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Background: Breast cancer is a common malignant tumor. A large number of 
medical evidence shows that breast cancer screening can improve the early 
diagnosis rate and reduce the mortality rate of breast cancer. In the present study, 
a wide range of targeted metabolomics profiling was conducted to investigate 
the plasma signatures of breast cancer.

Methods: A total of 86 patients with benign breast abnormalities (L group) and 143 
patients with breast cancer (E group) were recruited. We collected their plasma 
samples and clinical information. Metabolomic analysis, based on the coverage 
of a wide range of targeted metabolomics was conducted with ultraperformance 
liquid chromatography- triple quadrupole-linear ion trap mass spectrometer 
(UPLC-QTRAP-MS).

Results: We identified 716 metabolites through widely-targeted metabolomics. 
Serotonergic synapse was the main different metabolic pathway. The fold 
change of 14 metabolites was considered significantly different (fold change 
<0.67 or fold change >2; p  < 0.05). By combining all the 14 metabolites, 
we achieved differentiation of L group vs. E group (AUC = 0.792, 95%Cl: 0.662–
0.809).

Conclusion: This study provided new insights into plasma biomarkers for 
differential diagnosis of benign abnormalities and breast cancer.
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Introduction

Breast cancer is a common malignant tumor (1). A large number of medical evidence 
shows that breast cancer screening can improve the early diagnosis rate and reduce the 
mortality rate of breast cancer (2). Through the analysis of the results of multiple prospective 
randomized controlled trials (RCTs) and clinical trials, effective screening can reduce the 
mortality of breast cancer by 20% (2). In addition, due to early occurrence and diagnosis, 
most tumors are staged in the early stage, and the adverse reactions brought by surgery or 
chemotherapy are relatively small, so the mortality related to the treatment process of 
patients is significantly reduced (3–6). For example, when early breast cancer is detected 
through screening, the probability of breast preservation is higher, the postoperative recovery 
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is faster, the complications are fewer, the appearance of the breast is 
preserved, and the psychological burden of patients is reduced (7, 
8). In addition, the earlier the breast cancer is detected, the smaller 
the possibility of chemotherapy, and patients can avoid a series of 
adverse reactions brought on by chemotherapy, such as 
cardiotoxicity, marrow suppression, and so on. Though imaging is 
already broadly implemented in breast cancer screening, more 
convenient plasma markers are still warranted. Metabolome 
technology has unique advantages in marker discovery and 
transformation research (9–14).

Here, metabolome was used to compare the difference of serum 
metabolites between benign and malignant breast abnormalities. 
We  aimed to establish a diagnosis model and evaluate its 
predictive ability.

Materials and methods

Participants

In our research, between 1 November and 31 December 2021, 
86 patients with benign breast abnormalities (L group) and 143 
participants with breast malignancies (E group) were 
consecutively enrolled from the Department of Breast Surgery 
affiliated with Peking Union Medical College Hospital (PUMCH). 
All patients were from the Han Chinese population. The blood 
sample collection was conducted according to IFCC/C-RIDL 
protocols and the study was approved on 2019-4-23 by the 
institutional committee of PUMCH (ethical number: ZS-1915). 
Fasting blood samples were taken via venipuncture into Vacuette 
tubes containing procoagulant, and within 15–30 min after 
sample collection, the samples were centrifuged at 1,200 × g 
for 10 min.

Materials and instrument

Chromatographic grade acetonitrile and methanol were 
purchased from Merck. Chromatographic grade formic acid, 
ammonium formate, and ammonia water were obtained from 
Aladdin. ExionLC AD ultra-Performance liquid chromatography 
(UPLC) and QTRAP® tandem mass spectrometry (MS/MS) were 
from AB Sciex (Massachusetts, United States). ACQUITY UPLC HSS 
T3 C18 column (1.8 μm, 2.1 mm × 100 mm) was purchased from the 
Waters Corporation (Milford, MA, United States).

Sample pretreatment

For metabolomics profiling, the plasma sample was prepared by 
acetonitrile/methanol extraction. In short, 300 μL acetonitrile/
methanol containing 20% internal standard solution was vortexed 
with 50 μL of the sample for 3 min and centrifuged at 12,000 r/min 
for 10 min at 4°C. Then the supernatant was moved to −20°C for 
30 min and centrifuged at 12000 r/min for 3 min at 4°C. The final 
180 μL supernatant was used for analysis. The quality control (QC) 
sample was prepared by mixing the supernatants.

Gradient elution procedure and ESI source 
conditions for metabolomic profiling

An LC-ESI-MS/MS system (UPLC, ExionLC AD1; MS, QTRAP® 
System2) was used to analyze the sample extracts. ACQUITY UPLC 
HSS T3 C18 column (1.8 μm, 2.1 mm × 100 mm, Waters Corporation, 
Milford, MA, United States) was used for separation. The flow rate 
was 0.4 mL/min, the column temperature was set as 40°C, and the 
injection volume was set as 2 μL. Mobile phase A contained 0.1% 
formic acid in water. Mobile phase B was acetonitrile containing 
0.1% formic acid. The gradient elution procedure was as follows: 
mobile phase A was 95% for 10 min and linearly reduced to 10% in 
11 min, then rise to 95% in 13 min.

A triple quadrupole-linear ion trap mass spectrometer (QTRAP), 
QTRAP® LC-MS/MS System, combined with an ESI Turbo Ion-Spray 
interface was used for MS data acquiring. The electrospray ionization 
(ESI) source temperature was 500°C, mass spectrometry voltage was 
−4,500 V (negative) and 5,500 V (positive), ion source gas1 (GS I) was 
55 psi, ion source gas2 (Gas2) was 60 psi, and curtain gas (CUR) was 
25 psi, high collision-activated dissociation (CAD) parameter. Each 
ion pair in the triple quadrupole (Qtrap) was scanned and detected in 
accordance with their optimized declustering potential (DP) and 
collision energy (CE).

Mass spectrometry data processing and 
statistical analysis

Analyst 1.6.3 software was used to process the metabolomics 
raw MS data. Based on the self-established targeted standard 
database (MWDB), the information and secondary spectral data 
were qualitatively analyzed based on retention time, parent and 
daughter ions of detected substances. Multivariate statistical 
analysis was conducted with the R package and MetaboAnalyst 5.0 
(Xia Lab @ McGill Sweden). p < 0.05 was considered 
statistically significant.

Results

Clinical information of patients

Clinical characteristics of study participants with benign (n = 86) 
and malignant (n = 143) abnormalities are shown in Table 1. The mean 
age of participants was 44.43 ± 1.62 years and 54.95 ± 13.48 years for 
the L and E groups, respectively. Fibroadenoma was the main type of 
benign breast abnormality. Of the malignancies, 77.62% (111/143) 
were ductal carcinoma and 64.79% (92/143)were early-stage breast 
cancers (stage 0 and I). A total of 83.33% (115/138) of breast cancers 
were luminal, while Her-2 overexpression and triple-negative subtypes 
accounted for 9.79 and 6.29%, respectively.

1 https://sciex.com.cn/

2 https://sciex.com/
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Metabolomics profiling of plasma

Unsupervised PCA (principal component analysis) was 
conducted to preliminarily characterize the metabolite differences of 
each group and the variation degree within the groups. The 
unsupervised PCA was conducted after the data unit variance scale. 
PCA results showed a little separation trend of metabolome among 
groups (Figure 1).

In order to show the overall metabolic difference more clearly and 
intuitively, the metabolites in the comparison group were calculated by 
the value of fold change (FC). After calculation, according to the value of 
FC, we determined the dynamic distribution of metabolite content, and 
the top  10 metabolites upregulated and downregulated were labeled 

(Figure  2A). The top  10 upregulated metabolites were 
1,2,3-trihydroxybenzene, hyp-ser, 4-hydroxytryptamine, phenethylamine, 
2,4-dihydroxypteridine, carnitine C10:0, carnitine C3:0, sorbitol 
6-phosphate, glutathione oxidized, and 4-hydroxy-L-phenylglycine, 
whereas the top  10 downregulated metabolites were pantothenate, 
tyr-asn, N-acetylpyrrolidine,6-aminocaproic acid, L-Isoleucine, 
DL-leucine, L-tryptophan, 4-hydroxybenzoic acid, kynurenic acid, and 
isodeoxycholic acid (Table 2).

Univariate statistical analysis (parameter test and non-parameter 
test) and multivariate statistical analysis (principal component 
analysis and partial least square discriminant analysis) should 
be combined to excavate differential metabolites. Variable importance 
in projection (VIP) of the OPLS-DA model and p-value (Wilcoxon 
rank-sum test) or fold change (FC) were used to select differential 
metabolites. The volcano plot was mainly used to demonstrate the 
relative content difference of metabolites between the L and E groups 
(Figure 2B).

Hierarchical cluster analysis

Cluster analysis is a method for the classification of multivariate 
statistical analysis according to samples’ characteristics. In order to 
observe the relative content of metabolites, we used unit variance 
(UV) treatment for the original relative content of the different 
metabolites identified by the screening criteria and drew heat maps 
with the R software package (Figure 3). As Figure 3 shows, some 
metabolites were different among different groups. This result is 
consistent with the PCA and volcano plot analysis.

KEGG and regulatory network analysis

We used the KEGG compound database3 to annotate 
identified metabolites. After annotation, we  mapped the 

3 http://www.kegg.jp/kegg/compound/

TABLE 1 Clinical characteristics of study participants with benign and 
malignant abnormalities.

Malignant 
(n  =  143)

Benign 
(n  =  86)

p 
value

Age (years)mean ± SD 54.95 ± 13.48 44.43 ± 1.62 <0.00001

BMI (mean ± SD, kg/m2) 23.98 ± 3.15 23.02 ± 3.22 0.03

Menopause Pre-menopausal 34 (23.78%) 41 (47.67%) <0.00001

Peri-menopausal 29 (20.28%) 22 (25.58%)

Post-menopausal 79 (55.24%) 23 (26.74%)

Cancer type Ductal 111 (77.62%) – –

Lobular 4 (2.80%) –

Ductal and lobular 2 (1.40%) –

Other 26 (18.18%) –

TNM stage 0 14 (9.79%) – –

I 78 (54.55%) –

II 30 (20.98%) –

III 20 (13.99%) –

Unknown 1 (0.70%)

ER status Negative 26 (18.18%) – –

Positive 112 (78.32%) –

Unknown 5 (3.50%) –

PR status Negative 35 (24.48%) – –

Positive 102 (71.33%) –

Unknown 6 (4.20%) –

Her-2 status Negative 25 (17.48%) – –

Positive 112 (78.32%) –

Unknown 6 (4.20%) –

Molecular 

subtypes

Luminal A 41 (28.67%) – –

Luminal B1 25 (17.48%) –

Luminal B2 49 (34.27%) –

Her-2 

overexpression

14 (9.79%) –

Triple-negative BC 9 (6.29%) –

Unknown 5 (3.50%)

BMI, body mass index; TNM, tumor, nodes, metastases; ER, estrogen receptor; PR, 
progesterone receptor; and Her-2, human epidermal growth factor receptor-2.

FIGURE 1

PCA model of metabolomics for benign abnormality (L group) and 
malignant abnormality (E group).
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FIGURE 2

(A) Dynamic distribution of metabolite content differences. (B) Volcano plot of metabolomics for benign abnormality (L group) and malignant 
abnormality (E group).

metabolites using the KEGG Pathway database.4 Metabolite sets 
enrichment analysis (MSEA) was used to analyze the significantly 

4 http://www.kegg.jp/kegg/pathway.html

regulated pathways (Figure  4). African trypanosomiasis and 
serotonergic synapse were the main different metabolic pathways. 
We  also conducted regulatory interaction network analysis 
according to the KEGG database, which was displayed by network 
plot (Figure 5).
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Biomarker evaluation

We used receiver operating characteristic (ROC) analysis to 
evaluate the significantly different metabolites. Multivariate 
exploratory ROC analysis was performed using MetaboAnalyst 5.0. 
The differentiation of L group and E group could be  reached by 
combining 14 metabolites (AUC = 0.792, 95%Cl: 0.662–0.809) 
(Figure 6).

Discussion

Discrimination of breast abnormalities between benign and 
malignant before surgery has been a challenging issue in clinical 
practice, though imaging has shown advantages in detecting breast 
abnormalities. The inpatients with various imaging abnormalities 
were admitted for surgeries. The profiling of peripheral plasma 
targeted metabolomics could supplement further information to 

imaging. This wide range of untargeted metabolomics profiling 
showed that serotonergic synapse was the main different metabolic 
pathway. The dynamic distribution of metabolite content difference 
was drawn according to the value of FC, and the top 10 metabolites 
upregulated and downregulated were labeled, as shown in Figure 2. In 
Figure 3, the x-coordinate represents the logarithm value (log2FC) of 
the multiple of the relative content difference of a certain metabolite, 
the difference significance level (−log10p-value). Figure 3 was drawn 
under the FC and p-value double screening condition. The top 10 
upregulated metabolites (1,2,3-trihydroxybenzene, hyp-ser, 
4-hydroxytryptamine, phenethylamine, 2,4-dihydroxypteridine, 
carnitine C10:0, carnitine C3:0, sorbitol 6-phosphate, glutathione 
oxidized, and 4-hydroxy-L-phenylglycine) and top 10 downregulated 
metabolites (Pantothenate, tyr-asn, N-acetylpyrrolidine,6-
aminocaproic acid, L-Isoleucine, DL-leucine, L-tryptophan, 
4-hydroxybenzoic acid, kynurenic acid, and isodeoxycholic acid) 
could be applied in inpatients whose breast abnormalities are difficult 
to distinguish between benign and malignant.

TABLE 2 Significant metabolites for comparison of participants with benign and malignant abnormalities.

Q1 (m/z) Metabolite Formula Benign (L group) / Malignant (E group)

CAS p-value Fold change Type

114.1 N-acetylpyrrolidine C6H11NO 4030-18-6 1.290E-01 8.746E-01 Down

122.1 Phenethylamine C8H11N 64-04-0 8.326E-02 1.195E+00 Up

132.1 L-Isoleucine C6H13NO2 73-32-5 1.787E-01 8.681E-01 Down

132.1 6-Aminocaproic Acid C6H13NO2 60-32-2 1.186E-01 8.585E-01 Down

132.1 DL-Leucine C6H13NO2 328-39-2 1.186E-01 8.585E-01 Down

137.0 4-Hydroxybenzoic Acid C7H6O3 99-96-7 1.364E-01 7.916E-01 Down

165.3 2,4-Dihydroxypteridine C6H4N4O2 487-21-8 2.803E-01 1.170E+00 Up

177.1 4-Hydroxytryptamine C10H12N2O 570-14-9 1.343E-02 1.199E+00 Up

188.0 Kynurenic Acid C10H7NO3 492-27-3 1.088E-01 7.917E-01 Down

205.1 L-Tryptophan C11H12N2O2 73-22-3 5.234E-03 8.306E-01 Down

206.1 N-Acetyl-L-phenylalanine C11H13NO3 2018-61-3 4.084E-01 1.007E+00 Up

218.1 Carnitine C3:0 C10H19NO4 17298-37-2 5.516E-01 1.153E+00 Up

218.1 Pantothenate C9H17NO5 79-83-4 8.921E-01 8.708E-01 Down

219.1 hyp-ser C8H14N2O5 – 1.544E-01 1.206E+00 Up

296.1 Tyr-Asn C13H17N3O5 151145-11-8 2.113E-01 8.732E-01 Down

316.2 Carnitine C10:0 C17H33NO4 – 6.081E-01 1.020E+00 Up

391.3 Isodeoxycholic acid C24H40O4 566-17-6 1.665E-01 7.518E-01 Down

523.1 Sorbitol 6-phosphate C6H15O9P 20479-58-7 5.135E-01 1.131E+00 Up

611.1 Glutathione Oxidized C20H32N6O12S2 121-24-4 6.782E-01 1.124E+00 Up

FIGURE 3

Heatmap of different features for benign (L group) and malignant abnormalities (E group).
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The technique of mass spectrometry has quickly developed. By 
identification of metabolic biomarkers indicative of various 
pathologies, new MS techniques could further our understanding of 
diseases. In our study, we  acquired metabolite data by QTRAP® 
LC-MS/MS System combined with an ESI Turbo Ion-Spray interface, 
which could explore a better panel of metabolites for the classification 
of breast abnormalities. We formed a panel of 14 significantly different 

metabolites (p < 0.05; fold change >2 or fold change <0.67), which 
might be used more conveniently in clinical practice (AUC = 0.792, 
95%Cl: 0.662–0.809). Metabolic pathway analysis showed serotonergic 
synapse was the main different metabolic pathway, which could add 
new knowledge in metabolites studies (15, 16). Together with the 
signaling pathway of HIF-1 and ferroptosis, serotonergic synapse-
related DEGs were usually significantly enriched (17). The 

FIGURE 4

(A) KEGG MSEA enrichment analysis diagram for benign (L group) and malignant abnormalities (E group). (B) KEGG enrichment map of differential 
metabolites for benign (L group) and malignant abnormalities (E group).
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serotonergic synapse signal pathway was activated by the core gene 
protein kinase PKA and the expression of 5-HT and GABA was 
increased, hence insomnia symptoms were improved and anxiety was 
alleviated (18).

Serotonin is involved in a variety of physiological processes, such 
as platelet activation, liver regeneration, pancreatic cell function, 
regulation of vasoconstriction, and repair after ischemic injury. In 
addition, serotonin acts as an important inflammatory mediator, 
affecting immune functions such as leukocyte adhesion and migration. 
Serotonin is also associated with cell proliferation and cancer, 
promoting the growth of hepatocellular carcinoma. Serotonin levels 
also play a role in the Warburg effect of pancreatic cancer, with 
serotonin and serotonin receptors possibly modulating the phenotype 
and function of various immune cells (19, 20). This may be linked to 
and associated with patient emotion, but this needs to 
be further studied.

Xie et al. (21) found that serotonin expression was also much 
higher in triple-negative (PR-, ER-, HER-2) breast cancer (TNBC) and 
triple-positive breast cancer (TPBC) compared to para-carcinoma 

tissues (PCTs). However, we  did not find this relationship, and 
we concluded that this may be related to the sample source since 
we used peripheral blood, whereas Xie et al. (21) used tissue and 
cell lines.

As to matrix metalloproteinases (MMPs), no difference between 
the benign and malignant breast abnormalities was observed in our 
study. By now the biological function of MMPs in cancer remains 
controversial. Originally, MMPs are proteases capable of remodeling 
the extracellular matrix, but they have been demonstrated to play 
numerous additional biologic roles in inflammatory, autoimmune, 
cancer, and pathogen-mediated diseases (22). As MMPs are the most 
prominent proteinases involved in tumorigenesis, hence they might 
be  potential therapeutic targets in breast cancer (23). There are 
thousands of MMPs suggested substrates and only a few hundred have 
been validated (24). In disease progression and resolution, the 
contributions of MMPs could be both beneficial and detrimental. 
They were initially recognized to promote tumor progression by 
remodeling the extracellular matrix through their proteolytic activity. 
Afterward, it was revealed that the same MMP can exert opposing 

FIGURE 5

Differential metabolite regulatory network.
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roles depending on the cell type in which it is expressed or the stage 
of cancer. Hence, the role of MMPs’ double edge sword in 
tumorigenesis and progression leads to no difference between benign 
and malignant breast abnormalities and warrants further research.

Discrepancies do exist between our study and previous results (16, 
25–27), which is a common phenomenon in similar studies. Some of 
the results might even suggest the opposing direction, which warrants 
more work to further our understanding of tumors. By now we know 
more about tumors by different techniques (especially MS), while 
different study results could not be systemically summarized. A larger 
sample size might help screen out optimal panels, but might also lead 
to more complicated information. In this project, we used a wide 
range of targeted metabolomics methods and used standard molecule 
data as a control. We were able to determine the absolute content of 
key molecules. Furthermore, we are enlarging the number of patients 
and trying to develop a method of detecting the key molecules in this 
study, which will make the results more robust. More work should 
be done on data processing and analyzing so as to obtain genuine and 
useful explanations.

Though our study adds further information to peripheral plasma 
profiling of untargeted metabolomics, there are some limitations. 
First, no information on plasma metabolomics of healthy controls was 
screened, hence the results could only be adapted to clinical practice. 
Further study on healthy women should be done in order to adapt to 
population screening of breast abnormalities. Second, the sample size 
was relatively small. An enlarged sample size would be helpful to 
further confirm the profiling results. Third, the mechanism of 
significantly different metabolites was unclear and further study 
is warranted.

In conclusion, our study revealed the metabolic heterogeneity 
between benign breast abnormalities and breast cancers, and a panel 
of 14 metabolites was screened out to assist in the differentiation of 
benign and malignant breast abnormalities for inpatients in clinical 
settings. Since we did not find a single excellent specific biomarker for 
the differentiation of benign and malignant breast abnormalities, 

we combined many metabolites and evaluated them by AUC rank. 
However, this model needs to be validated in other patients and other 
centers. Combined with imaging, the detection of metabolites by MS 
might improve clinical diagnosis accuracy and partly relieve the 
anxiety of some inpatients regarding breast abnormalities.
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FIGURE 6

ROC curve for benign (L group) and malignant abnormalities (E 
group).
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