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Systemic lupus erythematosus (SLE) is a prototypic systemic autoimmune disease 
characterized by the production of various autoantibodies and deposition of 
immune complexes. SLE is a heterogenous disease, and the pattern of organ 
involvement and response to treatment differs significantly among patients. Novel 
biological markers are necessary to assess the extent of organ involvement and 
predict treatment response in SLE. Lysophosphatidic acid is a lysophospholipid 
involved in various biological processes, and autotaxin (ATX), which catalyzes 
the production of lysophosphatidic acid in the extracellular space, has gained 
attention in various diseases as a potential biomarker. The concentration of ATX is 
increased in the serum and urine of patients with SLE and lupus nephritis. Recent 
evidence suggests that ATX produced by plasmacytoid dendritic cells may play 
an important role in the immune system and pathogenesis of SLE. Furthermore, 
the production of ATX is associated with type I interferons, a key cytokine in SLE 
pathogenesis, and ATX may be a potential biomarker and key molecule in SLE.
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1. Introduction

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease, common in young 
women. SLE is characterized by the production of various autoantibodies, such as anti-nuclear 
and anti-dsDNA antibodies, and deposition of immune complexes. SLE can affect various 
organs including the skin, heart, kidneys, and central nervous system. Current treatment for 
SLE includes antimalarials, corticosteroids, immunosuppressants, and biologics; however, it is 
far from perfect, and many patients do not achieve an adequate response or experience 
side effects.

SLE is a heterogenous disease and the pattern of organ involvement and response to 
treatment differs significantly among patients. Various biological markers, such as complement 
levels, anti-dsDNA antibody titers, and urine tests, are used in clinical settings to assess disease 
activity of SLE (1). Different autoantibodies have been reported to be associated with certain 
clinical features of SLE, for example, the association of anti-ribosomal P antibodies with 
neuropsychiatric lupus and lupus hepatitis (2). Other novel markers are also being investigated 
(3), for example, monocyte chemoattractant protein-1 levels in urine have been reported to 
correlate with the activity and prognosis of lupus nephritis (4–6). Serum interferon levels have 
been associated with disease activity (7, 8). However, these biomarkers are not sufficient to assess 
the extent of disease and predict treatment response, and it is pertinent to find markers that can 
stratify patients to provide treatment most effective for each individual.

Recently, lysophosphatidic acid (LPA) and autotaxin (ATX), an enzyme that catalyzes the 
production of LPA, have recently gained attention in many fields. Many ATX inhibitors are being 
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developed as potential therapeutic agents for cancer and idiopathic 
pulmonary fibrosis, and there are currently several clinical trials 
underway (9–11). Recently, a role for the ATX-LPA axis in SLE has 
also been reported. In this review, we will discuss the roles of LPA and 
ATX and whether they are their possible biological markers in SLE.

2. Lysophospholipids and the 
autotaxin–lysophosphatidic acid axis

Lysophospholipids are lipids with one carbon chain and a polar 
head group. They are classified into two groups, 
lysoglycerophospholipids and lysosphingolipids. Via signaling 
through G protein-coupled receptors, lysophospholipids play an 
important role in regulating cell function. LPA and sphingosine-1-
phosphate are among the most well-studied lysophospholipids 
involved in cell signaling.

LPA transduces signals through LPA receptors (LPAR1–6) and 
is involved in various biological processes, including cell migration, 
proliferation, and aggregation of platelets (12). Under physiological 
conditions, ATX is the lysophospholipase mainly responsible for 
the production of LPA in blood and catalyzes the production of 
LPA from lysoglycerophospholipids, such as 
lysophosphatidylcholine (12) (Figure 1A). Five ATX isoforms have 
been reported, all of which exhibit lysophospholipase D activity. 
ATXβ and ATXγ are the isoforms mainly expressed in peripheral 
tissue and the central nervous system, respectively (13). ATX is 
abundantly expressed in adipose tissue. In mice, adipose tissue-
specific knockout of ATX significantly decreased the concentration 
of LPA in plasma, suggesting that adipose tissue is an important 
source of ATX in blood (14). ATX is also highly expressed in the 
central nervous and reproductive systems, as well as in lymphoid 

tissues (13, 15). In the extracellular space, ATX binds to integrins, 
preventing its clearance and allowing for localized LPA production 
(16, 17). Tumor necrosis factor (TNF), interleukin-6 (IL-6), and 
lipopolysaccharide, as well as type I  interferons, have been 
reported to induce the expression of ATX, while the expression of 
ATX is inhibited by LPA in a negative feedback loop (15, 18) 
(Figure 1B).

3. Measuring lysophosphatidic acid 
and autotaxin concentrations

Many studies have investigated the concentrations of LPA and 
ATX in clinical specimens. Both LPA and ATX are abundant in the 
blood. Concentrations of LPA in the plasma of healthy individuals 
vary significantly among reports, ranging from 40–60 nM (19) to 
120 nM (20). Concentrations as high as 0.1–6.3 μM have also been 
reported (21). Significant differences among these reports are thought 
to reflect the difficulty of accurately measuring LPA concentrations. 
That is, the concentration of LPA increases rapidly after blood 
collection due to its production in vitro. Therefore, to accurately 
measure the concentration of LPA in clinical specimens, samples must 
be handled carefully to avoid the production and degradation of LPA 
(19, 20). Further, its concentration is slightly higher in females (22).

The concentration of ATX in serum has been reported to 
be closely correlated with that of LPA and is more stable (22–24); thus, 
the measurement of ATX may serve as a more practical marker. The 
serum concentration of ATX is also higher in females than in males: 
0.625–1.323 mg/L and 0.438–0.914 mg/L, respectively (9). The serum 
level of ATX increases during pregnancy (25) and various diseases, 
which will be discussed in section 4. Serum concentration of ATX may 
be affected by treatment with steroids (26, 27).

A

B

C

FIGURE 1

An Overview of ATX. (A) The ATX-LPA axis: ATX is a lysophospholipase that mainly catalyzes the production of LPA from lysoglycerophospholipids, such 
as lysophosphatidylcholine. (LPC, lysophosphatidylcholine; ATX, autotaxin; LPA, lysophosphatidic acid; LPAR, LPA receptor). (B) Regulation of ATX 
expression: the expression of ATX is induced by TNF, IL-6, LPS, and type I interferons and inhibited by LPA. (TNF, tumor necrosis factor; IL-6, 
interleukin-6; LPS, lipopolysaccharide). (C) ATX and the pathogenesis of SLE: pDCs are activated by TLR7 and TLR9 signals, resulting in the production 
of type I interferons. Type I interferons induce the production of ATX and thus the production of LPA. This results in the activation of mDCs, which 
present autoantigens to T cells and activate them. Together, this leads to the maturation of B cells and the production of autoantibodies. Immune 
complexes further enhance the activation of pDCs, resulting in a positive feedback loop, contributing to the organ damage in SLE (pDC, plasmacytoid 
dendritic cell; TLR, toll-like receptors; mDC, myeloid dendritic cell).
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4. Autotaxin and human diseases

Reflecting the importance of ATX in the function of various 
systems, it has been implicated in many human diseases, some of 
which will be discussed here.

4.1. Autotaxin and malignancies

Before being identified as a phospholipase that catalyzes the 
production of LPA, ATX was originally reported as a substance 
present in the supernatant of melanoma cells that induces their 
migration (28). Serum ATX levels have been reported to be elevated 
in patients with various malignancies, including hepatocellular 
carcinoma (29) and follicular lymphoma (25). Serum ATX levels may 
also be  useful in assessing disease progression. For example, in 
patients with hematological malignancies, ATX levels in cerebrospinal 
fluid is increased in patients who have malignant cells within the 
central nervous system (30).

4.2. Autotaxin and liver diseases

Serum ATX levels increases in various liver diseases, such as 
chronic hepatitis C (31) and non-alcoholic fatty liver disease (32). 
Serum ATX correlates with the histological staging of liver fibrosis and 
is approved as a marker for liver fibrosis in Japan (33, 34).

4.3. Autotaxin and cardiovascular diseases

By producing LPA and mediating platelet activation, ATX also 
plays an important role in atherosclerosis and cardiovascular diseases. 
For example, ATX is overexpressed in the cardiac tissue of patients 
with acute myocardial infarction (AMI) and is involved in the 
induction of inflammation after AMI (35). LPA is also involved in 
cardiac remodeling following AMI.

4.4. Autotaxin, idiopathic pulmonary 
fibrosis, and systemic sclerosis

ATX is also implicated in fibrosis, and ATX levels are increased in 
lungs of patients with idiopathic pulmonary fibrosis (IPF). The 
ATX-LPA axis may be  a potential therapeutic target in IPF, and 
clinical trials of ziritaxestat, an ATX inhibitor, are being conducted (9, 
36). The ATX-LPA axis is also involved in skin fibrosis in systemic 
sclerosis (37), and a recent clinical trial of ziritaxestat for patients with 
early diffuse cutaneous systemic sclerosis indicated that inhibition of 
ATX may improve skin symptoms (38).

4.5. Autotaxin and rheumatoid arthritis

The ATX-LPA axis is also involved in pathogenesis of autoimmune 
diseases, including rheumatoid arthritis (RA) (15). TNF-α, a key 
cytokine in the pathogenesis of RA, induces expression of ATX in 
synovial fibroblasts (39), and LPAR1 and ATX are highly expressed in 

the synovium of patients with RA (39, 40). The ATX-LPA axis has 
been reported to contribute to the pathogenesis of RA by inducing 
infiltration of immune cells to joints and may promote differentiation 
of Th17 cells in the synovium (15, 40).

5. Autotaxin and systemic lupus 
erythematosus

ATX is also expressed by cells of the immune system. In the 
immune system, ATX and LPA exert various effects––regulating the 
development, function, and migration of various immune cells––and 
there is growing evidence that ATX may also play a role in the 
pathogenesis of SLE. In the following section we will discuss the role 
of ATX in the immune system and in SLE.

5.1. Autotaxin, type I interferons, and 
plasmacytoid dendritic cells

Production of type I interferons by plasmacytoid dendritic cells 
(pDCs) plays a central role in the pathogenesis of SLE (41–44). Type 
I interferons produced by pDCs induce the differentiation of dendritic 
cells (DCs). It also enhances the ability of DCs to present autoantigens 
to T cells (44, 45). Type I interferons also promote the maturation of B 
cells and production of autoantibodies (46–48), and immune complexes 
further induce the activation of pDCs and production of type 
I interferons (Figure 1C). Among peripheral blood immune cells, the 
expression of ENPP2, which encodes ATX, is highest in pDCs (49, 50), 
and several lines of evidence suggest that there is an association between 
the ATX-LPA axis and production of type I interferons by pDCs in SLE.

First, type I interferons are involved in the production of ATX. The 
induction of ATX by interferons has been reported in various cell 
types, including THP-1 cells, human monocyte-derived DCs, and 
human monocytes. The production of type I interferons upon TLR 
stimulation plays a critical role in the induction of ATX, and blocking 
interferons inhibits this process (18).

In addition, the expression of ENPP2 is increased in pDCs of 
patients with SLE, especially those with high disease activity (49). 
However, this is not specific to SLE and is seen in other inflammatory 
diseases, including COVID-19 infection (50). In single-cell RNA-seq 
analysis of pDCs, clusters enriched in type I IFN transcripts expressed 
ENPP2, as well as SLC7A11 and MYO1E. ENPP2 and SLC7A11 were 
also expressed in pDCs obtained from kidney biopsies of patients with 
lupus nephritis. In vitro studies suggest that SLC7A11 induces the 
expression of MYO1E and ENPP2 during pDC activation and that 
ATX is necessary for production of IFN-α and TNF. Therefore, ATX 
may play a critical role in activated pDCs that are directly involved in 
SLE pathogenesis at the site of inflammation (51). LPA has been 
reported to modulate the activity of TCF4, a transcription factor 
essential for pDC development (16).

Other studies have suggested an interaction between the 
ATX-LPA axis and pDCs in SLE. In our recent weighted gene 
co-expression network analysis (52) of transcriptome data of pDCs 
from patients with SLE, ENPP2 belonged to a module (a group of 
genes with high correlation in expression patterns) enriched in genes 
involved with interferon signaling (49). Furthermore, this module 
included genes whose expression are influenced by single-nucleotide 
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polymorphisms (SNP) associated with SLE in genome-wide 
association studies. For example, this module included RASGRP3, 
whose expression is increased in pDCs of patients with the SLE risk 
allele at rs13425999. Although it is not clear whether there is a direct 
causal relationship between the expression of those genes with ATX, 
it suggests that ATX may be  involved in the connection between 
genetic risk factors of SLE and disease pathogenesis (49).

Furthermore, among patients with SLE, rs10980684, an intron 
SNP located in the LPAR1 gene, is associated with anti-Ro and 
anti-Sm antibody positivity, which are known to be associated with 
high serum levels of interferon α. Among patients with anti-Ro and 
anti-Sm antibody positivity, the T allele at rs10980684 was associated 
with high serum levels of interferon α (53).

Together, these studies suggest that there is an association of the 
ATX-LPA axis in pDCs with type I interferons and that genetic factors 
of SLE play a possible role in this process.

5.2. Autotaxin and other myeloid cells

Other DC subsets and macrophages are also involved in the 
pathogenesis of SLE (44, 54), and the ATX-LPA axis is also critical in 
the regulation of those cells. For example, expression of ATX in 
macrophages increases upon activation in both humans and mice. 
LPA has been reported to increase the production of proinflammatory 
cytokines, such as TNF. LPA enhances the ability of human 
macrophages to stimulate T cells (55), and knockdown of ATX 
expression in mouse macrophages impairs their migratory capacity 
and ability to activate T cells (56). It has also been reported that LPA 
modulates the differentiation of monocyte-derived DCs (57). The 
altered expression of ATX, and thus LPA, in SLE may contribute to the 
altered function of macrophages and DCs.

5.3. Autotaxin and lymphocytes

In lymph nodes, high endothelial venules express ATX at high 
levels (58). Activated T cells express receptors for ATX, and 
transendothelial migration of T cells is enhanced by the LPA produced 
by ATX on high endothelial venules (58, 59). Consistent with this, 
LPAR2-deficient CD4+ cells exhibit a defect in early intranodal 
migration (60). In lymph nodes, ATX is also expressed by stromal 
cells, and the ATX-LPA axis, along with other chemokines, is also 
involved in the regulation of T cell migration in the paracortex (61). 
In addition to its role in the migration of lymphocytes, the ATX-LPA 
axis has been reported to play a role in the formation of immune 
synapses in CD8+ cells (62).

The ATX-LPA axis is also important for B cells. Some in vivo 
studies suggest that B cells may also be involved in production of ATX 
during inflammation (63). Furthermore, via signaling through 
LPAR5, LPA has been reported to inhibit B cell receptor signaling (64).

Various abnormalities involving the ATX-LPA axis have been 
reported in lymphocytes of patients with SLE (65). LPAR3 has been 
reported to be upregulated in CD4+ and CD8+ T cells of patients with 
SLE (66). In addition, in a transcriptome analysis of B cells from patients 
with SLE and healthy controls, differentially expressed genes were 
enriched in “chemotaxis and lysophosphatidic acid signaling via 
GPCRs” (67).

5.4. Autotaxin–lysophosphatidic acid axis 
in other organ systems

Cardiovascular diseases are a major cause of mortality among 
patients with SLE in many cohorts (68, 69). Steroids used for the 
treatment of SLE promotes progression of atherosclerosis. SLE is 
often associated with anti-phospholipid syndrome that is 
characterized by the presence of anti-phospholipid antibodies 
and thrombosis (70). Consistent with the role of ATX in the 
activation of platelets, the proportion of ATX+ platelets  
were reported to be higher in patients with SLE, especially those 
with a history of thrombosis, compared with that in healthy 
controls (71). Thus, ATX might be  useful as a marker for 
thrombosis in SLE.

The ATX-LPA axis is also involved in neuropathic pain (72, 73). 
Among patients with SLE, pain is often a significant burden, even 
among those whose disease activity is not high (74, 75). It may 
be possible that ATX is involved in pain in SLE.

6. Autotaxin as a biomarker for 
systemic lupus erythematosus

Reflecting the potential role of the ATX-LPA axis in SLE 
pathogenesis, various studies have addressed the potential role of ATX 
as a biological marker in SLE (Table 1).

6.1. Autotaxin in serum of patients with 
systemic lupus erythematosus

Consistent with the increase in ENPP2 mRNA expression levels 
observed in patients with SLE, the concentration of ATX in the 
serum is increased in patients with active, untreated SLE compared 
with that in healthy controls (49). It has also been reported that ATX 
levels are increased in the serum of patients with lupus nephritis 
compared with those in patients with other glomerulonephritis, 
such as diabetic nephropathy and membranous nephropathy (27). 
The level of ATX in the serum inversely correlates with the dosage 
of steroids in patients with lupus nephritis (27), and ATX serum 
levels may decrease upon treatment with steroids (26). Therefore, 
the effect of treatment must be  considered based on ATX 
serum levels.

6.2. Autotaxin in urine of patients with 
systemic lupus erythematosus

The concentration of ATX in urine shows correlation with 
various parameters associated with kidney injury, such as the 
concentration of proteins, N-acetyl-β-d-glucosaminidase, and 
α1-microglobulin in the urine (76). Urinary ATX/Cre 
concentrations were higher in patients with lupus nephritis 
compared to those in controls (76). The concentration of urinary 
ATX is also increased in patients with membranous nephropathy 
(76) and active sarcoidosis (77). Therefore, although it may not 
be disease specific, urinary ATX levels may serve as a potential 
marker for lupus nephritis.
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7. Discussion

SLE is a heterogenous disease, and to provide better care for 
patients with SLE, there is an eminent for biological markers to assess 
the pattern and extent of organ involvement and to predict treatment 
response. The ATX-LPA axis is involved in various biological 
processes, including immune responses. Recent evidence suggests that 
the ATX-LPA axis is associated with the abnormal production of type 
I  interferons in pDCs that characterizes SLE (49, 51); thus, the 
ATX-LPA axis may play a critical role in SLE pathogenesis, and ATX 
may serve as a potential biomarker.

In the immune system, expression of ATX is high in pDCs and 
induced by type I interferons (18). ATX may be a marker of activated 
pDCs that are involved in the pathology of SLE, and in addition to 
acting as a marker for activated pDCs, ATX may directly be involved 
in the activation of pDCs (51). Reflecting this, expression of ENPP2 is 
high in pDCs of patients with SLE, especially those with high disease 
activity (49), and ATX concentrations increase in the serum of 
patients with untreated SLE (49) and lupus nephritis (27). The 
concentration of ATX is also increased in the urine of patients with 
lupus nephritis (76). Although the ATX concentration increases 
observed in serum and urine are not specific to SLE, it may be possible 
that ATX serves as a useful marker for assessing disease activity and 
the pattern of organ involvement. Furthermore, biologic therapies that 
directly inhibit type I interferon signaling, such as anifrolumab, have 
recently become available for the treatment of SLE (78), and novel 
markers to identify patients who could benefit the most from those 
therapies need to be identified (79). ATX may serve as a useful marker 
in this aspect, as it can be measured with a commercial automated 
immunoassay analyzer (80), which may be more convenient than 
measuring the expression of interferon-associated genes with 
quantitative polymerase chain reaction as performed in some clinical 

studies (78). More studies are needed to assess the potential role of 
ATX in predicting treatment response.

In conclusion, the ATX-LPA axis plays a critical role in the 
pathogenesis of SLE and is associated with the production of 
interferons by pDCs. ATX may serve as a potential marker for 
assessing disease activity, the pattern of organ involvement, and 
predicting treatment responses. Thus, further investigation of the role 
of ATX in these aspects are warranted.
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