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Introduction:During the first wave of the COVID-19 pandemic 293,204 inpatients

in England tested positive for SARS-CoV-2. It is estimated that 1% of these

cases were hospital-associated using European centre for disease prevention

and control (ECDC) and Public Health England (PHE) definitions. Guidelines for

preventing the spread of SARS-CoV-2 in hospitals have developed over time but

the e�ectiveness and e�ciency of testing strategies for preventing nosocomial

transmission has not been explored.

Methods: Using an individual-based model, parameterised using multiple

datasets, we simulated the transmission of SARS-CoV-2 to patients and healthcare

workers between March and August 2020 and evaluated the e�cacy of di�erent

testing strategies. These strategies were: 0) Testing only symptomatic patients on

admission; 1) Testing all patients on admission; 2) Testing all patients on admission

and again between days 5 and 7, and 3) Testing all patients on admission, and

again at days 3, and 5-7. In addition to admissions testing, patients that develop

a symptomatic infection while in hospital were tested under all strategies. We

evaluated the impact of testing strategy, test characteristics and hospital-related

factors on the number of nosocomial patient infections.

Results: Modelling suggests that 84.6% (95% CI: 84.3, 84.7) of community-

acquired and 40.8% (40.3, 41.3) of hospital-associated SARS-CoV-2 infections

are detectable before a patient is discharged from hospital. Testing all patients

on admission and retesting after 3 or 5 days increases the proportion of

nosocomial cases detected by 9.2%. Adding discharge testing increases detection

by a further 1.5% (relative increase). Increasing occupancy rates, number of

beds per bay, or the proportion of admissions wrongly suspected of having

COVID-19 on admission and therefore incorrectly cohorted with COVID-19

patients, increases the rate of nosocomial transmission. Over 30,000 patients

in England could have been discharged while incubating a non-detected

SARS-CoV-2 infection during the first wave of the COVID-19 pandemic, of

which 3.3% could have been identified by discharge screening. There was

no significant di�erence in the rates of nosocomial transmission between

testing strategies or when the turnaround time of the test was increased.
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Discussion: This study provides insight into the e�cacy of testing strategies in

a period unbiased by vaccines and variants. The findings are relevant as testing

programs for SARS-CoV-2 are scaled back, and possibly if a new vaccine escaping

variant emerges.

KEYWORDS

hospital-associated (or hospital-acquired) infection, COVID-19, nosocomial transmission,

SARS-CoV-2, modeling, testing

Introduction

Coronavirus disease 2019 (COVID-19) is a respiratory disease

caused by the virus severe acute respiratory syndrome coronavirus-

2 (SARS-CoV-2) that was first detected in China in December 2019

(1). Since then, there has been widespread community transmission

of the virus across the world (2–4), and a global pandemic was

declared by the World Health Organisation (WHO) in March

2020 (5, 6). Nosocomial (healthcare-associated) transmission of

SARS-CoV-2 was identified early in the COVID-19 pandemic, and

there is evidence of transmission occurring within and between

populations of patients and healthcare workers (HCWs) in various

settings (7–13). From 01 March 2020 to 31 August 2020, over

30,000 cases in England alone (1% of the estimated 3 million cases)

were potentially attributable to nosocomial transmission among

hospital inpatients (14).

Guidance and protocols for preventing the spread of SARS-

CoV-2 in hospitals issued by the UK government have changed

throughout the pandemic with the increase in testing capacity

and the advent of rapid testing. A key theme for infection

prevention and control (IPC) is the efficient detection and effective

isolation of infected patients (15), andmodeling studies have shown

that creating effective cohorts of patients can reduce nosocomial

transmission by up to 35% (16).

Evaluating the impact of interventions designed to inhibit

nosocomial transmission of a virus using real-world observational

data is complicated by the concurrent changes in confounding

factors such as community prevalence, improvement in testing

capacity/turnaround time, natural variability between hospitals and

regions, and the lack of a control group for comparison (17).

Computational models can provide a solution to these issues,

as simulations of controlled scenarios can be performed where

only specific variables are varied (18). Such models have been

used previously to demonstrate the effect of IPC strategies on

the number of nosocomial infections in hospitals for pathogens

such as methicillin-resistant Staphylococcus aureus (MRSA) (19),

Clostridium difficile (20), and vancomycin-resistant enterococci

(21). Modeling during the COVID-19 pandemic has been vital for

explaining and interpreting data and has been applied to estimate

attributable mortality rates (22, 23), the impact of vaccination

(24, 25), and the transmission of SARS-CoV-2 in countries

across the world (26, 27). Furthermore, computational models of

nosocomial transmission of SARS-CoV-2 have also been developed

(28–33), and we have previously published an analysis using an

individual-based model (IBM) of nosocomial transmission within

and between patient and HCW populations in an English acute

hospital setting (34).

In this article, we present an analysis of the impact of different

testing strategies, test characteristics, and hospital-related factors

on the number of nosocomial infections in hospitalized inpatients

using our previously described individual-based model IBM (16).

Furthermore, since patients with undetected nosocomial infections

can go on to transmit them in the community post-discharge (35),

we also explore the additional burden and detection benefit of

testing all patients who were not previously known COVID-19

cases on discharge from the hospital. The overarching aim of this

study is to evaluate the impact of testing strategies for detecting

COVID-19 cases in hospitals.

Methods

Individual-based model

The IBM of within-hospital transmission is parameterised

using multiple national datasets and literature and is

calibrated to reproduce the number of SARS-CoV-2

infections in HCWs and patients in an average English

hospital (34). A detailed model description can be

found in the appendix of (34), but key features of the

model are described here. Values and definitions for

parameters (those italicized in this section) are provided in

Supplementary Table 1.

Admission and cohorting
COVID-19 patients are admitted to the hospital at a rate

per bed that is equal to the average number of COVID-19

admissions per bed on that date in the North West of England

region, selected to represent an average admission rate across

the country from the National Health Service England (NHSE)

Situation Report dataset (36). A number of non-infected patients

are also admitted. This number is less than or equal to the

number of beds available under the occupancy level (the proportion

of beds allowed to be occupied at a single timepoint) specified

in the particular parameter set under study using the model

parameter beds available, with a default value of 85%. The

model parameter non_covid_sympt_prob defines the probability

that non-infected patients exhibit symptoms resembling COVID-

19. Therefore, they would be incorrectly cohorted with true

COVID-19 patients (except in the case of rapid admissions testing,

where the results are returned instantly, allowing this group to

be cohorted with true negative patients). COVID-19 patients

are prioritized for admission and can be admitted even when
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the occupancy level of the simulated hospital (defined by the

bedsAvailable parameter) is exceeded, provided that the total

number of beds in the hospital is not exceeded. On admission to

the hospital, patients are tested under the appropriate strategy (see

Testing Strategies) and assigned a space in a bay that has capacity

based on their COVID-19 status (symptomatic–unconfirmed

with a test positive, and non-symptomatic–unconfirmed with a

test negative). Patients are correctly cohorted if the turnaround

time of the test is zero, and they test positive on admission

while being infected, or if they are symptomatic on admission

and truly positive when the test turnaround time is greater

than zero.

Transmission
Patients can transmit to other patients within their bay through

direct transmission, with the rate determined by the value of

parameter bP2P per infected patient per time step. They can also

transmit indirectly to other patients in the hospital, with the rate

determined by the value of parameter bP2P_hosp, where indirect

transmission represents all possible routes of indirect transmission,

e.g., with contaminated fomites or HCWs acting as vectors for

droplet transmission. The model assumes that all patients are at the

same risk of indirect patient exposure. Infected HCWs can transmit

to patients that they are in contact with, with a rate determined by

the value of parameter bH2P. HCWs outside the hospital can be

infected in the community at the rate determined by the value of

the parameter commHCW. Inside the hospital, they can be infected

by coming into contact with an infected patient at a rate determined

by the value of the parameter bP2H or an infected HCW at a rate

determined by the value of the parameter bH2H.

Testing
Patients undergo PCR testing upon admission. The

probability of testing is determined by the value of the

parameter “testOnAdmProb_Inf” if they exhibit symptoms

of a COVID-19 infection or have COVID-19-like symptoms upon

admission, even if they are not confirmed cases. Conversely, if

they do not show COVID-19-like symptoms, the probability

is determined by the parameter “testOnAdmProb_Other.”

Symptomatic inpatients are tested at the rate determined by the

value of the parameter testInHospProb. An infected individual

is classified as detectable when they are in the infected state

of the susceptible, exposed, infected, and recovered (SEIR)

model (and undetectable when they are in the E or R states)

and will be detected with a probability determined by the

value of parameter testSens, which is taken to be the sensitivity

of a PCR test. Test results are returned after a predefined

turnaround time (TAT), which is determined by the value of

the parameter testPeriodSteps, and those patients that have a

returned positive test result are considered confirmed cases,

regardless of their true status. HCWs are assumed to self-isolate

upon developing symptoms at the rate determined by the value

of the parameter absentThroughSick_self and are then absent for

10 days.

Scenarios

Baseline
Under the baseline scenario, all patients are tested on

admission. The hospital has 85% occupancy and is divided into 6

bed bays. Tests have a 1 day turnaround and offer 95% sensitivity

and 90% specificity. There is a 0.1 probability that a non-COVID-

19 patient will show COVID-19-like symptoms upon admission.

Under this scenario, we assume that the probability that an infected

patient remains asymptomatic for the entirety of their infection is

16%, which is in line with estimates from Byambasuren et al. (37).

Testing strategies
We define the following testing strategies based on those that

have been implemented in England throughout the pandemic

(Supplementary Table 2): 0) testing only symptomatic patients on

admission (as was policy prior to any COVID-19-related policy

change); (1) Testing all patients on admission (38); (2) Testing all

patients on admission and retesting patients that remain in hospital

between 5 and 7 days post-admission (39); (3) Testing all patients

on admission and retesting patients that remain in hospital on days

3 and 5–7 post-admission (39), with the addition of testing for

symptomatic inpatients under all strategies. We also explore the

impact of additional discharge testing for each strategy. Other than

the explicit discharge testing strategy, patients are discharged when

their simulated length of stay has expired. We do not model the

impact of discharge testing on return to social care.

Additional factors varied

In addition to the testing strategies described above, we

adjusted a number of test and hospital-specific parameters to

explore their effect on the proportion of patients that developed a

nosocomial SARS-CoV-2 infection (Table 1).

Simulations

To reduce the impact of aleatory uncertainty, the parameter set

for each scenario was replicated 50 times. In all simulations, there

was a 10 day burn-in period to establish a stable hospital population

before the virus was introduced, and the model then ran for 150

days, covering the time period from 03 March 2020 to 01 August

2020. The simulation is calibrated to ensure the number of detected

nosocomial cases is within the range given by Bhattacharya et al.

(14) [see (16) for variability between potential parameter sets].

Data and model calibration

The model was calibrated to national-level admissions data

from the UK Health Security Agency’s Secondary Uses Service and

Second-Generation Surveillance System datasets in combination

with data from the SARS-CoV2 immunity and reinfection

evaluation SIREN study (40) and a meta-analysis of HCW infection
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TABLE 1 Parameter values used for scenario analysis.

Parameter Baseline Scenarios
considered

Turnaround time (TAT) Length of time taken for test results to be returned 1 day 0, 2, 3, 4 days

Beds per bay Number of beds per hospital bay 6 4, 1

Occupancy Maximum proportion of all beds occupied 85% 65, 75%

Non-COVID-19

symptomatic probability

Probability a patient is assumed to be a COVID-19 patient on admission and

therefore incorrectly cohorted (TAT > 0 scenarios only)

10% 5, 20%

Sensitivity The probability of a positive result given that an individual is infected and tested 95% 75, 85%

rates early in the pandemic as previously described (16). The

definitions of community and nosocomial infections are taken from

Public Health England (PHE) and European Centre for Disease

Prevention and Control (ECDC) guidance, which classifies a case

as community-acquired if a patient tests positive within 2 days

of admission and hospital-associated (with varying degrees of

certainty) if they test positive from day 3 (14, 41).

Results

Infection status of hospitalized or
hospital-associated COVID-19 cases over
time

We simulated the dynamics of SARS-CoV-2 transmission

in a typical English hospital (1,000 beds, 8,000 staff) between

03 March 2020 and 31 August 2020. The simulations

followed the trajectories of both cases admitted from the

general community and nosocomial cases (Figure 1A).

During this time period, over 1,500 COVID-19 cases

were admitted from the community, 77.5% (95% CI

77.4, 77.7) of which were infectious on admission

(Supplementary Figure 1).

Under the baseline scenario, 1.6% (1.5, 1.7) of all susceptible

admissions [318 (310, 325)] in our simulated 1,000 bed hospital

developed a nosocomial infection over the 150 day simulation

period (Figure 1B). Of the patients who developed a nosocomial

infection, 46.6% (45.7, 47.5) were infectious before discharge

(Figure 1C). Patients with a longer stay had a higher probability

of being infectious before discharge, with those in hospital for

longer than 20 days having an 81.7% (76.7, 86.9) chance of

being infectious while in hospital (either currently infectious or

recovered by the day of discharge). Nosocomially infected patients

with a length of stay shorter than 5 days were unlikely [2.8%,

(1.3, 4.4)] to be infectious in the hospital but progressed to

becoming infectious post-discharge, and those with a length of

stay between 5 and 25 days had up to a 65.9% (58.7, 73.1)

probability of being infectious on discharge (Figure 1D). Before day

25, the majority of nosocomial cases were infectious on discharge

and were either pre-symptomatic or asymptomatically infected

(Supplementary Figure 2). Nosocomially infected inpatients were

most likely to become infectious between 5 and 7 days into their

stay (Supplementary Figure 1).

E�cacy of testing strategies for detecting
and confirming infections

We explored the efficacy and efficiency of four testing strategies

(Supplementary Table 2) implemented in England during the

pandemic for detecting community and nosocomial COVID-19

infections. Under the baseline assumptions (see Methods section),

88.5% (88.2, 88.7) of community-acquired cases were detectable

before discharge, and 98.0% (97.9, 98.1) of these cases (86.3%

overall) were detected under Strategy 0 (Figure 2A). This increased

to a maximum of 99.8% (99.7, 99.9) under Strategy 3. Assuming

a 1 day turnaround time for test results, 78.9% (78.6–79.2) of

detectable and 69.8% (69.3, 70.2) of all community-acquired cases

were confirmed (i.e., results had been returned) under the baseline

scenario before a patient was discharged. As the turnaround time

for test results increased from 1 to 4 days, the proportion of

detectable community-acquired cases that were confirmed before a

patient was discharged decreased to 48.5% (48.1, 48.9) (Figure 2B).

Nosocomial cases were less likely to be detectable before a patient

was discharged from the hospital, but detectable cases had a

similar detection rate when compared to community-acquired

cases (Figure 2A). Only 40.8% (40.3, 41.3) of all nosocomial cases

were detectable before discharge, but of these cases, 74.0% (73.1,4.9)

(30.8% overall) were detected under Strategy 0, rising to 96.4%

(96.0, 96.6) under Strategy 3. For nosocomial cases, 64.3% (63.3,

65.3) of detectable cases were confirmed under Strategy 0, assuming

a 1 day turnaround time for test results, increasing to 80.4%

(80.0, 80.6) under Strategy 3. As the turnaround time for results

increased from 1 to 4 days, the proportion of nosocomial cases that

were confirmed before discharge decreased to 48.8% (47.3, 49.5)

(Figure 2B). It is possible that the remainder of the detectable cases

could be identified by discharge testing.

The most efficient strategy for case detection (where efficiency

is defined as the maximum detection rate per test) was Strategy

0, with 0.28 (0.27, 0.29) community-acquired cases and 0.026

(0.025, 0.027) nosocomial cases detected per test performed over

the entire simulation period (Figure 2C). However, Strategies 1–3

all prevented nosocomial infections compared to Strategy 0, with

the highest reduction in the number of nosocomial transmissions

per test being 0.000050 (0.000048, 0.000051) under Strategy 3.

Under the baseline assumptions, adding testing patients on

discharge increased the average number of tests per day by a factor

of 5 for Strategy 0 and a factor of 2.5 for Strategy 3 (Figure 2D).

Discharge testing had the greatest benefit under Strategy 1, where

an additional 0.00172 (0.00171, 0.00174) nosocomial and 0.00057
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FIGURE 1

Classification and infection status of SARS-CoV-2-infected hospital inpatients. (A) Number of community-acquired SARS-CoV-2 admissions (blue)

and nosocomial cases (red) per day. (B) Cumulative count of community-acquired admissions and nosocomial COVID-19 cases. (C) Infection status

of infected nosocomial cases on the day of discharge. (D) Proportion of nosocomial cases discharged each day by status.

(0.00055, 0.00061) community-acquired cases were detected per

additional test for discharge, and the smallest benefit was under

Strategy 3, where 0.00069 (0.00067, 0.00070) and 0.00038 (0.00037,

0.00040) nosocomial and community-acquired cases were detected

per test performed (Figure 2E).

Factors influencing the proportion of
inpatients that develop a nosocomial
infection

Despite there being a slight reduction in the number of

nosocomial transmissions that occur between the different testing

strategies (Figure 2C), there was not a significant difference in

the overall proportion of patients who developed a nosocomial

infection between the four testing strategies over the entire

study period (1.61, 1.60, 1.58, and 1.56%, respectively, p = 0.76,

Figure 3A). Similarly, there was no significant difference in the

proportion of patients that developed a nosocomial infection

when the turnaround time for test results increased from 1 to

4 days (1.56, 1.60, 1.59, 1.59, and 1.61% for TATs 0 to 4 days,

respectively, p = 0.573, Figure 3B) or for rapid testing (0 day

TAT), assuming the test specificity of both types of tests was 95%.

If the test specificity were to decrease to either 85 or 75%, then

the proportion of patients that developed a nosocomial infection

would increase from 1.59 to 1.60 or 1.62%, respectively (p= 0.0129,

Figure 3C).

Under the baseline assumptions, hospital occupancy was set to

85% to reflect the standard levels of occupancy in NHSE hospitals.

The effect of reducing occupancy rates to 75% or 65%, as observed

early in the first wave of the pandemic, was that the proportion of

patients developing a nosocomial infection decreased from 1.59%

(1.57, 1.62) to 1.57% (1.54, 1.61) or 1.51% (1.48, 1.55), respectively

(p = 0.003, Figure 3D). However, these differences are very small

and were not observable in patients admitted in any single week or

time period (Supplementary Figure 3).

Reducing the number of beds in a bay from 6 to 4 resulted in

a reduction of 0.2% in the proportion of patients that developed

a nosocomial infection [from 1.59% (1.57, 1.62) to 1.35% (1.33,

1.39)], and if a hospital had the capacity to keep all patients in

individual rooms or bays, the proportion of patients that develop

a nosocomial infection declined to 0.38% (0.34, 0.44) (p < 0.001,

Figure 3E). This difference was accompanied by a reduction in the

percentage of patients that share a room with infected patients

in a single day from 14.0% (13.9, 14.2) to 9.6% (9.5, 9.7) and

0%, respectively (Supplementary Figure 3), with the most strongly

affected patients admitted between July and September, when

nosocomially infected patients make up the highest proportion of

infected patients in hospitals (Figure 1A). Patients with COVID-19-

like symptoms are cohorted together on admission pending testing

results. Changing the proportion of patients displaying COVID-19-

like symptoms that are not genuine COVID-19 cases from 10% at

baseline to 5% or 20% caused the overall proportion of patients

that experienced a nosocomial infection to change from 1.59%

(1.57, 1.62) to 1.52 (1.49, 1.55) or 1.71% (1.68, 1.75), respectively

(p < 0.001, Figure 3F). This increase was observable throughout

most of the simulation period but was most pronounced between

May and June when the number of COVID-19 cases admitted

from the community was highest (Figure 1A). Furthermore, as

the proportion of patients that are wrongly suspected of having

COVID-19 on admission increased, the proportion of patients that

share a bay with non-infected patients in a single day also notably

changed from 11.8% (11.7, 12.0) at 5% wrongly suspected to 17.3

(17.2,17.5) at 20% wrongly suspected (Supplementary Figure 3)

under the baseline assumption that the hospital is laid out in six-

bed bays and infectious patients could transmit to other patients in

the same bay.
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FIGURE 2

Infection status of community and nosocomially infected inpatients. (A) Number of community and nosocomial cases that are PCR detectable or not

before discharge (bars), and proportion of detectable cases that are detected and confirmed before a patient is discharged (lines). (B) Average

proportion of detected cases that have a confirmed result before discharge under di�erent turnaround times (TATs) for testing strategy 0. under all

scenarios. (C) Number of cases detected per test under each scenario. (D) Average number of tests performed per day under each testing strategy.

(E) Additional cases detected per additional discharge test under each scenario, and reduction in nosocomial cases per additional test performed.

Discussion

Using data-driven modeling, we estimated the proportion

of SARS-CoV-2 infections among hospital inpatients that were

detectable/infectious based on their length of stay. Our results

suggest that patients who develop a nosocomial infection but have

a shorter stay than 5 days are not infectious during their inpatient

stay but will go on to become infectious later and can potentially

contribute to onward transmission in the community. The relative

contribution of such individuals to community transmission will

likely be lowest when COVID-19 prevalence is high. Patients who

develop a nosocomial infection with a length of stay of 5 to 25 days

are highly likely to be infectious in hospital and would be detectable

on discharge but were unlikely to be tested in hospital in the period

under study due to being in an asymptomatic, pre-symptomatic,

or very newly symptomatic state. This was also demonstrated in

a study of long-term care facilities that suggested mild symptoms

did not occur until 9 days after an interaction with an index

case (42). As stated previously, the impact of discharge testing

on return to social care facilities is not considered; however, we

predict that had all patients been tested on discharge, a maximum

of 26.0% of additional nosocomial infections would be identified

under scenarios where patients were tested on admission. Similar

results were obtained in a study using a differentmodel, considering

the impact of discharge testing on symptomatic case identification,

which suggests that ∼3% of all cases over the first wave may be

linked to nosocomial transmission or transmission from discharged

nosocomial cases that were not detected in the hospital (35). It

should be noted, however, that in the first wave of the pandemic,

there were considerable constraints on the availability of testing,

and so it remains unknown what the true proportion of additional

cases would have been if discharge testing had been practicable.

Community-acquired cases are only infectious for a short time

post-discharge because they typically spend only a proportion of
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FIGURE 3

Proportion of inpatients that developed a nosocomial infection between 03-Mar-2020 and 01-Sept-2020 under di�erent scenarios. The baseline

parameter set (see Methods) was modified to explore the e�ect of testing strategy (A), turnaround time (TAT, B), test sensitivity (C), hospital

occupancy (D), bay size (E), and proportion of non-COVID-19 patients displaying COVID-19-like symptoms on admission (F).

their infectious period outside the hospital. They have also been

shown to contribute to fewer new cases than their nosocomial

counterparts (35). Testing community-acquired cases on discharge

would lead to an additional 2% of cases being identified. Discharge

testing is most efficient when used in combination with a testing

strategy where every patient is tested on admission, resulting

in 0.00172 (0.00171, 0.00174) nosocomial and 0.00057 (0.00055,

0.00061) community-acquired cases detected per discharge test

performed (Figure 2).

Over the first wave in England, 15,564 confirmed SARS-CoV-

2 infections were detected in hospitalized individuals (14). Under

our estimate that only 30.8% of all nosocomial cases were identified

in hospitals before discharge, a result that is supported by other

models from the same time period (35, 43), we would expect

there to be an additional 34,968 cases that were missed. However,

national data linking patient records to positive test results in the

community identified only 14,913 cases in recently hospitalized

individuals (14). This suggests that 39.7% of nosocomial cases

were never identified, and the contribution of these cases to the

transmission rate of SARS-CoV-2 in the community is unknown,

although they could make up 4% of all new hospital admissions

when readmitted (35). Repeat testing between days 5 and 7 alone

or in addition to day 3 testing increases the proportion of detected

nosocomial cases but does not significantly reduce nosocomial

transmission rates in hospitals. This differs from closed settings

such as long-term care facilities, where frequent testing has been

shown to be more effective (44, 45).

We estimate that when only symptomatic patients are tested

on admission, 26.0% of the 40.8% of nosocomial infections that

are detectable before a patient is discharged from the hospital,

and 2% of the 86.6% of community-acquired cases are missed

(3.3% of all SARS-CoV-2 infections among hospital inpatients).

These results are in line with other modeling studies from the

same time period that estimate the proportion of nosocomial cases

detected (35, 43) and also agree with studies estimating detection

rates of SARS-CoV-2 in travelers entering the UK (46, 47). This

strategy was in place in England up until 27 April 2020 (while

testing availability was very constrained and the possibility of

asymptomatic transmission was uncertain). During that time, over

53,000 patients were admitted to the hospital with a detected

SARS-CoV-2 infection, and a further 17,000 had a SARS-CoV-2

infection that was potentially nosocomial in origin [positive test

at least 3 days post-admission or within 14 days of discharge

from the hospital (14)]. Over this time period, we estimate that

in our simulated 1,000-bed hospital, 58 additional cases would

have been detected by discharge testing over the first wave,

equating to almost 6,000 nationally. Identifying these cases could

have potentially reduced the burden of SARS-CoV-2 infections

in previously hospitalized inpatients in the general community

through reduced onward transmission.
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We also explored the factors that could potentially impact

nosocomial transmission rates in English hospitals. Correctly

cohorting patients had the strongest effect on reducing nosocomial

transmission rates. The effect of correctly cohorting patients was

most strongly observed in scenarios where there was a smaller

number of beds per bay (and therefore more bays available for

keeping infected and non-infected patients separate) or where

the proportion of patients with COVID-19-like symptoms that

were SARS-CoV-2 negative on admission (and therefore wrongly

cohort with true COVID-19 patients while awaiting test results)

was smallest (so there was less chance of incorrectly cohorting

susceptible patients with infected patients on admission).

This study has a number of limitations. First, patients are

classified as detected if they are ever tested during the infection

period. Symptomatic patients undergo probabilistic testing upon

symptom development. This means that patients may be tested

at the time of discharge and therefore be classified as detected

(but not confirmed) when, in reality, they would be unlikely to

have been given a test. Furthermore, the spatial arrangement of

wards, shared spaces such as corridors and bathroom facilities,

and their distribution across several buildings within a trust are

not explicitly represented in the model. The model is calibrated to

national data, but the testing strategies were held constant within a

scenario, whereas in reality, guidelines for testing patients varied

over time, and patients were cohorted differently between trusts

as capacity allowed. In addition, we have assumed throughout this

analysis that patients who are tested get their results regardless of

whether they are discharged. If this were not the case, the number

of detected cases would be up to 19.6% lower for community-

acquired cases and 13.4% lower for nosocomial cases. As previously

mentioned, constraints on testing availability, especially in the

first few months of the pandemic, also reduced the proportion of

detected cases and, in doing so, the potential for cross-infection.

Despite these limitations, we believe that the results presented

here are a good representation of what may have happened under

different scenarios in England and provide evidence for public

health strategies that can be applied outside of the English setting.

This study has important implications for infection prevention

in hospitals and can be applied to contexts other than SARS-CoV-

2. These results are particularly relevant as testing programmes

for SARS-CoV-2 are scaled back across the NHS as well as if a

new vaccine escape variant emerges. The study focuses on English

hospitals, but the results are broadly applicable to other secondary-

care systems where the rates and types of interactions within and

between populations of patients and HCWs are similar.

Conclusion

Between 03 March 2020 and 01 August 2020, over 30,000

people could have been discharged from hospitals in England

while harboring a non-detected SARS-CoV-2 infection, only 3.3%

of which would have been identified by discharge screening.

In addition, 59.2% of nosocomial infections are not detectable

or infectious before discharge and will become detectable and

infectious post-discharge, potentially contributing to onward

transmission in the community. However, the impact is likely to

be small when community prevalence is high. The most efficient

way to detect community and nosocomial cases is by testing all

patients on admission and subsequent discharge. Retesting patients

3 days post-admission increases the identification rate of detectable

nosocomial cases; however, these cases would be incorrectly

attributed as community-acquired cases under current ECDC

healthcare-associated case definitions (41). Increasing hospital

occupancy, a higher number of beds per bay, and incorrectly

cohorting patients with COVID-19-like symptoms on admission

are associated with higher rates of nosocomial transmission.
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