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Background: Aging and immune infiltration have essential role in the 
physiopathological mechanisms of diabetic nephropathy (DN), but their 
relationship has not been systematically elucidated. We identified aging-related 
characteristic genes in DN and explored their immune landscape.

Methods: Four datasets from the Gene Expression Omnibus (GEO) database were 
screened for exploration and validation. Functional and pathway analysis was 
performed using Gene Set Enrichment Analysis (GSEA). Characteristic genes were 
obtained using a combination of Random Forest (RF) and Support Vector Machine 
Recursive Feature Elimination (SVM-RFE) algorithm. We evaluated and validated 
the diagnostic performance of the characteristic genes using receiver operating 
characteristic (ROC) curve, and the expression pattern of the characteristic 
genes was evaluated and validated. Single-Sample Gene Set Enrichment Analysis 
(ssGSEA) was adopted to assess immune cell infiltration in samples. Based on 
the TarBase database and the JASPAR repository, potential microRNAs and 
transcription factors were predicted to further elucidate the molecular regulatory 
mechanisms of the characteristic genes.

Results: A total of 14 differentially expressed genes related to aging were obtained, 
of which 10 were up-regulated and 4 were down-regulated. Models were 
constructed by the RF and SVM-RFE algorithms, contracted to three signature 
genes: EGF-containing fibulin-like extracellular matrix (EFEMP1), Growth 
hormone receptor (GHR), and Vascular endothelial growth factor A (VEGFA). 
The three genes showed good efficacy in three tested cohorts and consistent 
expression patterns in the glomerular test cohorts. Most immune cells were more 
infiltrated in the DN samples compared to the controls, and there was a negative 
correlation between the characteristic genes and most immune cell infiltration. 
24 microRNAs were involved in the transcriptional regulation of multiple genes 
simultaneously, and Endothelial transcription factor GATA-2 (GATA2) had a 
potential regulatory effect on both GHR and VEGFA.

Conclusion:  We identified a novel aging-related signature allowing assessment of 
diagnosis for DN patients, and further can be used to predict immune infiltration 
sensitivity.
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1. Introduction

Diabetic nephropathy (DN) is one of the most severe 
microangiopathic complications of diabetes mellitus, and it may 
be  considered the significant cause of death in patients with 
end-stage renal disease (ESRD) (1). The significant pathological 
alterations in DN include glomerulopathy, renal tubular atrophy 
and renal interstitial fibrosis. According to an epidemiological 
survey, DN accounts for 47% of ESKD patients in the US and up to 
60% in countries such as Malaysia and Singapore (2). In an autopsy 
study, histologically confirmed DN’s prevalence was higher than 
clinically diagnosed (3). Due to the widespread prevalence and 
poor prognosis of diabetic nephropathy, it is critical to further 
explore the pathogenesis of diabetic nephropathy and potential 
biomarkers for early identification and prevention of 
diabetic nephropathy.

Cellular senescence is the state in which the G1 and G2 phase of 
the cell cycle comes to an infinite halt, and it plays a crucial role in 
renal aging and diseases. The kidney with DN displays an accelerated 
senescent phenotype in tubule cells and podocytes (4), and high 
glucose can cause premature senescence in human glomerular 
mesangial cells and proximal tubule epithelial cells (5, 6). The 
detrimental effects of persistent cellular senescence are closely related 
to the senescence-associated secretory phenotype (SASP), which is 
characterized by multiple factors that contribute to chronic 
inflammation, adverse tissue remodeling, and fibrosis (7). There is a 
strong positive association between age and nephrosclerosis in healthy 
adults (8), and epithelial cell cycle arrest in G2/M mediates kidney 
fibrosis after injury (9). Kidney fibrosis is one of major outcome of 
diabetic nephropathy, and the functional consequence of the 
epithelial-to-mesenchymal transition (EMT) program during fibrotic 
injury is an arrest in the G2 phase of the cell cycle (10). Cellular 
phenotypic transitions play an important role in the development of 
diabetic nephropathy. Macrophage-myofibroblast transition (MMT) 
can lead to progressive renal fibrosis induced by ongoing chronic 
inflammation (11).

Chronic inflammation has become one of the essential hallmarks 
driving aging (12). Aging T cells accelerate renal fibrosis in mice and 
maintain a pro-inflammatory state (13). M1 macrophages secrete 
pro-inflammatory cytokines to promote tissue inflammation and 
kidney injury (14). Increasing researches suggest a central role for 
chronic inflammation and immune cell infiltration in DN. A 
significant increase in macrophages has been observed in the 
glomerular and tubular interstitium of human T2D (15), and aberrant 
intrarenal infiltration and the activation of T cells in interstitium are 
the underlying immunopathological mechanisms of diabetic kidney 
injury (16). In another experiment, T cell immunoglobulin domain 
and mucin domain-3 (Tim-3) has been found to play a critical role 
in developing DN in macrophages (17). Cellular phenotypic 
transformations such as MMT and EMT are involved in immune 
inflammatory pathways promoting the development of DN. A 
growing body of research provides important clues to the relationship 

between ageing and immunity, but at present there is a lack of 
concrete explanation between them and the mechanisms underlying 
their role in DN.

MicroRNAs (miRNAs) have been identified as epigenetic factors 
with the ability to influence aging and DN (18, 19). miR-21 targets 
Smad7/TGF-β1 pathways to aggravate EMT and accelerate renal 
fibrosis in diabetic mice (20). High expression of miR-let-7c can 
reduce renal fibrosis in rats and promote the resolution of 
inflammation (21). In addition, some researches have shown that 
transcription factors(TFs) play an essential role in the pathogenesis 
and outcome of DN (22, 23). Currently, many DN therapeutic drug 
mechanisms involve renal aging and immune response. The dipeptidyl 
peptidase-4 (DPP-4) inhibitor, sodium-glucose co-transporter 2 
(SGLT-2) inhibitors and Rho-associated kinase (ROCK) inhibitor can 
ameliorate diabetic renal fibrosis and suppress proinflammatory 
pathways, thereby delaying the progression of DN (24–27). AcSDKP 
alone or in combination with ACE inhibitors can prevent renal fibrosis 
by inhibiting the EndMT program in the kidneys of diabetic mice 
(28). Glycolysis inhibitors decrease the expression of both 
inflammatory and fibrotic genes by suppressing glycolytic activation 
in macrophages (29). Therefore, it is instructive to explore the 
mechanisms of diabetic nephropathy based on senescence action, 
which can help identify clinically significant aging genes and provide 
potential biomarkers for diagnosis and treatment.

Our research aims to identify aging-related gene signatures and 
their immune landscape. We adopted a combination of the RF and the 
SVM-RFE model to screen for characteristic genes and validate the 
diagnostic efficacy and expression patterns in three independent test 
cohorts. In addition, we further explored and validated the association 
of characteristic genes with immune infiltration in DN samples. 
We also predicted potential miRNAs and TFs further to elucidate the 
molecular regulatory mechanisms of the signature genes. The findings 
may provide a novel theoretical foundation for developing diagnostic 
biomarkers and therapeutic targets of diabetic nephropathy based on 
aging-related genes.

2. Materials and methods

2.1. Data collection and processing

Four expressions profiling by array about DN were obtained from 
the Gene Expression Omnibus (GEO) repository.1 GSE30122 
contains 19 DN and 50 healthy control (HC) samples, where DN and 
control samples derived from glomerular tissues are used as a training 
cohort, and its platform number is GPL571. GSE96804(DN = 41, 
HC = 20, GPL17586), GSE1009(DN = 3, HC = 3, GPL8300), 
GSE30529(DN = 10, HC = 12, GPL571) were mainly used for test and 

1 https://www.ncbi.nlm.nih.gov/geo/
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validation. GSE96804 and GSE1009 were obtained from glomerular 
biopsy specimens, and GSE30529 was obtained from tubular biopsy 
specimens. Probe annotation was performed using R software to 
obtain mRNA-seq arrays containing gene symbols. Probes with 
multiple genes were excluded, and the mean of the corresponding 
genes was calculated. Genes with multiple probes were calculated as 
averages. The data were normalized via the “normalize between 
arrays” function of the R package “limma” to achieve consistency 
between arrays. Differentially expressed genes (DEGs) were screened 
in the DN and control samples with the criteria of |log2 fold 
change| ≥ 1.0 and Pvalue < 0.05. 307 aging-related genes (30) were 
selected from Human Aging Genomic Resources2 
(Supplementary Table 1). Mapping aging-related genes in DEGs to 
obtain aging-related DEGs, visualized by R package 
“ggVennDiagram.”

2.2. Functional enrichment analysis

Functional enrichment analysis was conducted to identify the 
corresponding biological pathways involved in the aging-related 
DEGs. Gene ontology (GO) enrichment analysis interpreted the 
biological significance of genes from three perspectives: biological 
process (BP), cellular component (CC), and molecular function (MF). 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis 
was used to assess gene function systematically. R package 
“Clusterprofiler” was employed to automate the enrichment analysis 
of gene clusters. 10 BP terms, 5 MF terms, 5 CC terms, and 20 KEGG 
terms with the criteria of value of p < 0.01 and q-value < 0.05 were 
visualized by R package “ggplot2” and “enrichplot.” R package “org.
Hs.eg.db” was used for conversion between gene IDs.

2.3. Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed in the DN 
and the control groups. The top terms of HALLMARK pathways with 
significant enrichment results were exhibited based on Net 
Enrichment Score (NES), gene ratio, and p value. Gene sets with 
|NES| > 1, Pvalue < 0.01, and Q value < 0 0.05 were considered to 
be enrichment significant (31). The gene set database (h.all.v2022.1.Hs.
symbols) used during the analysis was downloaded from the 
Molecular Signature Database.3

2.4. Construction of machine learning 
models

Random Forest (RF) model and Support Vector Machine 
Recursive Feature Elimination (SVM-RFE) model were established 
on the ground of the training cohort. RF is a classification algorithm 
that uses multiple trees to train and predict samples and is 
characterized by high accuracy. The max number of trees in the RF 

2 https://genomics.senescence.info/

3 https://www.gsea-msigdb.org/gsea/msigdb/index.jsp

model was set to 500, and the mean decrease gini (MDG) was used 
as an essential measure (32). MDG involved in the random forest 
algorithm provides ways to quantify which indices contribute most 
to classification accuracy. Based on the RF model established by R 
package “randomForest,” we analyzed the significance of variables 
and selected critical genes with MDG > 1. Furthermore, a machine 
learning technique, SVM-RFE, was utilized to find the best variable 
by deleting the feature vector generated by SVM (33). R package 
“e1071” was adopted to further screen aging-related genes in 
DN. The intersections contracted by the RF and SVM-RFE models 
were considered characteristic genes and used for 
subsequent analysis.

2.5. Establishment of a nomogram

To predict the occurrence of DN based on aging-related genes, 
characteristic genes were incorporated to establish a nomogram using 
R package “rms.” A receiver operating characteristic (ROC) curve was 
drawn to assess the diagnostic ability of the nomogram model. The 
calibration curve was utilized for evaluating the accuracy of 
the nomogram.

2.6. Validation of characteristic genes in 
test cohorts

We used the training cohort to evaluate the diagnostic 
performance of the characteristic genes, and three independent 
cohorts (GSE1009, GSE96804, GSE30529) were used to validate. ROC 
curve analyses were conducted with the R package “pROC,” The area 
under the ROC curve (AUC) values were utilized to assess the 
predictive utility of characteristic genes. A 95% Confidence interval 
(CI) was employed to estimate the range of the parameters. 
Furthermore, GSE30529 was used to verify the diagnostic performance 
of characteristic genes in renal tubules of DN patients. In addition, 
expression patterns of characteristic genes were validated in test 
cohorts by comparing the samples of control and patients with DN.

2.7. The Single-Sample Gene Set 
Enrichment Analysis

The Single-Sample Gene Set Enrichment Analysis (ssGSEA) 
algorithm was adopted to assess the relative abundance of infiltration 
in our study (34). R package “GSEA” was used to quantify different 
immune cell enrichment scores with Gaussian parameters. ssGSEA 
algorithm is a rank-based method that defines a score representing 
the degree of absolute enrichment of a particular gene set in each 
sample. The gene sets from published studies were fed into the 
ssGSEA algorithm for enrichment analysis, and the gene set for 
marking each immune cell was obtained from the study of Dr. 
Charoentong (35). The ssGSEA scores of 28 immune cells were 
correlated, and the results were visualized by R package “corrplot,” 
and the results with Pvalue < 0.05 were considered significant. 
Spearman correlation coefficient was calculated to measure the 
correlation between the expression of characteristic genes and 
immune cell infiltration abundance.
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2.8. Construction of the molecular 
interaction networks

We created the protein–protein interaction (PPI) network to 
acquire insights into cellular machinery operations for aging-related 
genes through the STRING database4. The minimum required 
interaction score was set as medium confidence (0.400).

To explore the molecular and regulatory mechanisms of the 
characteristic genes, we  tried to demonstrate the regulatory 
transcription factors (TFs) and miRNAs in a network-based approach. 
TFs were identified from the JASPAR repository on the NetworkAnalyst 
platform5, and miRNAs targeting characteristic genes were identified 
similarly based on the TarBase database. The interaction network about 
the relationship between genes and miRNAs, genes, and TFs was 
constructed by Cytoscape (V3.9.1) software.

2.9. Association between characteristic 
genes and clinical features

The Nephroseq V5 tool6 was employed to validate the expression 
of the characteristic genes in diabetic nephropathy and other kidney-
related diseases. Correlation analysis and subgroup analysis between 
the characteristic genes and clinical features were also performed to 
verify the potential functions of aging-related genes in 
DN. We acquired the raw data from the Nephroseq V5 database and 
utilized R package “ggpubr” to redraw the scatter plots.

2.10. Statistical analysis

All statistical tests were implemented utilizing R software 4.2.1. 
The Wilcoxon rank sum test was used to analyze the significance of 
differential gene expression in the GEO datasets. Student’s t-test was 
utilized for analyzing continuous variables between the two groups. 
Comparisons between multiple groups were conducted with ANOVA 
test. The correlation between the variables was determined using 
Spearman’s correlation test. All statistical p-values were two-sided, and 
p < 0.05 was considered statistical significance.

3. Results

3.1. Identification of aging-related DEGs

Differential gene analysis was performed in the glomerular samples 
of the training cohort GSE30122 with Pvalue < 0.05 and absolute value 
of log2 fold change > 1. Compared with healthy controls, DN patients 
had 334 downregulated DEGs and 106 upregulated DEGs (Figure 1A). 
Fourteen aging-related DEGs were obtained by mapping DEGs to 
aging-related genes (Figure 1B), a box plot highlighted their expression 
patterns in DN samples and healthy controls (Figure 1C). Growth 
hormone receptor (GHR), insulin-like growth factor I  (IGF1), 

4 https://cn.string-db.org/

5 https://www.networkanalyst.ca/

6 http://v5.nephroseq.org/

insulin-like growth factor-binding protein 2 (IGFBP2), vascular 
endothelial growth factor A (VEGFA), platelet-derived growth factor 
receptor beta (PDGFRB), somatostatin (SST), 1-phosphatidylinositol 
4,5-bisphosphate phosphodiesterase gamma-2 (PLCG2), CCN family 
member 2 (CTGF), EGF-containing fibulin-like extracellular matrix 
(EFEMP1), cholesteryl ester transfer protein (CETP) had lower 
expressions in DN, and interleukin-7 receptor subunit alpha (IL7R), 
complement C1q subcomponent subunit A (C1QA), glutathione 
peroxidase 1 (GPX1), clusterin (CLU) had higher expressions in 
DN. The distribution of 14 genes in chromosomes was illustrated in 
Figure  1D. A PPI network of aging-related DEGs in DN was 
constructed using the STRING database. The network included 17 
edges and 14 nodes (Figure 1E), VEGFA and IGF1 had the tightest 
interaction (Degree = 6) with other nodes. Three up-regulated genes, 
IL7R, C1QA, GPX1, did not have connection to other notes.

3.2. Functional and pathway enrichment 
analysis of aging-related DEGs

GO and KEGG enrichment analyses were performed to determine 
the potential biological functions of aging-related DEGs. The most 
significant enrichment terms for GO were peptidyl-tyrosine 
modification, neuroinflammatory response, negative regulation of 
release of cytochrome c from mitochondria, insulin-like growth factor 
receptor signaling pathway, aging, positive regulation of protein kinase 
activity, negative regulation of mitochondrion organization, muscle 
cell development, growth factor binding, growth factor activity, etc. 
(Figure 2A). It is primarily involved in biological processes such as 
aging, energy metabolism and growth (36–38). Neuroinflammatory 
response implies that these genes may be  involved in immune 
regulation, which can be  further explored. The KEGG pathway is 
mainly enriched in PI3K-Akt signaling pathway, EGFR tyrosine 
kinase inhibitor resistance, growth hormone synthesis, secretion and 
action, Ras signaling pathway, HIF-1 signaling pathway, JAK–STAT 
signaling pathway, Rap1 signaling pathway, calcium signaling pathway, 
MAPK signaling pathway, VEGF signaling pathway, complement and 
coagulation cascades, inflammatory mediator regulation of TRP 
channels, AGE-RAGE signaling pathway in diabetic complications, 
FoxO signaling pathway (Figure  2B). According to GSEA results, 
TGF-beta signaling, UV response DN, mitotic spindle, epithelial 
mesenchymal transition was down-regulated in DN (Figure 2C) and 
xenobiotic metabolism, fatty acid metabolism, IL6-JAK-STAT3 
signaling, allograft rejection, oxidative phosphorylation was 
up-regulated in DN (Figure 2D).

3.3. Identification and evaluation of 
characteristic genes

We input aging-related DEGs into the random forest model. 
Referring to the relationship plot between the model error and the 
number of decision trees (Figure 3A), 9 trees were selected as the final 
model parameter, indicating that the model error is minimum and 
stable. In constructing the random forest model, we measured the 
variable importance of the output results (Gini coefficient method) in 
decreasing accuracy and decreasing mean square error (39). Six genes 
with MDG greater than 1 were then identified as candidate genes. 
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Among these six variables, IGFBP2 and EFEMP1 were the most 
important, followed by GHR, VEGFA, CLU, and C1QA (Figure 3B). 
Four candidate genes, GHR, VEGFA, CTGF and EFEMP1, were 
extracted from aging-related DEGs by SVM-RFE algorithm 
(Figure 3C) because of the minimum root mean square error (RMSE). 
Candidate genes from two models were overlapped, and 3 aging-
related characteristic genes in DN were identified: EFEMP1, GHR, 
and VEGFA. A diagnostic model was constructed by logistic 
regression based on expressions of the characteristic genes in the 
training cohort and visualized as a nomogram (Figure 3D). The model 
showed a high AUC value (0.942), confirming the excellent predictive 
performance (Figure 3E). The calibration plot evaluated the bias of the 
prediction model with the actual event (Figure 3F).

3.4. ROC curves of characteristic genes in 
the evaluation and validation cohorts

To estimate the predictive utility of the characteristic genes, 
we performed a ROC curve analysis and validated it in three independent 
cohorts. All three characteristic genes illustrated a remarkably 
distinguishing efficiency. AUC combines sensitivity and specificity and 
can authenticate the inherent validity of a diagnostic test. AUC values of 
EFEMP1, GHR and VEGFA were 0.987 (95% CI: 0.949–1.000), 1.000 
(95% CI: 1.000–1.000) and 0.991 (95% CI: 0.962–1.000) in the DN 
training cohort, respectively (Figure  4A). The characteristic genes 
consistently showed excellent diagnostic performance in three 
independent test cohorts. AUC values of three characteristic genes were 

FIGURE 1

Identification of aging-related DEGs. (A) Volcano plot of DEGs between normal and DN samples in diabetic nephropathy. (B)Venn diagram of aging-
related genes and DEGs of DN. (C) Box plot of 14 aging-related DEGs in DN and healthy samples. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. 
(D) The specific location of each aging-related DEGs on the chromosome. (E)The PPI network revealed the interactions among the aging-related 
DEGs.
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all 1.000 (95% CI: 1.000–1.000) in GSE1009 (Figure 4B). In GSE30529, 
AUC values of EFEMP1, GHR and VEGFA were 0.817 (95% CI: 0.608–
0.992), 0.858(95% CI: 0.675–0.983) and 0.900 (95% CI: 0.733–1.000; 
Figure 4C). GHR maintained a high AUC value of 0.863 (95% CI: 0.761–
0.946) in GSE96804 (Figure  4D). These characteristic genes could 
be considered potential diagnostic biomarkers for DN.

3.5. Evaluation and validation of expression 
patterns of characteristic genes

Compared with the control group, decreased expressions 
(p < 0.0001) of EFEMP1, GHR and VEGFA were observed in the 
glomerular samples from the DN training cohort (Figure 5A). Test 
cohorts validated the results, and consistent gene expression 
patterns with statistical significance were obtained in GSE96804 
(Figure 5B) and GSE1009 (Figure 5C). Interestingly, the expression 
of EFEMP1 was still significantly downregulated (p < 0.01) in renal 

tubule samples from the DN test cohort. In contrast, the 
expressions of GHR and VEGFA were upregulated (p < 0.01) in 
renal tubules (Figure  5D). Furthermore, we  validated the 
expression patterns of the characteristic genes in the Nephroseq 
V5 database. Three genes remained down-regulated in the DN 
group (Figure  6A). Notably, the characteristic genes were 
significantly under-expressed in DN compared to other kidney-
related diseases (Figures 6B–D).

3.6. Assessment of immune cell infiltration 
in DN

Based on the ssGSEA algorithm, we  evaluated the immune 
infiltration of the training cohort. The level of infiltration of each immune 
cell in the DN and control samples is shown in Figure 7A. The infiltration 
between different immune cells was mostly positively correlated and 
statistically significant (Pvalue < 0.05; Figure  7B). On the contrary, 

FIGURE 2

Functional and pathway enrichment analysis. (A) GO terms in the enrichment analysis of aging-related DEGs. (B) KEGG terms in the enrichment 
analysis of aging-related DEGs. (C) Down-regulated pathways of DN in the GSEA analysis. (D) Up-regulated pathways of DN in the GSEA analysis.
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CD56dim natural killer cells were negatively correlated with most other 
immune cells. Compared to the controls, most of the immune cells were 
highly expressed in DN: activated B cell (P value = 0.007), activated CD8 
T cell (P value = 0.023), central memory CD8 T cell (P value < 0.001), 
memory B cell (Pvalue <0.001), regulatory T cell (P value <0.001), T 
follicular helper cell (P value = 0.016), type 17 T helper cell (P 
value = 0.016), activated dendritic cell (P value = 0.046), CD56dim natural 
killer cell (P value < 0.001), mast cell (P value = 0.001), MDSC (P 
value = 0.016). Only plasmacytoid dendritic cell (P value = 0.009) was 
more infiltrated in the control group (Figure 7C), and immune infiltration 
tended to be upregulated in DN samples. In the test cohort GSE96804, 
most immune cells were also more infiltrated in DN samples; Only 
neutrophil, monocyte and CD56dim natural killer cell were more 
infiltrated in the control group (Supplementary Figure 1).

3.7. Evaluation and validation of the 
associations between characteristic genes 
and immune landscape

In order to better understand the role of the characteristic genes in 
immune infiltration, we subsequently conducted spearman correlation 
analysis to ascertain whether these genes were correlated with immune 
cell infiltration. The expression of GHR and the infiltration of CD56dim 

natural killer cell, mast cell, regulatory T cell, MDSC, central memory 
CD8 T cell, activated CD4 T cell, activated B cells, activated CD8 T cell, 
T follicular helper cell, activated dendritic cell, monocyte, memory B cell, 
type 17 T helper cell were negatively correlated with statistical 
significance; plasmacytoid dendritic cell, natural killer T cell, and effector 
memory CD4 T cell were positively correlated with GHR (Figure 8A). 
The expression of VEGFA and EFEMP1 was also negatively correlated 
with the majority of immune cell infiltrates (Figures 8B,C), suggesting 
that the expression levels of the characteristic genes could reflect the 
immune landscape of DN patients. In the test cohort, we  obtained 
similar validation results (Figures  8D–F), with an overall negative 
correlation between the expression of the characteristic genes and the 
levels of infiltration. T cells and B cells in the test cohort were significantly 
negatively correlated with the characteristic genes, while neutrophil was 
positively correlated. In addition, mast cell, regulatory T cell and memory 
B cell were significantly negatively correlated with the characteristic 
genes in both cohorts.

3.8. Prediction of TFs and microRNAs 
associated with characteristic genes

We employed publicly available bioinformatic databases to reveal 
the potential changes and molecular regulatory mechanisms 

FIGURE 3

Construction of machine learning models. (A) The influence of the number of decision trees on the error rate. The x-axis represents the number of 
decision trees, and the y-axis indicates the error rate. (B) Results of the Gini coefficient method in the RF model. The x-axis represents the MDG, and 
the y-axis indicates the genetic variable. (C) Support Vector Machine Recursive Feature Elimination (SVM-RFE) algorithm to screen candidate genes. 
The x-axis indicates the genetic variable, and the y-axis represents RMSE cross-validated. (D) Nomogram for the diagnostic model of DN. (E) Receiver 
operating characteristic (ROC) curve for the diagnostic model. (F) Calibration curve for the diagnostic model.
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FIGURE 4

Receiver operating characteristic (ROC) curves of aging-related characteristic genes in DN. (A) ROC curves of three characteristic genes in the training 
cohort. (B) ROC curves of three characteristic genes in the test cohort GSE1009. (C) ROC curves of three characteristic genes in the test cohort 
GSE30529. (D) ROC curves of three characteristic genes in the test cohort GSE96804.
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happening at the transcriptional level for the characteristic genes 
(Supplementary Table 2). miRNAs corresponding to the characteristic 
genes were predicted, and the mRNA-miRNA network based on the 
TarBase repository was constructed (Figure 9A); these genes were 
linked together by multiple shared miRNAs. There were 17 miRNAs 
associated with VEGFA and EFEMP1, 6 miRNAs associated with 
GHR and VEGFA, and 1 miRNA associated with GHR and EFEMP1. 
The potential TFs from the JASPAR database were acquired and the 
mRNA-TF network was developed (Figure 9B), and GATA2 has a 
regulatory effect on both GHR and VEGFA.

3.9. Clinical correlation of the 
characteristic genes with renal function

To further explicate the functions of these characteristic genes in 
DN, correlation analysis between 3 genes and clinical features was 
conducted based on the Nephroseq database. GHR (r = 0.71) and 
VEGFA (r = 0.72) demonstrated a robust positive correlation with 
GFR (Figures 10A,B), and GHR (r = −0.53) and VEGFA (r = −0.59) 
displayed a negative association with serum creatinine level 

(Figures 10D,E). Therefore, A higher expression of GHR and VEGFA 
may indicate better renal function in patients with DN, potentially 
providing a protective role against DN. EFEMP1 (r = −0.75) exhibited 
a firm negative correlation with GFR (Figure 10C), and EFEMP1 
(r = 0.72) presented a strong correlation with serum creatinine level 
(Figure  10F). Thus, the expression alteration of EFEMP1 may 
contribute to the occurrence and progression of DN. Furthermore, 
we  conducted correlation analysis using samples from multiple 
kidney-related diseases. Characteristic genes remained significantly 
correlated and the trends were consistent with that of DN samples 
(Figures 10G–I), suggesting that the characteristic genes may play a 
critical role in the progression of kidney diseases.

4. Discussion

Diabetic nephropathy is a complex chronic disease and could 
eventually lead to the development of renal failure. Therefore, 
identifying the predictors of DN based on the pathogenesis of DN 
is of great significance for the prevention and early intervention 
of DN. In recent years, there has been an increasing interest in the 

FIGURE 5

Expression patterns of the characteristic genes in the training and test cohorts. (A) Violin plot of expression about three characteristic genes in the 
training cohort. (B) Violin plot of expression about three characteristic genes in the test cohort GSE96804. (C) Violin plot of expression about three 
characteristic genes in the test cohort GSE1009. (D) Violin plot of expression about three characteristic genes in the test cohort GSE30529.
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role of aging in the pathogenesis of DN. This study used 
bioinformatics to explore aging-related characteristic genes in 
DN. We used RF and SVM-RFE algorithms to construct models 
for screening, and the two methods were contracted to obtain 
three intersecting genes: EFEMP1, GHR, and VEGFA. The ROC 
results showed good DN diagnostic performance of the three 

genes in the test cohort, and they showed consistent expression 
patterns in the glomerular test cohort. Therefore, we proposed 
that EFEMP1, GHR and VEGFA are potential aging-related 
characteristic genes for DN. These three characteristic genes can 
be  considered DN diagnostic biomarkers and used to develop 
therapeutic targets.

FIGURE 6

Expression patterns of the characteristic genes in the Nephroseq V5 database. (A) Box plots of the expression about three characteristic genes in the 
DN samples and healthy living donors. (B–D) Box plots of the expression about GHR (B), VEGFA (C) and EFEMP1 (D) in multiple renal diseases.
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There are four isoforms of GHR, of which GHRd3 is mainly 
expressed in the kidney, bladder, adrenal glands and brainstem. The 
GHR signaling pathway plays an essential role in cell growth, 
metabolism, cell cycle control and immunity through the JAK/STAT 
and SRC pathways. The glomerular podocyte is involved in the 
composition of the glomerular filtration barrier and provides epithelial 
coverage for the capillaries. It has been suggested that podocyte 
depletion is considered to be a marker of glomerulosclerosis (40). 
Previous studies have shown that podocytes express GHR, which 
induces Notch signaling in response to growth hormone (GH), and 
sustained activation of Notch signaling leads to non-productive 
cytoplasmic division and mitosis-induced cell death (41). GH induces 
TGF-β1 signaling and provokes cell cycle reentry of otherwise 
quiescent podocytes, and inhibiting the activation of TGF-smad signal 

is beneficial to DN (42, 43). In addition, an animal test has shown that 
mice overexpressing GH develop glomerular hypertrophy, 
Albuminuria and glomerulosclerosis (44), while termination of GHR 
signaling could control GH expression (45). A recent study shows that 
GHR deletion, JAK2 and insulin-like growth factor(IGF-β) inhibition 
abort GH-induced nephrogenic malformations (46). In training and 
test cohorts, GHR expression was low in the glomerulus of DN 
patients and upregulated in the renal tubules. Few studies have 
elucidated the metabolic mechanisms of GHR in the kidneys of DN 
patients. In our opinion, the down-regulation of GHR expression in 
the glomerulus may be related to the negative feedback regulation of 
GHR by DN. DN leads to hypertrophy and even failure of podocytes, 
which in turn causes a feedback reduction in GHR expression to 
inhibit GH damage to the glomerulus and tubules. However, further 

FIGURE 7

Immune cell infiltration analysis based on the ssGSEA algorithm. (A) The infiltration degree of 28 immune cells in each sample. Red squares indicate 
higher immune infiltration expression, and green squares indicate lower expression. (B) Correlation matrix of infiltration degree of immune cells in DN 
samples. (C) Violin plot of the differential analysis of each immune cell between two groups.
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verification is needed about how GHR acts in the kidneys of 
DN patients.

Vascular endothelial growth factor A is a critical endogenous 
vascular growth factor, mainly expressed in glomerular podocytes and 
renal tubular epithelial cells (47). It is a crucial mediator in promoting 
angiogenesis and vascular remodeling and an essential substance in 
maintaining the dynamic homeostasis of the glomerular filtration 
barrier (48). It has been suggested that a reduction in VEGFA leads to 
impairment of the glomerular filtration barrier, proteinuria and renal 
dysfunction (49). Clinical studies have shown that in the early stages 
of diabetic nephropathy, VEGFA levels are elevated in the urinary 
vessels of diabetic patients (50). Moreover, there is a clinical correlation 
between urinary vascular VEGFA levels and the extent of DN lesions 
(51). In a diabetic mouse model, Veron et  al. (49) found that the 
knockdown of VEGFA resulted in acute renal failure and albuminuria 
associated with endothelial hyperplasia, thylakoid lysis and 
microaneurysms. More Evidence indicates Worsening Proteinuria and 
Glomerular Microangiopathy in Patients Treated with Anti-VEGFA 
(52, 53). In the pathology of diabetic nephropathy, renal fibrosis is 
considered a complex and irreversible process in the advanced stages 
of diabetic nephropathy (54). VEGFA, as a growth factor essential for 
angiogenesis, inhibits the expression of Smad3 and miR192, thereby 
suppressing IGF-β-induced endothelial interstitial transformation and 
ameliorating renal fibrosis (55).

EFEMP1 is an extracellular matrix protein involved in cell 
structure and signaling, promoting vascular endothelial growth factor 
expression. In training and test cohorts of DN, EFEMP1 was lowly 
expressed in both glomerular and tubular tissues. EFEMP1-inactivated 
mice exhibit reduced reproductive capacity and an earlier phenotype 
associated with aging (56). EFEMP1 encodes an extracellular protein 
called fibuin-3, which is involved in extracellular matrix remodeling 
and cell proliferation (57). It has been suggested that fibuin-3 plays a 
vital role in maintaining the integrity of connective tissue and 
regulating aging (56). In exploring the pathogenesis of osteoarthritis, 
Hasegawa et al. (58) found that Fibulin3 governs the differentiation of 
adult progenitor cells and is reduced in expression in aging and 
osteoarthritis. More than one study has pointed out that EFEMP1-
encoded fibuin-3 is highly expressed in vascular endothelial and 
epithelial cells and is particularly abundant in small vessels (59, 60). 
At the same time, the glomerulus, one of the significant lesion tissues 
in DN, consists mainly of capillary endothelial cells, glomerular 
basement membrane and epithelial cells. Therefore, the expression of 
EFEMP1 may be  downregulated when pathological changes 
occur in DN.

Senescent cells can secrete various pro-inflammatory and 
chemokines, and we  further explored differences in immune 
infiltration between the DN samples and controls. According to the 
ssGSEA algorithm, most immune cells are highly expressed in 

FIGURE 8

Correlation between the expression of three characteristic genes and different immune cell infiltrations in the training and test cohorts. (A–C) Lollipop 
plot of correlation between the expression of GHR (A), VEGFA (B) and EFEMP (C) and immune infiltration in the training cohort. (D–F) Lollipop plot of 
correlation between the expression of GHR (D), VEGFA (E) and EFEMP (F) and immune infiltration in the test cohort GSE96804.
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DN. Many studies have shown that immune cell infiltration plays a 
vital role in the pathogenesis of DN. Moon et al. (16) concluded that 
the kidney T cell (CD4, CD8) and B cell infiltration were significantly 
increased in the kidneys of DN patients, and the increase of CD4 T 
cells and CD20 T cells was positively correlated with albuminuria. 
Smith et al. (61) concluded that aberrant recruitment and activation 
of T cells in the mesenchyme is an underlying pathological mechanism 
of diabetic nephropathy, and B cells also promote the progression of 
diabetic nephropathy. Wang et al. (62) showed that macrophages were 
associated with diabetic kidney injury, and DN was more severe in 
mice with an increased M1 phenotype of macrophages. Zheng et al. 
(63) observed accumulation and degranulation of mast cells in the 
interstitial periglomerular, peritubular and perivascular regions in 
renal biopsies in type 2 diabetic patients. In this study, the association 
between EFEMP1, GHR and VEGFA and cellular immune infiltration 
was further explored. Our results showed that three characteristic 
genes were negatively correlated with most immune cells with 
statistical significance. A study reveals that lowered GH/IGF1 activity 
promote inflammatory activity, causing long term tissue damage and 
systemic chronic inflammation (64). GHR has a strong expression in 
B-cells, while T-cells and natural killer cells exhibit considerably lower 
levels of GHR expression (65). Another study shows that exposure of 
aged hematopoietic stem cells to recombinant growth hormone 
restores B-cell output (66). Ishikawa et al. (67) find that the induction 
of GH is critical for suppressing innate immune cells such as NK cells/
NK T cells and macrophage-mediated apoptosis. Moreover, it has 
been suggested that VEGFA can promote the accumulation of 
circulating MDSCs by activating the JAK2-STAT3 pathway, which can 

inhibit effector T cells (68–70). Increased VEGF expression can lead 
to immune suppression via the inhibition of dendritic cell maturation 
and the reduction of T-cell infiltration (71). A study shows that genetic 
inactivation of VEGFA improves clearance of senescent cells by 
natural killer cells (72), and a negative correlation is observed between 
a particular B-cell and VEGF levels (73). Research on the mechanism 
of EFEMP1 and immune cells is deficient, and our work provides 
direction for further studies.

Additionally, we use the TarBase repository to predict miRNAs 
associated with the characteristic genes. The three characteristic genes 
are connected by multiple shared miRNAs, and the modification of 
the shared miRNAs may be critical for the synergistic expression of 
the characteristic genes. Studies have shown that miR-15a-5p can 
regulate acute kidney injury induced by sepsis (74), and overexpression 
of miR-23b-3p can induce apoptosis and autophagy (75). Zang (76) 
and Xie et al. (77) have found that miR-23b-3p and miR-15a-5p are 
up-regulated in DN patients and sequentially hypothesize that 
miR-23b-3p and miR-15a-5p can be  miRNA markers of 
DN. miR-205-5p can promote cell proliferation, migration and 
anabolism, and inhibit inflammation (19). miR-195-5p is proven to 
promote intestinal epithelial recovery and attenuate the inflammatory 
response (78), and some have said that miR-20a-5p and miR-195-5p 
can improve ischemic kidney injury (79, 80). Godwin (81) and Zhang 
et al. (18) have found that miR-199a-3p is negatively associated with 
albuminuria in DN patients and that miR-199a-3p can inhibit high 
glucose-induced inflammation and apoptosis by regulating IKKβ/
NF-κB signaling pathway in renal tubular epithelial cells. miR-126 can 
prevent microvascular dysfunction and improve inflammatory 

FIGURE 9

Potential regulatory molecules for the characteristic genes. (A) Three characteristic genes and their interactions with potential miRNAs based on the 
TarBase repository (142 nodes and 163 edges). The red nodes depict the characteristic genes, the pink nodes represent miRNAs associated with only 
one characteristic gene, and the purple nodes indicate miRNAs associated with multiple characteristic genes. (B) Three characteristic genes and their 
interactions with potential TFs based on the JASPAR database (30 nodes and 28 edges). The purple nodes depict the characteristic genes, and the 
orange nodes represent TFs associated with the characteristic genes.
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outcomes (82). Therefore, the shared miRNAs may have a meaningful 
impact on the mechanical process of co-expression of GHR, VEGFA 
and EFEMP1, and they may participate in the pathogenesis and 
development of DN together with these three characteristic genes. 
Besides, we  also established mRNA-TF networks using potential 
transcription factors. We found that GATA2 has a regulatory effect on 
GHR and VEGFA. The expression of GATA2 activates the gene 
regulatory network of hemangioblast and induces the formation of 
hemangioblast through the activation of VEGFA ligand (83, 84), and 
VEGFA is important for maintaining the integrity of the glomerular 
filtration barrier as well as a survival factor for the podocyte (85). The 
mechanism of GATA2 regulation of GHR has not been elucidated, but 

we speculate that GATA2 may play a regulatory role in GHR in terms 
of cell production. It has been suggested that GATA2 mediates the 
number of cytokines (86), while GHR plays an important role in cell 
growth and metabolism as well.

There may be some limitations in our study. Firstly, the sample 
used for analysis and validation was relatively small, which may lead 
to a lack of reliability in the results. Secondly, this study is based on 
publicly available data and lacks validation experiments. Further basic 
and prospective research would be beneficial for the prevention and 
treatment of DN, and the mechanism between the characteristic genes 
and immune infiltration in DN remains to be  investigated and 
validated in further studies.

FIGURE 10

The correlation between the characteristic genes and clinical features. (A–C) Correlation plots about glomerular filtration rate (GFR) and the expression 
of GHR (A), VEGFA (B) and EFEMP1 (C) in DN samples. (D–F) Correlation plots about serum creatinine level and the expression of GHR (D), VEGFA 
(E) and EFEMP1 (F) in DN samples. (G–I) Correlation plots about GFR and the expression of GHR (G), VEGFA (H) and EFEMP1 (I) in the samples with 
kidney-related diseases.
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5. Conclusion

In this study, GHR, VEGFA and EFEMP1 were identified as 
potential biomarkers for diagnosing and treating diabetic 
nephropathy. This finding provides clues to the mechanisms of 
disease development in DN at the transcriptome level. In 
addition, we evaluated the immune infiltration landscape of the 
characteristic genes and explored their molecular regulatory 
mechanisms. These explorations may provide insights into  
the management and treatment of patients with diabetic  
nephropathy.
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