normal and 10 disease samples; sequencing

platform: GPL6102 (38).

C: GSE25628: 14 normal and 7 disease samples; sequencing

platform: GPL571 (39).

All three are mRNA-seq data GEO datasets, with large sample

sizes and containing human EM and normal endometrial control

samples. The SVA algorithm was used to batch-correct the three

datasets and combine them into a single dataset of 35 normal and

28 EM samples. PCA was performed before and after removing the

batch effect removal (Figures 2A, B).

3.2. Di�erential expression gene analysis

We screened for DEGs between the disease and control

groups, and created a volcano plot of the results (Figure 2C). A

total of 2,093 TRGs were obtained from TelNet, including 165

validated genes, 923 predicted genes, and 1,005 screened genes.

Further screening of genes differing between the disease and

control groups was performed based on TRGs. The top 15 genes

with the most significant differences are shown in the heatmap

(Figure 2D). The positions of these DEGs were then labeled on

the chromosomes. The top three genes with the most significant

differences, ESR1, RARRES2, and MAP7, were on chromosomes

6 and 7 (Figure 2E). Further analyses revealed correlations among

these DEGs (Figure 2F).

3.3. Telomere-related signature models
developed via machine learning

Two machine learning algorithms, RF and SVM, were used to

screen telomere signature EM genes, plot box plots, and reverse

cumulative distributions of residuals (Figures 3A, B). ROC curves

show that RF (AUC = 1.0) had better predictive power compared

with SVM (AUC= 0.969) (Figure 3C).

Based on the RFM, an importance score >2.0 was used as

the threshold value. A total of 6 genes were included in the

characteristic gene model: MAP7, GRHL2, RARRES2, UCHL1,

ESR1, and REV3L (Figures 3D, E). A nomogram model was

constructed based on the six included signature genes to predict

disease risk (Figure 3F). Next, we validated the accuracy and

predictive power of the model using CIC and DCA, with

the Hosmer–Lemeshow test (P = 0.828) (Figure 3G). The CIC

(Figure 3H) and DCA (Figure 3I) show good model predictive

power at risk thresholds from 0 to 0.92.

3.4. Endometriosis mouse model and
immunohistochemical analysis

To validate the role of the six screened genes in EM, an

EM mouse model was developed (see flowchart in Figure 4A).

Fourteen days after intraperitoneal implantation, mice injected

with endometrial fragments developed endometrioid lesions

in the intestine, mesentery, and peritoneum. Adhesions and

vascular formations around the endometriotic implants were

also detected (Figure 4B). Endometrial and endometriotic

lesion tissues were collected for immunohistochemical

analysis. Immunohistochemistry results further confirmed

our database-based analysis (Figure 4C).

3.5. Identification of telomere gene
subtypes and immune infiltration in
endometriosis

To investigate the modification patterns of telomerase genes in

EM, we performed an unsupervised consensus clustering analysis

of 28 EM samples based on the expressions of 15 telomere gene

regulators. Two telomere gene modification subtypes in EM were

identified by setting K value ranges at 2–9 and selecting the optimal

K = 2 (Figures 5A, B). Among them, clusters 1 and 2 contained 21

and 7 samples, respectively. PCA showed that these two subtypes

could clearly distinguish the samples (Figure 5E). In addition, we

identified 10 telomerase gene regulators, which were significantly

differentially expressed in the two isoforms (Figures 5C, D).

The heat map of the immune cell correlation analysis is in

Figure 5F. HMOX1 was positively correlated with macrophages,

with the most significant correlation coefficient of 0.87. KLF2

was negatively correlated with immature dendritic cells, with the

smallest negative correlation coefficient of −0.65. Further analysis

of immune cell differences indicated that five different immune cells

differed significantly between clusters A and B: CD56 bright natural

killer cell, CD56dim natural killer cell, macrophage, natural killer

cell, and regulatory T cell (Figure 5G).

3.6. Functional enrichment analysis of
telomere signature gene sets

GO, KEGG pathway analysis, and GSEA were used to

determine telomere gene roles and their potential mechanisms in

EM. DEGs analysis was performed for both cluster A and cluster

B samples (logFC >1, Padj <0.05) (Figure 6A). For the 138 DEGs

obtained, we performed GO and KEGG analyses. Critical genes

were mainly associated with extracellular matrix organization,
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FIGURE 1

Flowchart of the TRGs as potential biomarkers to predict EM and immune response. We first selected three GEO databased EM datasets: GSE5108,

GSE23339, and GSE25628. These data were normalized and then analyzed, deriving di�erential genes associated with telomeres. Then, a telomere

gene signature model for EM was developed based on a machine learning approach and the model’s predictive performance was evaluated. We also

established a mouse model of EM and validated it at the immunohistochemical level for the derived di�erential genes. Meanwhile, functional

enrichment analysis and immune infiltration analysis were performed to explain the pathways enriched by the di�erential genes and the associated

immune responses. Finally, possible potential therapeutic agents were interpreted through the CMAP database.

extracellular matrix structural constituent, proteoglycans in cancer,

and other pathways (Figures 6B–F).

Further GSEA analysis showed that critical genes were enriched

in Reactome cytokine signaling in immune system, Naba core

matrisome, Reactome signaling by interleukins, Reactome cell

cycle checkpoints, Reactome cell cycle mitotic, and other pathways

(Figures 6G, H).

3.7. Genetic subtypes of DEGs and immune
infiltration analysis

We further subtyped the samples according to DEG

expressions. An unsupervised consensus clustering analysis

was performed on 28 EM samples, based on cluster 1 and 2

DEG expressions. Two distinct isoforms of differential gene
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FIGURE 2

EM GEO dataset acquisition and telomere-related di�erential gene expression. (A) PCA plots for datasets GSE5108, GSE23339, and GSE25628 before

sva correction. (B) PCA plots of the sva-corrected dataset. (C) Volcano map of EM-telomere DEGs. (D) Heatmap of 15 telomere-associated DEGs in

EM and normal samples. (E) Circles of 15 telomere-associated DEGs expressed on chromosomes. (F) Correlation heat map of the expression profiles

of 15 telomere-associated DEGs.
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FIGURE 3

Screening telomere-related signature genes using machine learning methods, building nomogram prediction models, and evaluating model

predictive power. (A) Box plot of residuals for RF and SVM models. Red dots are root mean squares of residuals. (B) Reverse cumulative distribution of

residuals. (C) ROC plots for RF and SVM prediction models (AUC-RF = 1.0, AUC-SVM = 0.969). (D, E) RFM screening of 15 candidate genes. (F)

Nomogram prediction model based on screening six EM-telangiectasia signature genes: MAP7, GRHL2, RARRES2, UCHL1, ESR1, and REV3L. (G)

Calibration curve. X-axis is predicted disease risk. Y-axis is actual disease risk. Dashed diagonal line is perfect prediction of ideal model. Solid line is

nomogram prediction model performance and fit to the dashed diagonal line is the model’s predictive power (Hosmer–Lemeshow P = 0.828). (H)

CIC. Red curve is number of people classified as positive (high risk) by prediction model at each probability threshold. Blue curve is number of true

positives at each probability threshold. (I) DCA. CIC and DCA show good model predictive power when the risk threshold is from 0 to 0.92.

modifications were identified by setting K values in the range

from 2–9 and selecting the best K = 2 (Figures 7A, B). Clusters

1 and 2 contained 18 and 10 samples, respectively. Figure 7C

shows the expression heat map of the 138 DEGs in clusters 1 and

2. Of the 15 telomere signature genes, eight were significantly

differentially expressed in clusters 1 and 2: ESR1 (P < 0.001),

HMOX1 (P < 0.001), KLF2 (P < 0.001), RARRES2 (P <

0.001), UCHL1 (P < 0.01), GRHL2 (P < 0.01), CCNB1 (P

< 0.01), and FOS (P < 0.05) (Figure 7D). Further immune

infiltration analysis revealed significant differences in the
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FIGURE 4

Establishment of a mouse EM model and immunohistochemical analysis. (A) Mouse model flowchart (BioRender©). (B) Fourteen days

post-intraperitoneal implantation, endometrium-like lesions in the mesentery were visible under light microscopy in mice injected with endometrial

fragments. Adhesions and vascular formations around the endometrial implants were observed. (C) Representative MAP7, GRHL2, RARRES2, UCHL1,

ESR1, and REV3L staining of endometrial tissues and EM lesions in the mouse model.
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FIGURE 5

Identification of telomere gene subtypes and immune infiltration in EM. (A, B) Two telomere gene modification subtypes identified in EM by setting K

values in range 2–9 and selecting the optimal K = 2. (C) Heatmap of telomere di�erential genes in EM di�erentially expressed in clusters A and B. (D)

Boxplot of di�erential telomere gene expressions in clusters A and B in EM. (E) PCA analysis shows that clusters A and B can distinguish samples well.

(F) Heatmap of EM telomere-related di�erential genes in relation to immune cells according to ssGSEA analysis. (G) Boxplot of di�erential

expressions of immune cells in clusters A and B based on ssGSEA analysis. *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 6

Functional enrichment analysis of telomere signature gene sets. (A) Venn diagram shows a total of 138 di�erential genes between clusters A and B.

(B–F) GO and KEGG enrichment analysis of di�erential genes between clusters A and B, (B) network diagram, (C) column chart, (D) string diagram,

(E) circle diagram, and (F) bubble diagram. (G, H) GSEA enrichment analysis of di�erential genes between clusters A and B, (G) mountain diagram, (H)

GSEA enrichment results for the five most significant di�erential genes.
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FIGURE 7

Genetic DEG subtypes and immune infiltration analysis. (A, B) Distinct isoforms of di�erential gene modifications identified by setting K values in

range 2–9 and selecting the best K = 2. (C) Expression heat map of the 138 di�erential genes in clusters 1 and 2. (D) Expression of telomere genes in

clusters 1 and 2. (E) ssGSEA demonstrates infiltration of immune cells in clusters 1 and 2. (F, G) Telomere gene scores were significantly upregulated

in subtype A/subtype 1. *P < 0.05, **P < 0.01, ***P < 0.001.

expressions of five immune cells in DEG analysis: macrophage

(P < 0.001), natural killer T cell (P < 0.05), natural killer cell

(P < 0.01), regulatory T cell (P < 0.001), and T folic helper cell

(P < 0.05) (Figure 7E).

Finally, PCA was performed on the telomere gene

scores for each sample. Telomere gene scores differed

significantly between telomere genetic subtypes and

differential genetic subtypes (P < 0.001). In both

subtypes, telomere gene scores were significantly

upregulated in subtype A/subtype 1. These results further

demonstrate the accuracy and reliability of our model

(Figures 7F, G).

3.8. Identification of relevant
small-molecule compounds for
endometriosis treatment

By screening the DEGs identified in the CMAP database, we

identified potential therapeutic agents for EM treatment. Eleven

potential small-molecule compounds were identified based on

the screening criteria of normalized connective score <2 and

log10q >15. Drug mechanism analysis suggested that crizotinib,

AZD-4547, C-646, docetaxel, rociletinib, ENMD-2076, AMG-232,

dioscin, mibefradil, NNC-05-2090, and nutlin-3 have potential as

novel EM treatments (Supplementary Table 1).
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4. Discussion

Recent clinical and basic research advances have updated

our understanding of EM. While classic EM treatment options

have included radical surgery and conservative pharmacology,

improved molecular biology is giving us a better understanding of

EM heterogeneity and directing a more precise search for novel

prognostic markers and treatments.

Processing complex research data and building predictive

models by machine learning methods can better predict clinical

disease changes and has advantages in oncology and related non-

oncology research (23). Machine learning algorithms are mainly

divided into two categories: supervised learning algorithms for

building predictive models and unsupervised learning algorithms

for building descriptive models. The former include K-nearest

neighbor method, neural network, SVM, and RFM (40); the

latter include association rules and k-means clustering algorithms.

Huang et al. proposed a novel data analysis method based on

data augmentation and elastic data shared lasso regularization,

which can infer and integrate information from multiple gene

expression datasets (41). SLNL (self-paced learning network-based

logistic regression model), a new method for gene selection and

phenotype classification, is an absolute network-based logistic

regression model that may be useful for tumor diagnosis and

treatment (42). The cumulative evidence supports the non-trivial

superiority of machine learning methods for improving disease

diagnostic accuracy.

Herein, we screened and identified DEGs by analyzing three

DEO database EM datasets and TelNet telomere-related gene

sets. These DEGs contained six upregulated genes and nine

downregulated genes. To identify signature genes that could be

potential markers, we compared the screening ability of two

different machine learning methods, RFM and SVM-RFE. Residual

plots and ROC curves indicate that the RFM-built model had

better predictive power. Subsequent analyses were based on the

RFM method, to screen for six EM telomere signature genes:

MAP7, GRHL2, RARRES2, UCHL1, ESR1, and REV3L. Ourmouse

model and further immunohistochemical analyses further validated

the findings.

MAP7 promotes cervical cancer cell line migration and

invasion, and epithelial-mesenchymal transition (EMT), by

regulating autophagy (43, 44). GRHL2 is involved in EMT

through CLDN4 core promoter and E-cadherin gene regulation

(45). Gynecological tumor studies have also demonstrated that

increased GRHL2 expression is associated with poor prognosis

in ovarian cancer (46). RARRES2 is a small, secreted protein

associated with a variety of cancers, and higher serum RARRES2

levels have been shown to be associated with improved overall

survival in adrenocortical tumors (P = 0.0227) (47). The

deubiquitinase UCHL1 is an oncoprotein that promotes the

growth and progression of cancer cells. In specific types of breast

cancer, high UCHL1 activity may be targeted to enhance the

efficacy of endocrine therapy in estrogen receptor-negative breast

cancer cells and slow migration and metastasis of triple-negative

breast cancer (48, 49). UCHL1 may also serve as a biomarker for

EM and a potential new therapeutic target.

A meta-analysis of 24 case control studies showed that ESR1

(TA)n gene polymorphisms were associated with susceptibility

to EM (50). ESR1 rs9340799 was associated with EM-associated

infertility and in vitro fertilization failure (51). REV3L, the catalytic

subunit of DNA polymerase ζ, plays a vital role in the DNA

damage tolerance mechanism of translocation synthesis. Cervical

cancer studies have shown that inhibition of REV3L expression and

overexpression, respectively, enhances sensitivity and resistance of

cervical cancer cells to cisplatin (52). We developed a predictive

nomogram model for EM based on the above six genes.

Although the etiology of EM is unknown, immune dysfunction

has been suggested as a pivotal contributor to the growth of

ectopic lesions of endometrial debris. Unsupervised cluster analysis

based on our screened telomere genes showed that 10 differed

significantly by cluster. Further immune infiltration analysis

showed that macrophages, regulatory T cells (CD56dim/bright),

natural killer cells, and other were significantly overexpressed in

Cluster A (P < 0.05). This is similar to the ssGSEA results obtained

after further genotypic clustering analysis. Lindsey et al. showed

that the number of macrophages was significantly elevated in

peritoneal fluid and ectopic endometrium in patients with EM

(53). NK cells were present in the peripheral circulation and

uterus, mainly as CD56dimCD16+ and CD56brightCD16+. This is

consistent with our findings. Therefore, it has been hypothesized

that NK cell dysfunction in EM contributes to the immune-based

spread of ectopic endometrial debris to the peritoneal cavity (54).

Nevertheless, it is unclear whether this immune dysfunction is

a cause or a consequence of EM development. Therefore, further

studies are needed to determine whether immune dysfunction may

be an EM treatment, and to further guide potential immunotherapy

or targeted therapy.

Women with EM high TA levels, high hTERT gene expression

and hTERT protein levels, and longer mean endometrial TL

compared with the endometrium of healthy women (12).

Enrichment analysis of telomere signature genes in EM showed

that these DEGs are primarily involved in extracellular tissue,

extracellular matrix, and angiogenesis pathways, and are associated

with cell cycle and cytokine pathways. These results suggest that

TRGs may mediate the development of EM by mediating biological

pathways such as EMT and angiogenesis.

Screening for target drugs is another vital aspect of EM

research. Eleven drugs were screened herein. Of these, crizotinib

has been approved for advanced anaplastic lymphoma kinase-

positive lung cancer (55, 56). Docetaxel is indicated for the

treatment of locally advanced or metastatic breast and non-small

cell lung cancers (57). Clinical trials are also ongoing for some of

the other screened drugs, which may act in mechanistic pathway of

TRGs in EM.

5. Conclusion

This study shows, for the first time, relations between TRGs

and EM development, and establishes a nomogram model of

characteristic genes. The immune infiltration profile and associated

sensitive drugs were also analyzed, which may provide practical

value for future studies targeting telomeric genes in EM treatment.

These findings shed new light on the role of TRGs in EM.

Telomere-associated genes also enhance our understanding of the

mechanisms involved in the susceptibility of EM to recurrence
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and malignant changes. Our ongoing work will focus further on

the specific targets of TRGs in EM and their immune infiltration-

related mechanisms. We will conduct more in-depth in vivo and in

vitro validation experiments.
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