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Introduction: Although pre/pro/postbiotics have become more prevalent in 
dermatologic and cosmetic fields, the mode of action when topically applied is 
largely unknown. A multi-omic approach was applied to decipher the impact of 
the skincare products with pre/postbiotics on skin microbiome and metabolome.

Methods: Subjects with dry skin applied a body wash and body lotion with or 
without pre/postbiotics for 6  weeks. Skin hydration was measured at baseline, 
3 and 6  weeks. Skin swabs were collected for 16S rRNA gene sequencing, 
metagenomics and metabolomics analysis.

Results: Skin hydration significantly increased in both groups. The prebiotic 
group significantly reduced opportunistic pathogens, e.g., Pseudomonas 
stutzeri and Sphingomonas anadarae, and increased the commensals, e.g., 
Staphylococcus equorum, Streptococcus mitis, Halomonas desiderata. 
Bacterial sugar degradation pathways were enriched in the prebiotic group, 
while fatty acid biosynthesis pathways were reduced in control. The changes 
on skin metabolome profiles by the products were more prominent. The 
prebiotic group performed greater modulation on many clinically-relevant 
metabolites compared to control. Correlation analysis showed H. desiderata 
and S. mitis positively correlated with skin hydration, P. stutzeri and S. anadarae 
negatively correlated with the metabolites that are positively associated with 
skin hydration improvement.

Conclusion: This holistic study supported a hypothesis that the pre/postbiotics 
increased skin hydration through the modulation of skin microbiome, metabolic 
pathways and metabolome.
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Introduction

The skin is the largest organ of the human body and is colonized by a variety of living 
microorganisms. The microbes form an invisible ecosystem that protects the skin from external 
aggressors, contributes to the production of essential nutrients and educates the immune system 
to ensure human health (1, 2). A disruption in the microbiome can result in many skin disorders, 
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such as atopic dermatitis, acne and psoriasis (3–5). Therefore, 
developing new solutions that support the structure and functionality 
of the skin microbiota is an emerging opportunity to manage skin 
health in the field of dermatology.

Pre, pro and postbiotics are becoming more prevalent for skin 
health through modulation of skin microbiome. Studies have shown the 
beneficial effect of postbiotics, which are the byproducts of probiotics, 
and prebiotics on skin health (6–9). Previously, we have developed a 
triple-biotic complex, a combination of a prebiotic (inulin), a “smart 
biotic” (butyloctanol) and postbiotics (lactic acid and pyruvic acid), and 
demonstrated the benefits of triple-biotics by inhibiting the growth of 
undesirable bacteria, promoting beneficial bacteria, and enhancing skin 
barrier in vitro (10). However, the mechanism of action (MOA) of such 
topically applied ingredients in vivo is not fully understood.

Understanding the impact of ingredients or products on skin 
microbiome requires high-throughput, holistic and high resolution 
techniques. Next generation sequencing has revolutionized our 
understanding of the microbiome diversity in our body. 16S rRNA gene 
sequencing builds an important knowledge base regarding the 
microbiome in health and disease, and remains a valuable tool for 
microbial community profiling (11). Technical and analytical 
breakthroughs in sequencing and bioinformatics have enabled shotgun 
metagenomics to be a cost-effective tool to explore strain diversity and 
the functional potential of the microbiome (12). It has dominated in gut 
microbiome analysis, and now expanded to skin microbiome research 
(13, 14). More recently, mass spectrometry-based metabolomics has 
emerged as a new tool to characterize the chemical makeup of the skin 
surface and correlate it with the microbes (15). Metabolomics focuses 
on exploring distributions of “small” molecules, typically <2000 Da, 
which are nutrients for shaping the microbial community, important 
byproducts of host–microbe interaction regulating host metabolic 
homeostasis (16) or agents of microbial “warfare,” such as microbially-
produced antibiotics (17). Accessibility to multi-omics technologies has 
allowed for integrated analysis of 16S rRNA gene sequencing, 
metagenomics and metabolomics to systematically characterize the 
composition, function and metabolic dynamics of microbiome in 
relation to human diseases (18, 19). However, this type of holistic 
approach has been largely limited to gut microbiome research (20).

In this report, we conducted a clinical study to investigate the impact 
of the skincare products with triple-biotics on skin microbiome 
compared to a control, and used a multi-omic approach integrating 16S 
rRNA gene sequencing, shotgun metagenomics and untargeted mass 
spectrometry-based metabolomics to explore the MOA of pre/postbiotics 
on skin health through modulation of skin microbiome and metabolome.

Materials and methods

Study design and sample collection

A randomized clinical study was conducted by ProDERM 
(Schenefeld, Germany) to assess the impact of the skincare products on 
the skin microbiome and metabolome of normal and dry to extremely 
dry skin. The study was approved by an independent Institutional 
Review Board. All the subjects signed informed consent forms. The 
complete study design is described in Supplementary material and 
Supplementary methods. Multi-omics analysis was only applied on the 
subjects with dry/extremely dry skin; therefore, we only presented the 

data from the dry/extremely dry skin group in this report. The overview 
of study design and data analysis workflow was illustrated in Figure 1.

Fifty-three female subjects (18–70 year-old) with dry/extremely dry 
skin on the lower legs were assigned to use a standard marketed shower 
gel (Palmolive®, Colgate-Palmolive, Piscataway, New Jersey) once daily 
on their body, except for their legs for 7 days during the washout period. 
One group (N = 27) was given a shower gel and body lotion with triple-
biotics (Sanex®, Colgate-Palmolive). The other group (N = 26) continued 
to use the washout shower gel and a body lotion (E45 Daily Lotion, 
Reckitt-Benckiser®, Slough, United Kingdom). The subjects washed 
with the shower gel once daily in weeks 1–6, and applied the body lotion 
twice daily in weeks 4–6 on their lower legs. During the study, the 
subjects were not allowed to use any other products on their lower legs.

At baseline, 3 and 6 weeks, skin hydration was measured by 
Corneometer CM 825 (Courage and Khazaka, Cologne, Germany), 
and TEWL was measured by Tewameter® TM 300 (Courage and 
Khazaka, Cologne, Germany) from the lower legs. One skin swab was 
taken at each assessment time for 16S rRNA gene sequencing. Two 
swabs were collected at baseline and 6 weeks for shotgun metagenomic 
sequencing and metabolomics analysis, respectively.

The differences of skin hydration and TEWL between the groups 
were analyzed via a paired t-test using SAS statistical software (North 
Carolina). Statistical significance was defined as value of p < 0.05.

16S rRNA gene sequencing and data analysis

V1-3 region of 16S rRNA gene sequencing was conducted by RTL 
Genomics (Lubbock, Texas) (21). Paired reads were assembled, quality 
filtered, and clustered into 97% sequence similarity OTUs. Taxonomic 
classification was performed using an RTL Genomics classifier and 
in-house reference database. Product group and time point were evaluated 
for their relative importance on alpha and beta diversity using ANOVA 
and PERMANOVA, respectively. ANCOM-BC (22) procedure was used 
to screen differentially abundant taxa between groups. Expanded methods 
are provided in Supplementary material and Supplementary methods.

Shotgun metagenomic sequencing and 
data analysis

Shotgun metagenomic sequencing was conducted by CosmosID 
(Germantown, Maryland). DNA extraction, sequencing procedure, 
taxonomic and functional classification analysis were performed as 
described in Supplementary material and Supplementary methods.

LEFSe was used to identify differentially abundant MetaCyc 
pathways between the baseline and 6 weeks in each product group and 
between the groups at 6 weeks (23). LEfSe was calculated with a 
Kruskal–Wallis alpha value of 0.05, a Wilcoxon alpha value of 0.05, 
and a logarithmic LDA score threshold of 1.0.

Mass spectrometry-based metabolomics 
and data analysis

Untargeted metabolomics data acquisition using liquid 
chromatography mass spectrometry (LC–MS) was conducted by Arome 
Science, Inc. (Farmington, Connecticut) and integrated 
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microbiome-metabolome data analysis was conducted by Clarity 
Genomics, Inc. (San Diego, California). The detailed description of 
analysis protocols is given in Supplementary material and 
Supplementary methods.

Clinical samples and individual skincare products were subject 
to untargeted mass-spectrometry data profiling. Feature detection 
was performed using MZmine2 (24). Feature annotation (levels of 
annotation summarized in (25)) using spectral matching was 
performed against GNPS Release 30 (26) public libraries and NIST 
2020 commercial library (level 2). In silico feature annotation (level 

3) using MS/MS data was further performed using SIRIUS v.5.0.1 
(27–30) for discriminative features (web services were provided by 
Bright Giant GmbH; Jena, Germany). Metabolite features were 
removed if none of the biological sample peak abundances were 
higher than 3 times the maximum value in the blank samples, 
resulting in 63% of features retained for downstream analysis. PCA 
and PLS-DA analyses were performed using the R package ropls 
v1.24.0 (31). Permutation testing was conducted for PLS-DA models 
to avoid overfitting using 100 random permutations and 5-fold cross-
validation. Variable Importance in Project (VIP) and the Wilcoxon 

FIGURE 1

The overview of study design and data analysis workflow. TEWL, transepidermal water loss.
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FIGURE 2

Relative abundance of select bacterial species or strains identified as significantly differentially abundant between time points and product groups, 
identified by (A) 16S rRNA gene sequencing and (B) shotgun metagenomics. Select species shown here and in Supplementary Tables S1, S2 were 
significantly differentiated per ANCOM-BC. Results of post hoc pairwise testing by Wilcoxon rank sum test provided to show differences per each time 
and within treatment groups. Significance represented as follows: ‘*’  =  0.01  < p <  0.05; ‘**’  =  0.001  < p <  0.01; ‘***’  =  0.0001  < p <  0.001; and 
‘****’  = p <  0.0001. BW, body wash; BL, body lotion.

Rank Sum test was used for discriminant feature selection separating 
groups by time and treatment, adjusted for multiple testing using the 
Benjamini and Hochberg correction (referred to as q-value). Putative 
origin of discriminant metabolites from the skincare products was 
examined by the Wilcoxon Rank Sum test by comparing the peak 
abundance between 6 weeks samples (control and product) and the 
skincare products. Microbiome-metabolome correlations were 
computed using Spearman’s correlation and p-values FDR-adjusted.

Results

Clinical outcomes

All the test groups demonstrated very good skin tolerability as 
per the study dermatologist evaluation during the course of the 
study with no product-related adverse events. Focusing on the two 
dry/extremely dry skin groups, after 3 weeks of body wash use only, 
corneometer and transepidermal water loss (TEWL) results 
demonstrated a significant increase in skin hydration (p < 0.05) 
along with maintenance of the skin barrier (p > 0.05). At 6 weeks, 
skin hydration was even further improved (p  < 0.001) while 
maintaining the integrity of the skin barrier (p  > 0.05). Skin 

hydration and TEWL are not different between prebiotic and 
control groups. The skin hydration measurement was shown in 
Supplementary Figure S1.

Microbial composition by 16S rRNA gene 
sequencing

The overall microbial profiles at genus level at each time point and 
treatment group and for each individual were shown in 
Supplementary Figure S2. Alpha diversity of 16S rRNA gene 
sequencing data showed no significant difference between the groups 
in the number of observed operational taxonomic units (OTUs) and 
Shannon diversity index (Supplementary Figures S3A,B). Beta 
diversity was assessed using weighted UniFrac phylogenetic distance 
to summarize the microbial composition between the groups 
(Supplementary Figure S3C). Following global significance testing 
using adonis, both time (p = 0.001, R2 = 0.04) and product (p = 0.029, 
R2  = 0.01) were found to significantly associate to differences in 
bacterial composition, however with small effect sizes, accounting for 
only 4 and 1% of variation, respectively, (Supplementary Figure 3C). 
Following pairwise testing, bacterial composition was distinct at 
6 weeks from prior measurements (p < 0.05). Analysis of composition 
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of microbiota with bias correction (ANCOM-BC) was used to identify 
significantly discriminating species between time points within each 
product group. The differential bacterial species are listed in 
Supplementary Tables S1, S2. Representative discriminant bacterial 
species are shown in Figure 2A. In the Prebiotic group, the pathogenic 
bacteria P. stutzeri was significantly decreased at 3 and 6 weeks and 
S. anadarae was reduced at 6 weeks compared to baseline with no 
change in the control group for either bacteria. Moreover, the relative 
abundance of P. stutzeri was significantly lower in the Prebiotic group 
vs. control at 6 weeks. Conversely, the commensal bacteria, such as 
S. equorum and S. mitis, increased at 3 and/or 6 weeks compared to 
baseline in the Prebiotic group, not in the control group.

Functional pathways of skin microbiome 
by shotgun metagenomics

Alpha and beta diversity of metagenomic data were assessed using 
taxonomic abundances at strain level. No significant difference was 
observed between the groups, indicating no apparent microbial 
composition change. Two bacterial strains were identified as the 
discriminant bacteria between the groups. Lactobacillus fermentum 
ATCC 14931 was significantly decreased at 6 weeks in the control 
group, and not changed in the Prebiotic group. While Halomonas 
desiderata SP1 was significantly increased at 6 weeks in the Prebiotic 
group, but not changed in the control group (Figure 2B).

FIGURE 3

Functional characterization of skin microbiome by shotgun metagenomics. Differentially abundant bacterial MetaCyc pathways between baseline and 
after product application in Prebiotic Body wash (BW)/Body lotion (BL) group (A), Control group (B) and between Prebiotic BW/BL and control group at 
6  weeks (C) identified by Linear Discriminant Analysis Effect Size analysis (LEFSe). LEfSe is calculated with a Kruskal–Wallis alpha value of 0.05, a 
Wilcoxon alpha value of 0.05, and a logarithmic LDA score threshold of 1.0. Red bars to the left convey that the pathways in that group are more 
abundant in the “red” group than the other. Blue bars to the right convey that the pathways are more abundant in the “blue” group.
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FIGURE 4

Principal component analysis (PCA) plot (A) and Partial least squares-discriminant analysis (PLS-DA) plot using 100 random permutations and 5-fold 
cross-validation (B) of skin metabolic profiles characterized by LC–MS/MS Neg using the R package ropls v1.24.0. Confidence ellipse level at 95%. BW, 
body wash; BL, body lotion.

Linear Discriminant Analysis Effect Size (LEFSe) analysis was 
performed to identify MetaCyc pathways that are significantly 
different between time points within each group and between 
groups at 6 weeks (Figure 3). Based on the threshold value Linear 
Discriminant Analysis score (LDA) > 1.0 and p < 0.05, 9 MetaCyc 
pathways were significantly enriched at 6 weeks in the Prebiotic 
group compared to baseline (Figure 3A), including Amine and 
Polyamine Degradation pathways (superpathway_of_ornithine_
degradation, aromatic_biogenic_amine_degradation_bacteria), 
sugar and sugar acids degradation pathways (glucose_and_
glucose_1_phosphate_degradation, superpathway_of_fucose_
and_rhamnose_degradation, ketogluconate_metabolism, D_
glucarate_degradation_I), and Aromatic Compound Biosynthesis 
pathways (4_hydroxybenzoate_biosynthesis_V, catechol_
degradation_II_meta_cleavage_pathway; Figure 2A). In contrast, 
more metabolic pathways were significantly depleted at 6 weeks 
in Control group (Figure  3B), including Fatty Acid and Lipid 
Biosynthesis (fatty_acid_salvage, fatty_acid_alpha_oxidation_
III), Aromatic Compound Degradation (cinnamate_and_3_
hydroxyci_on_to_2_oxopent_4_enoate, ‘3_phenylpropanoate_
and_3__on_to_2_oxopent_4_enoate), Sugar Derivative 
Degradation (phytate_degradation_I) and Aromatic Compound 
Biosynthesis pathways. Comparing the two groups at 6 weeks, 
Fatty Acid and Lipid Biosynthesis, Amino acid Biosynthesis, 
Carbohydrate Degradation, Nucleotides Biosynthesis pathways 
are more enriched in the Prebiotic group. Secondary metabolites 
Biosynthesis and Amino acid Degradation pathways are more 
enriched in the control group (Figure 3C).

Metabolic profiles on the skin surface by 
metabolomics

Untargeted skin metabolomic profiles were characterized by LC–
MS/MS reserve phase (RP) using negative and positive ion modes. 
3,508 metabolic features were detected by LC–MS/MS Neg data after 
background filtering. Principal component analysis (PCA) shows clear 
cluster separation between the samples from baseline, 6 weeks and 
skincare products (Supplementary Figure S4). After removing 
skincare products’ samples, the separation between the product 
groups remains significant (Figure 4A). This separation is further 
confirmed using Partial least squares-discriminant analysis (PLS-DA; 
n  = 100, R2Y = 0.98, p (R2Y) = 0.01, Q2 = 0.85, p (Q2) = 0.01; 
Figure  4B), indicating that the skin metabolic profiles were 
significantly changed by the products. And the changes in skin 
metabolome seem more apparent compared to microbiome data 
(Figure 4A; Supplementary Figure S3C).

1,209 metabolite features were detected as discriminating 
metabolites between the time points within each product group 
(Variable Importance in Project (VIP) > 1 and Wilcoxon Rank Sum 
Test q-value <0.05). 96 of 1,209 metabolites had moderate and 
significant correlation to skin hydration (Spearman’s correlation 
|ρ| > 0.4 and q-value <0.05). No metabolite had significant correlation 
to TEWL. Supplementary Table S3 lists all 96 clinically relevant 
metabolite features/classes and the effect size (Cohen’s d) in each 
product group (annotation, if given, is at the level 2–3). For the 
majority of the metabolites (70 of 96), the Prebiotic group had a higher 
effect size (bigger change between Baseline and 6 weeks) than the 
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control group, including long-chain/medium-chain fatty acids, Fatty 
acid esters, Fatty Acyls and Dicarboxylic acids and derivatives.

The results of LC–MS/MS Pos were described in 
Supplementary material. Briefly, the PCA and PLS-DA analysis 
of LC–MS/MS Pos data showed significant separation between 
the groups (Supplementary Figure S5). The Prebiotic group had 
a higher effect size for most of the discriminant clinically relevant 
metabolite features (50 of 90) than the control group, such as 
monosaccharides (Supplementary Table S4).

Both LC–MS/MS Neg and Pos data indicated that the Prebiotic 
group had larger modulation on many clinically relevant metabolites 
compared to the control group.

Correlation of skin bacteria, metabolites 
and clinical outcomes

We employed an integrated multi-omics approach to investigate 
the relationship between the metabolome, microbiome, and clinical 
outcomes in this study. Initially, PLS-DA was conducted to 
understand the global metabolome shifts across different time 
points and treatments. Subsequently, discriminating metabolites 
were identified based on their significant contributions to sample 
differentiation. These metabolites were then correlated with clinical 

measurements using Spearman correlation analysis, focusing on 
Skin Hydration and Skin TEWL, yielding 96 discriminant clinically 
relevant metabolites. The 96 discriminant metabolites were further 
correlated with microbial composition/functional pathways (16S 
rRNA, shotgun sequencing, MetaCyc pathways) using Spearman 
correlation. Given the weak separation between groups for 
microbiome data, Spearman’s correlation cutoff was set to |ρ| = 0.3 
(moderate) for microbiome-metabolome correlations, however 
there were no additional significant correlations below |ρ| = 0.3. 
Given the compositional nature of microbiome data, microbial 
counts were transformed into a log-ratio space using centered 
log-ratio (CLR) transform. For 16S rRNA sequencing, there were 
27 unique microbes, including S. anadarae and P. stutzeri, 
previously identified as discriminant bacteria between groups 
(Figure 2), having at least one significant correlation to 32 clinically 
relevant metabolite features (Spearman’s correlation |ρ| > 0.3 and 
q-value <0.05) including fatty acids, Dicarboxylic acids. For 
metagenomic data, only strain H. desiderata SP1 had a significant 
correlation to two clinically relevant metabolites. Additionally, 
S. mitis (R = 0.23, value of p = 0.021) and H. desiderata SP1 (R = 0.28, 
value of p = 0.01) had a positive correlation to skin hydration, while 
S. anadarae (R = −0.17, value of p = 0.095) tended to negatively 
correlate to skin hydration (Figure 5). Figures 5A,D,G show the 
overall relationship between the abundance of specific microbes 

FIGURE 5

Pearson’s correlation between discriminant bacteria identified from 16S rRNA gene sequencing (A–C) and shotgun metagenomics (D–I) and Skin 
Hydration in all treatment groups using the R package ggpubr v.0.6.0 and 95% confidence level with linear regression.

https://doi.org/10.3389/fmed.2023.1165980
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2023.1165980

Frontiers in Medicine 08 frontiersin.org

FIGURE 6

Heatmap illustrating correlation between microbes, clinical outcomes and discriminant metabolite features identified by LC–MS/MS Neg. 
(A) Spearman’s correlation between discriminant metabolite features and microbes, computed using the rcorr function from the R package Hmisc 
v.5.0.1 and p-values adjusted using the Benjamini and Hochberg correction. Correlations having rho >0.3 (low correlation and above) and q-value 
<0.05 are labeled. (B) Pearson’s correlation between discriminant metabolite features and Skin Hydration. Correlations having q-value <0.05 are 
labeled. (C) Median peak abundance (normalized, log transformed) per discriminant metabolite feature within each treatment group. Differential 
abundance significance between Baseline vs. 6 weeks per Control or Prebiotic group is illustrated using * for q-value <0.05, ** for q-value <0.01 and 
*** for q-value <0.001 (paired Wilcoxon Rank Sum Test, Benjamini & Hochberg adjusted). Cells in the Beauty Product row labeled “P” (Prebiotic) or 
“C” (Control) suggest the corresponding metabolite at 6 weeks originates from the beauty product. BW, body wash; BL, body lotion.

and skin hydration across all treatment groups. The significant 
correlation between microbial abundance and skin hydration (for 
S. mitis and H. desiderata SP1 specifically) suggests that the 
microbial abundance may play a role in determining skin hydration 
but the strength of the association may be modulated by treatment. 
Figures  5B,C,E,F,H,I compare the strength and direction of the 
correlation within each treatment group. We  observed that 
discriminant metabolites from both LC–MS/MS Neg and Pos data 
are not only significantly correlated with S. anadarae and P. stutzeri 
but with multiple species from the same genera whilst sharing 
similar patterns of correlation (e.g., S. gimensis, S. hunanensis, 
S. japonica, P. aeruginosa and P. fluorescens).

No bacteria had correlation with TEWL. MetaCyc pathways and 
clinically relevant metabolites yielded no significant correlations. 

Notable examples of microbe-metabolite correlations are illustrated in 
Figure 6.

The correlation analysis between microbiome and discriminant 
clinically relevant metabolites from LC–MS/MS Pos was described in 
Supplementary material. Notable examples of microbe-metabolite 
correlations are illustrated in Supplementary Figure S6.

Discussion

The benefit of the triple-biotics has been demonstrated in the 
previous study (10). Here we further validated the prebiotic effect of 
the body wash and body lotion containing triple-biotics in a clinical 
study. Even though the overall microbial composition was not 
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significantly changed, we  did observe relatively small apparent 
changes in bacterial taxonomic composition and function, which were 
coupled to surprisingly dramatic shifts in skin metabolome, suggesting 
even minor shifts in microbial abundance can lead to a significant 
modulatory effect.

Certain potential pathogens, such as P. stutzeri and S. anadarae 
were significantly reduced in the Prebiotic group. P. stutzeri is an 
opportunistic pathogenic bacteria, which has been shown to cause 
skin infections (32). The role of S. anadarae on skin health is not 
well studied, however, a few studies have shown other 
Sphingomonas species, such as S. paucimobilis (previously known 
as Pseudomonas paucimobilis) (33) is an occasional human 
pathogen causing infection (34). Moreover, we  discovered that 
S. anadarae tended to negatively correlate with skin hydration, 
suggesting that this genus may have a negative impact on skin 
health. The prebiotic BW/BL also significantly increased 
S. equorum, S. mitis and H. desiderata SP1, which are commensal 
bacteria on the skin surface (1, 35). Additionally, the increase of 
S. mitis and H. desiderata SP1 are positively correlated with skin 
hydration. They could be used as potential targets in developing 
products or solutions to improve skin health. However, the role of 
these bacteria, especially S. anadarae and H. desiderata SP1 
remains to be investigated. It appears that the prebiotic BW/BL has 
a positive effect on skin microbiome composition mainly due to 
the triple-biotics, as inulin is a well-known prebiotics to support 
beneficial bacteria, and butyloctanol has been shown to target 
undesirable bacteria more effectively than beneficial bacteria (10).

The prebiotic BW/BL also elevated the bacterial metabolic 
pathways, especially sugar/sugar acid degradation pathways 
compared to baseline. Additionally, lactose and galactose 
degradation pathways were significantly increased in the Prebiotic 
group compared to Control at 6 weeks (Figures  3A,C). The 
activation of carbohydrate degradation metabolism could 
be largely due to inulin. Inulin is a polysaccharide and can only 
be utilized by bacteria to generate short chain fatty acids, and other 
carbonic acids such as lactic acid (36). Lactic acid is a key 
component of the skin’s natural moisturizing factor and keeps skin 
hydrated (37). It also affects skin pH and is beneficial to epidermal 
turnover, and thus is used as an ingredient in various skin care 
products (38). In this study, we  demonstrated the benefit of 
topically applied inulin on skin hydration and the MOA through 
modulation of bacterial carbohydrate metabolism. In contrast, the 
control group reduced the bacterial metabolic pathways, esp. fatty 
acid biosynthesis pathways (Figure 3B). Fatty acids are the most 
important components in maintaining the skin barrier function 
(39). Reduction of fatty acid biosynthesis pathways may have a 
negative impact on skin health. In our study, we  found that 
prebiotic BW/BL showed a positive effect on skin microbiome 
structure and activity leading to the increased skin hydration, 
while the increase of skin hydration in the control group may 
be due to the other ingredients, such as humectants.

The skin metabolome showed more apparent changes by the 
products compared to the microbiome data. The discriminant 
metabolites among the groups were also found to correlate with 
skin hydration. The prebiotic group had a greater modulation on 
many clinically relevant metabolites including long-chain/
medium-chain fatty acids, Fatty acid esters, Fatty Acyls, 
Dicarboxylic acids and derivatives. These metabolites are known 

to have beneficial effects on skin health. For instance, fatty acids 
and esters, fatty acyls are the components of skin lipids contributing 
to skin barrier functions (39, 40). Dicarboxylic acids have 
antimicrobial and anti-inflammatory properties, which have been 
widely used in skincare products to offer skin benefits (41). 
Additionally, monosaccharides detected by LC–MS/MS Pos were 
higher in the Prebiotic group, which may result from the 
fermentation of inulin by skin bacteria. This result is also consistent 
with the metagenomic data showing carbohydrate degradation 
metabolism was activated in the Prebiotic group.

A significant correlation between skin microbiome and 
multiple metabolites was observed. The reduction of S. anadarae 
and P. stutzeri were negatively correlated with many metabolites 
including fatty acids and Dicarboxylic acids, while the increase of 
H. desiderata SP1 had positive correlation to certain metabolites. 
Moreover, many of the same metabolites are also found to 
positively correlate with the increase of skin hydration. The 
findings implied that the changes in abundances of these specific 
bacteria and their associated metabolites may contribute to the 
increase of skin hydration.

In summary, this study revealed an apparent beneficial effect 
of  topically applied pre/postbiotics on skin microbiome and 
corresponding metabolome. The concurrent changes in microbiome 
and metabolome were correlated with the clinical outcomes, 
especially skin hydration. Therefore, we hypothesize that the products 
containing the pre/postbiotics benefit skin health through the MOA 
of modulation of skin microbial composition towards taxa with 
greater functional capacity to produce metabolites that may link to 
the increase of skin hydration. This study provides insights into the 
underlying mechanism of topical pre/postbiotics on skin health. The 
bacteria and metabolites that were identified to be associated with 
skin hydration could be potentially used as targets in developing 
innovative topical treatments to manage skin health.
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