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Introduction: State of the art artificial intelligence (AI) models have the potential

to become a “one-stop shop” to improve diagnosis and prognosis in several

oncological settings. The external validation of AI models on independent

cohorts is essential to evaluate their generalization ability, hence their potential

utility in clinical practice. In this study we tested on a large, separate cohort

a recently proposed state-of-the-art convolutional neural network for the

automatic segmentation of intraprostatic cancer lesions on PSMA PET images.

Methods: Eighty-five biopsy proven prostate cancer patients who underwent
68Ga PSMA PET for staging purposes were enrolled in this study. Images were

acquired with either fully hybrid PET/MRI (N = 46) or PET/CT (N = 39); all

participants showed at least one intraprostatic pathological finding on PET

images that was independently segmented by two Nuclear Medicine physicians.

The trained model was available at https://gitlab.com/dejankostyszyn/prostate-

gtv-segmentation and data processing has been done in agreement with the

reference work.

Results: When compared to the manual contouring, the AI model yielded a

median dice score = 0.74, therefore showing a moderately good performance.

Results were robust to the modality used to acquire images (PET/CT or PET/MRI)

and to the ground truth labels (no significant difference between the model’s

performance when compared to reader 1 or reader 2 manual contouring).

Discussion: In conclusion, this AI model could be used to automatically segment

intraprostatic cancer lesions for research purposes, as instance to define the

volume of interest for radiomics or deep learning analysis. However, more
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robust performance is needed for the generation of AI-based decision support

technologies to be proposed in clinical practice.
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PSMA, convolutional neural network, segmentation, prostate cancer, external validation

1. Introduction

Prostate cancer (PCa) is the second most common cancer in
men, with 1,414,259 new cases in 2020, accounting for 15.1% of
all cancer diagnoses within the male population (1). Although
histopathological examination of prostate biopsy cores is required
for the diagnosis of PCa, imaging is pivotal to characterize the
disease (2). Multiparametric (mp)-MRI has been used for years
in clinical practice to guide biopsy and to drive the clinical
management of PCa patients (2).

PSMA PET has been recently added to the EAU-ESTRO-SIOG
guidelines for staging high-risk PCa (2) in view of its higher
sensitivity compared to mp-MRI (3, 4). Therefore, a possible next
step will be to use PSMA PET to diagnose clinically significant
PCa (5–8) and to perform quantitative analysis that might allow
for a better and more objective characterization of the disease
(9–11).

Accurate contouring of intraprostatic gross tumor volume
(GTV) is mandatory for an accurate assessment of PCa in
several clinical settings, including both biopsy guidance and
radiomic features extraction. However, this procedure is time
consuming and largely affected by the experience of the
contouring physicians, often resulting in non-reproducible
segmentations (12).

Recently, there has been a surge in the development of artificial
intelligence (AI) models in the medical field, with the first tools
being already available for use (13, 14). Convolutional neural
networks (CNN) have been shown to accurately segment medical
images (15–17) and hold the potential to improve intraprostatic
tumor delineation (18–21). The use of CNN in this setting could
improve GTV definition by reducing the inter-reader variability
while saving time by automating this task.

Kostyszyn and colleagues were the first to develop a CNN
for the automatic segmentation of intraprostatic cancer lesions
on PSMA (using both 68Ga- and 18F-PSMA) PET images (18).
They used 152 patients examined at two centers (Germany and
China) to train their model and a cohort composed by 57 patients
to test it. However, only 20 patients in the testing cohort were
studied at an external institution (center 3, Germany) not used
for training, making it difficult to draw conclusions regarding the
model’s generalizability.

External validation of AI models on independent cohorts
is necessary to assess with certainty their robustness and
reproducibility, hence their possible application in clinical practice
(22). Therefore, this study aims to evaluate the performance
of the CNN for the automatic segmentation of intraprostatic
cancer lesions on 68Ga-PSMA PET images that was previously
presented in (18) and that is publicly available at https://gitlab.com/
dejankostyszyn/prostate-gtv-segmentation.

2. Materials and methods

2.1. Patients

All patients with biopsy proven PCa who underwent 68Ga-
PSMA PET at IRCCS San Raffaele Scientific Institute from June
2020 to January 2022 for staging purposes were considered for
inclusion. A total of 124 patients was identified. Eligibility criteria
were: (1) age greater than 18 years at the time of the PET
examination (0 patients excluded), (2) presence of at least one
intraprostatic pathological finding at 68Ga-PSMA PET (30 patients
excluded), (3) absence of neoadjuvant treatments prior to imaging
(9 patients excluded). Eighty-five patients met the inclusion criteria
and were included for analysis. See Figure 1 for a flowchart showing
the patients’ selection process. Prostate specific antigen (PSA)
level and the International Society of Urological Pathology (ISUP)
grade were collected. This retrospective study was approved by the
Institutional Ethics Committee of IRCCS San Raffaele Scientific
Institute, and informed consent was waived due to the retrospective
nature of the study.

2.2. PET imaging

PET scans were acquired using either Signa PET/MRI 3 Tesla
system, GE Healthcare, Waukesha, WI, USA (N = 46) or PET/CT,
Discovery-690, GE Healthcare (N = 39).

Fasting condition was requested on the day of 68Ga-PSMA
PET/MRI and PET/CT scan.

PET scans were acquired from the skull base to mid-thigh (5–6
FOVs, 4 min/FOV), and started approximately 60 min (mean± SD,
63 ± 6 min) after injection of 111–273 MBq (Mean ± SD,
168 ± 33 MBq) of 68Ga-PSMA. PET images, acquired with either
PET/MRI or PET/CT scanner, were reconstructed using fully
3D ordered subset expectation-maximization (OSEM) algorithm,
time-of-flight (TOF) and point-spread-function (PSF).

68Ga PSMA PET image read-out was performed by two
Nuclear Medicine physicians on an Advantage Workstation (AW,
General Electric Healthcare, Waukesha, WI, USA) and the presence
of 68GA-PSMA intraprostatic increased uptake was considered
positive for malignancy.

2.3. Image segmentation

Two Nuclear Medicine physicians manually contoured the
GTV on every slice of 68GA-PSMA PET images using 3D
Slicer (Slicer; version 4.11.2) being aware of all the available
patients’ clinical and imaging information. The first reader (Exp 1)
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FIGURE 1

Flowchart illustrating the patients’ selection process.

delineated the GTV using an inverted gray scale for display,
windowed with SUVmin-max: 0–5, as previously described in
Kostyszyn at al. (18). To ensure that the segmentation approach
used in the reference work was not introducing any bias, a second
reader (Exp 2), instead, contoured images independently without
any fixed thresholding of voxel values, blind to any instruction on
how images were evaluated in the reference work of Kostyszyn et al.

Additionally, two radiologists performed a manual contouring
of the prostatic gland on CT and MRI scans by using 3D Slicer
(Slicer; version 4.11.2). Since it is not always feasible to discriminate
between prostatic tissue and bladder signal in 68Ga-PSMA PET
images, only contouring within the delinated prostatic gland were
used for analyses, as described in Kostyszyn et al.

2.4. Resampling

To ensure that the CNN’s performance in this study was not
affected by discrepancies in the methods used as compared to the
reference work, resampling and preprocessing of the images was
performed exactly as described by Kostyszyn et al. (18).

Specifically, all PET images (nearly raw raster data format,
nrrd) were resampled to standardize the voxel spacing to
2.0 mm × 2.0 mm × 2.0 mm using SimpleITK (version1.2.4)
since the PET images collected with PET/MRI scanner had
original voxel size = 3.125 mm × 3.125 mm × 2.780 mm,
while the original voxel size of images acquired with PET/CT
scanner was 2.734 mm × 2.734 mm × 3.270 mm. Prostate
and GTV segmentations were also resampled to a voxel size of
2.0 mm × 2.0 mm × 2.0 mm. PET volumes were resampled
using both tri-linear interpolation and B-spline interpolation,
whereas Nearest Neighbour interpolation was used to resample
segmentation contours. All data were cropped using the manual
contouring of the prostate gland as guidance to a size of
64 × 64 × 64 voxels, and then normalized with xi’ = xi−x

σ
where

xi is the PET data for patient i, and x and σ are the arithmetic mean

and the standard deviation calculated over the entire cropped PET
training dataset.

2.5. Convolutional neural network

The model consists of 3 down sampling steps performed by
2 × 2 × 2 max-pooling along the contracting path, and 3 up-
sampling steps performed by 2 × 2 × 2 transpose convolutions
with padding of 1 and stride of 2 along the expanding paths. Skip
connections from the contracting path are concatenated with their
corresponding up-sampled feature maps. There are 14 3 × 3 × 3
convolutional layers in total, having stride and padding of 1.
Each convolution is followed by batch normalization and ReLU
activation function. The last layer in the model performs a 1× 1× 1

TABLE 1 Patients’ characteristics.

Statistics

No. of patients 85

Median age, years 68 (range: 45–85)

Median PSA, ng/ml 7.82 (range: 1.72–1263)

ISUP grade, no. (%)

1 3 (3.6%)

2 9 (10.6%)

3 17 (20.0%)

4 20 (23.5%)

5 29 (34.1%)

Unknown 7 (8.2%)

Scanner

PET/MRI 46

PET/CT 39
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FIGURE 2

(Top panel) Exemplar image of a 68Ga-PSMA PET/MRI scan; (A) Transaxial 68Ga-PSMA PET, (B) Axial T2-weighted MRI sequence, (C) 68Ga-PSMA
PET/MRI. (Bottom panel) Exemplar image of a 68Ga-PSMA PET/CT scan; (D) Transaxial 68Ga-PSMA PET, (E) Axial CT image, (F) 68Ga-PSMA PET/CT.

convolution with no padding, followed by batch normalization and
sigmoid activation function. The whole script of the trained CNN
can be freely downloaded at https://gitlab.com/dejankostyszyn/
prostate-gtv-segmentation.

2.6. Statistical analysis

Statistical analyses were performed with R statistical software
(23). Dice score coefficient (DSC) was computed to estimate
the performance of the trained CNN (GTV-CNN) presented in
Kostyszyn et al. (18). Moreover, DSC was also used to quantitatively
assess the agreement between the GTVs manually segmented
by the different experts (GTV-Exp 1, GTV-Exp 2). As PET
volumes in the dataset have been acquired using two different
modalities, PET/MRI and PET/CT, Student’s t-test was carried out
to determine whether the image modality of acquisition possibly
affected the model performance. Student’s t-test was also employed
to determine whether there was a statistically significant difference
in CNN performance across the different GTV-Exp segmentations
and to study whether the volume predicted by the CNN was
different in size as compared to those manually delineated by
experts. Ground truth PCa lesion volumes (GTV-Exp) were
correlated with DSC scores using Pearson correlation. Finally,
to investigate the impact of different interpolation algorithms,
analyses were first conducted on PET images resampled using tri-
linear interpolation and then on PET volumes resampled with
B-spline interpolation. The obtained DSC were compared by means
of Student’s t-test. P values lower than 0.05 were considered
statistically significant.

3. Results

3.1. Patients

Eighty-five patients with biopsy proven PCa were enrolled
in this study. The median age was 68 years (range: 45–85
years), whereas the median PSA level was 7.82 ng/ml. Patients’

characteristics are reported in Table 1. Forty-six out of 85 patients
were examined on a PET/MRI scanner (see an example; Figure 2,
top panel) and 39/85 on a PET/CT scanner (see an example;
Figure 2, bottom panel).

3.2. CNN performance

Analyses were performed on PET volumes resampled with
tri-linear interpolation and then repeated on images resampled
using B-spline interpolation. The results based on tri-linear
interpolation are reported here, while Supplementary Table 1
contains the results using B-spline interpolation for voxel
resampling. The trained CNN, when validated on the lesion
volumes manually contoured by the first reader (GTV-Exp 1),
reached a median DSC = 0.74 (range: 0.07–0.93). When the
ground truth label was drawn without fixed thresholding of
voxel values by the second reader (GTV-Exp 2), the CNN
obtained a median DSC = 0.69 (range: 0.07–0.96). However,
this difference was not statistically significant (P value > 0.05).
Using tri-linear or B-spline interpolation did not affect model’s
performance (P value > 0.05). See Table 2 for a detailed
description of CNN model performance, and Figure 3 for a
representative image. To better show the performance of the

TABLE 2 External validation of the CNN performance.

Mean DSC ± SD Median DSC (range)

GTV-Exp 1
vs.

GTV-CNN

GTV-Exp 2
vs.

GTV-CNN

GTV-Exp 1
vs.

GTV-CNN

GTV-Exp 2
vs.

GTV-CNN

All 0.70± 0.18 0.67± 0.20 0.74 (0.07 –
0.93)

0.69 (0.07 –
0.96)

PET/MRI 0.69± 0.18 0.64± 0.21 0.72 (0.07 –
0.93)

0.68 (0.07 –
0.96)

PET/CT 0.71± 0.19 0.70± 0.19 0.77 (0.10 –
0.90)

0.75 (0.10 –
0.91)

Mean and median performance of the CNN for the automatic segmentation of intraprostatic
cancer lesions considering the contouring made by reader 1 (Exp 1) and reader 2 (Exp 2) as
ground truth.
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FIGURE 3

Axial 68Ga-PSMA PET image (image windowing SUVmin-max: 0–5). (A) GTV-Exp 1 lesion contour (yellow). (B) GTV-Exp 2 lesion contour (green).
The GTV-CNN contour is shown in red and the prostate contour in purple.

CNN, additional segmentation results for sequential 68Ga-PSMA-
PET slices are shown in Figure 4. Moreover, no statistically
significant differences were identified in the volumes of the
intraprostatic tumor lesions defined by the expert Nuclear
Medicine physicians and those predicted by the CNN (P
value > 0.05, Table 3).

The DSC obtained by comparing the PCa lesion contouring
manually defined by the two expert Nuclear Medicine physicians
was 0.73 (range: 0.25–0.92).

No statistically significant differences in CNN performance
between PET/MRI and PET/CT images, regardless of the method
used to visualize and contour PET images (P value > 0.05
for both GTV-Exp 1 and GTV-Exp 2) were observed.
Conversely, a positive correlation was found between DSC
and GTV-Exp (r = 0.43, P value < 0.001 and r = 0.44, P
value < 0.001 for GTV-Exp 1 and GTV-Exp 2, respectively),
meaning that the CNN produced more accurate segmentations
for bigger lesions.

4. Discussion

In the present work, an external validation of a CNN for
the automatic segmentation of intraprostatic cancer lesions on
68Ga-PSMA PET images previously presented by Kostyszyn and
colleagues (18) has been performed. In our cohort, the trained
CNN model reached a median DSC = 0.74 and its performance was
independent from the imaging technique, PET/MRI or PET/CT,
used to acquire PET images.

68Ga-PSMA PET is widely used for the characterization of
PCa in different settings and has been recently included into
the EAU-ESTRO-SIOG guidelines for high-risk PCa staging (2).
Several studies have been reported showing the potential utility
of quantitative features extracted from 68Ga-PSMA PET images

for the characterization of the disease (9–11). Considering the
role of PSMA PET, a possible forthcoming application might be
its use in the diagnosis of clinically significant PCa, including
biopsy guidance in patients with equivocal mp-MRI findings
(6, 24).

FIGURE 4

Predicted vs. actual lesion contours in sequential 68Ga-PSMA PET
slices. (A) Original 68PSMA PET images; (B) ground truth GTV-Exp 1
contours; (C) CNN predicted contours. Prostate contours are
shown in yellow.
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TABLE 3 Gross tumor volume.

GTV-Exp 1 GTV-Exp 2 GTV-CNN

All 12.23± 15.7 ml 12.15± 16.2 ml 16.55± 18.6 ml

PET/MRI 13.75± 18.3 ml 12.45± 18.3 ml 17.70± 20.1 ml

PET/CT 10.45± 12.1 ml 11.80± 13.5 ml 15.20± 17.0 ml

Mean volume, and standard deviation, of the intraprostatic cancer lesion (GTV) defined by
Exp 1, Exp 2 and by the CNN.

Accurate contouring of intraprostatic GTV is required as
the starting point both for biopsy guidance and for radiomic
analysis. However, this procedure is extremely time consuming
and affected by inter-reader heterogeneity, often resulting in non-
replicable segmentations (12). Several CNNs have already been
proposed for GTV segmentation in other oncological settings
(19–21), bearing the potential to become a “one-stop shop” for
improving the diagnostics and prognostics of various tumors,
including PCa (25).

Kostyszyn and colleagues were the first to generate a CNN
for the automatic segmentation of intraprostatic cancer lesions
on PSMA PET images (18). This study was a joint effort of 3
different Institutions, 2 in Germany and 1 in China. The generated
model was trained on 152 patients, employing images acquired with
different tomographs in different centers (1 in Germany and 1 in
China). However, only 20 patients in the testing cohort were studied
at an external institution (center 3, Germany) not used for training,
limiting conclusions regarding the model’s generalizability.

Validation of AI models in external, independent cohorts
is crucial to assess their robustness and, consequently, their
potential utility. In our study, we tested the model generated by
Kostyszyn and colleagues on a cohort of 85 patients examined
with 68Ga-PSMA PET at our Institution. Considering that image
pre-processing can affect the model performance, as previously
described in Kostyszyn et al. (18), all pre-processing steps were
performed in agreement with the reference work. However, in
the present study, images were independently reviewed by two
Nuclear Medicine physicians. The first one (Exp 1) followed the
instruction given in Kostyszyn et al. (18), while the second (Exp
2) was not informed on how images were viewed in the reference
work, thus avoiding the introduction of any bias relative to the
adopted segmentation method.

The trained CNN model achieved a moderately good
performance on our cohort, reaching at best a median DSC = 0.74.
Interestingly, results were independent of the modality used to
acquire the images, despite the model being originally trained only
on PET/CT images, as well as of the windowing of voxel values used
when defining the ground truth labels. These results suggest that
using images acquired with several different PET/CT scanners for
training contributed to increasing model robustness. Moreover, it
has been shown that the thresholding of voxel values SUVmin-max:
0-5 yields relatively stable contouring, as also reported in a previous
work of the same group. (12). However, the CNN performance
was affected by the volume of the ground truth labels (GTV-
Exp 1 and GTV-Exp 2), resulting in more accurate segmentations
for bigger lesions.

The main limitation of this study is its monocentric nature,
as PET images were acquired in a single Institution. However, as
our center was not included in the reference work of Kostyszyn

et al., our population represents a large independent and external
testing cohort. Moreover, we included patients examined both with
PET/CT (N = 39) or PET/MRI (N = 46), this could have potentially
affected the results, but also allowed the comparison of model
performance on images acquired with different modalities. Post-
hoc analyses showed that no statistically significant differences in
CNN performance was observed on images acquired with either
PET/MRI or PET/CT. Nineteen patients studied with 18F-PSMA
were included in the paper presented by Kostyszyn et al. All patients
considered in this work underwent 68Ga-PSMA PET, therefore,
future studies are needed to assess the model’s generalizability to
18F-PSMA PET findings.

In conclusion, the trained and publicly available CNN model
presented by Kostyszyn et al. (18) yields fairly accurate contouring
of intraprostatic cancer lesions on 68Ga-PSMA PET images that
could be used as a starting point for quantitative analysis using
radiomics or deep learning approaches. Nonetheless, more robust
performance is needed for the generation of AI-based decision
support technologies that can be used and exploited in daily
clinical practice.
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