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Background: Vaccination has proven the potential to control the COVID-19 
pandemic worldwide. Although recent evidence suggests a poor humoral 
response against SARS-CoV-2 in vaccinated hematological disease (HD) patients, 
data on vaccination in these patients is limited with the comparison of mRNA-
based, vector-based or inactivated virus-based vaccines.

Methods: Forty-nine HD patients and 46 healthy controls (HCs) were enrolled 
who received two-doses complete vaccination with BNT162b2, or AZD1222, or 
BBIBP-CorV, respectively. The antibodies reactive to the receptor binding domain 
of spike protein of SARS-CoV-2 were assayed by Siemens ADVIA Centaur assay. 
The reactive cellular immunity was assayed by flow cytometry. The PBMCs were 
reactivated with SARS-CoV-2 antigens and the production of activation-induced 
markers (TNF-α, IFN-γ, CD40L) was measured in CD4+ or CD8+ T-cells ex vivo.

Results: The anti-RBD IgG level was the highest upon BNT162b2 vaccination in 
HDs (1264 BAU/mL) vs. HCs (1325 BAU/mL) among the studied groups. The BBIBP-
CorV vaccination in HDs (339.8 BAU/mL ***p < 0.001) and AZD1222 in HDs (669.9 
BAU/mL *p < 0.05) resulted in weaker antibody response vs. BNT162b2  in HCs. 
The response rate of IgG production of HC vs. HD patients above the diagnostic 
cut-off value was 100% vs. 72% for the mRNA-based BNT162b2 vaccine; 93% vs. 
56% for the vector-based AZD1222, or 69% vs. 33% for the inactivated vaccine 
BBIBP-CorV, respectively. Cases that underwent the anti-CD20 therapy resulted 
in significantly weaker (**p < 0.01) anti-RBD IgG level (302 BAU/mL) than without 
CD20 blocking in the HD group (928 BAU/mL). The response rates of CD4+ 
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TNF-α+, CD4+ IFN-γ+, or CD4+ CD40L+ cases were lower in HDs vs. HCs in all 
vaccine groups. However, the BBIBP-CorV vaccine resulted the highest CD4+ 
TNF-α and CD4+ IFN-γ+ T-cell mediated immunity in the HD group.

Conclusion: We have demonstrated a significant weaker overall response to 
vaccines in the immunologically impaired HD population vs. HCs regardless of 
vaccine type. Although, the humoral immune activity against SARS-CoV-2 can 
be highly evoked by mRNA-based BNT162b2 vaccination compared to vector-
based AZD1222 vaccine, or inactivated virus vaccine BBIBP-CorV, whereas the 
CD4+ T-cell mediated cellular activity was highest in HDs vaccinated with BBIBP-
CorV.

KEYWORDS

hematology diseases, SARS-CoV-2 vaccination, BBIBP-CorV, AZD1222, BNT162b2, 
COVID-19, protective immunity

1. Introduction

After the COVID-19 outbreak, it has rapidly become clear that 
SARS-CoV-2 infection is a higher threat with more severe clinical 
course to patients with hematological diseases (HD). Patients with HD 
suffer from higher mortality rate than the general population with 
COVID-19 or non-hematology COVID-19 patients (1–3) which can 
be  explained by risk factors such as age, comorbidities and 
immunosuppressive therapies. After SARS-CoV-2 infection nearly 
one-third of the patients (31%) has been reported to be serologically 
negative for SARS-CoV-2 IgGs (4).

The vaccination against severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) emerged as the first line defense strategy 
in the fight against the global pandemic, and available vaccines have 
prevented COVID-19 related hospitalization, severe disease and death 
worldwide (5). SARS-CoV-2 vaccination improved the mortality rate 
of HD patients from 31% (pre-vaccination era) to 9% (6) which is still 
remarkably higher compared to the rate observed in the fully 
vaccinated overall population (7). A recent meta-analysis including 26 
studies revealed that patients with HD had significantly lower 
seroconversion rate (33.3%) compared to healthy controls (74.9%) and 
despite the increase of seroconversion rates after the second dose, the 
significant difference between the two groups remained (65.3% vs. 
97.8%) (8). A more recent meta-analysis of 150 studies with 20922 HD 
patients showed a pooled seroconversion rate after SARS-CoV-2 
vaccination of 67.7% and the meta-regression analysis revealed that 
patients with lymphoid malignancies, but not myeloid malignancies, 
had lower seropositivity rates than those with solid tumors (9).

Multiple studies highlighted that patients with hematological 
malignancies receiving immunosuppressive therapies such as stem cell 
transplantation, anti-CD20 therapies, Bruton’s tyrosine kinase (BTK) 
inhibitors and CAR-T cell treatments are at higher risk. Anti-CD20 
monoclonal antibody therapy may result in prolonged depletion of 
normal B-cells and therefore markedly impaired humoral response to 
COVID-19 vaccination in HD patients with undetectable or decreased 
protective antibody titers (10–14).

There are several aspects of vaccination efficacy regarding this 
vulnerable group of patients which are rarely discussed in the 
literature. First, beyond the scope of humoral response to COVID-19 
vaccination, the role of vaccine-induced cellular response is less 

explored. Minority of published articles incorporated the assessment 
of SARS-CoV-2-specific T-cell response after complete vaccination 
with detectable T-cell mediated immunity ranging between 29% and 
88% of the HD patients (9, 10, 12, 15–17). Second, majority of the 
reports demonstrated the efficacy of mRNA and vector-based 
vaccines, although in many countries (including Hungary) inactivated 
vaccines are also approved.

To narrow down this knowledge gap, we conducted this complex 
study to compare the immunogenicity of mRNA (BNT162b2), vector-
based (AZD1222) and inactivated (BBIBP-CorV) vaccine in a cohort 
of fully vaccinated patients with HD versus healthy individuals. Both 
humoral and cellular immunity was evaluated by measuring the 
neutralizing anti-SARS-CoV-2 antibody titers and by quantifying 
SARS-CoV-2 reactive T-cells with the help of multicolor 
flow cytometry.

2. Materials and methods

2.1. Ethical statement

The enrollment of patients was reviewed and approved by the 
Human Investigation Review Board of the National Public Health 
Center under Project Identification Code 47226-7/2019EÜIG. The 
patients provided their written informed consent to participate in this 
study. Subjects were informed about the study by a physician and 
acute SARS-CoV-2 infection was ruled out by RT-qPCR. Laboratory 
studies and interpretations were performed on coded samples lacking 
personal and diagnostic identifiers. The study adhered to the tenets of 
the most recent revision of the Declaration of Helsinki.

2.2. Study population

The main characteristics of the study participants (46 healthy 
controls, HCs and 49 hematologic disease patients, HDs) are 
summarized Table 1 and detailed demographic data of the enrolled 
HD patients vaccinated with BBIBP-CorV are summarized in 
Supplementary Table S1, vaccinated with AZD1222 are summarized 
in Supplementary Table S2, vaccinated with BNT162b2 are 
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summarized in Supplementary Table S3. All participants received two 
doses of the relevant vaccine in line with recommendations of the 
respective manufacturer of BBIBP-CorV (Sinopharm, Beijing 
Institute, Beijing, China); AZD1222 (ChAdOx1, University of Oxford 
and AstraZeneca, Cambridge, United  Kingdom); and BNT162b2 
(Comirnaty, Pfizer-BioNtech, Mainz, Germany). This prospective 
observational study was conducted at the Szent-Györgyi Albert 
Medical School-University of Szeged, Department of Medicine, 
Szeged, Hungary between October 2021 and February 2021. Adult 
patients with HDs were recruited who received two doses vaccination 
starting from February 2021 and completed by 1st June 2021. 
Peripheral blood and sera sampling was conducted after 4 months of 
the second vaccination event. The schematic cartoon of the project 
workflow is demonstrated in Supplementary Figure S1.

This study is a cross sectional analysis including a wide variety of 
hematology patients. Patients diagnosed with acute leukemia and 
aggressive lymphoma under induction chemotherapy were excluded. 
Treatment with tyrosine kinase inhibitors such as ibrutinib, 
ruxolitinib and dasatinib was allowed, similarly to any kind of anti-
myeloma treatment including intermittent corticosteroids. A 
subgroup with known prior anti-CD20 moAb treatment was created. 
Patients with any sign of an acute infection, including confirmed 
acute SARS-CoV-2 infection were excluded. The distribution of 
vaccine types represents vaccine usage in the entire hematology 
patient population.

The withdrawal of 10 mL peripheral blood was carried-out into 
Lithium Heparin tubes (BD vacutainer, Beckton Dickinson). The 
primary endpoint was the humoral and cellular immunogenicity of 
homologous two doses of BBIBP-CorV or AZD1222, or BNT162b2, 
respectively. Secondary endpoints included: effect of anti-CD20 
treatment and hematologic disease duration on the production of 
anti-RBD neutralizing antibodies in HD patients.

2.3. Measurement of anti-SARS-CoV-2 IgG 
antibodies

Measurement of SARS-CoV-2 anti-RBD (receptor binding 
domain) of spike (S) protein, the IgG-type antibodies was performed 
as described in detail previously by our group (18, 19). Briefly, 
quantitative measurement of neutralizing anti-RDB specific IgG-type 
antibody levels was performed with the Siemens Advia Centaur XPT 
system using the Siemens Healthineers SARS-CoV-2 IgG assay 
(sCOVG) (Siemens Healthineers, Munich, Germany). Irsara et al. 
(20), showed a proper correlation (r = 0.84) of the positive sCOVG 
assay results with virus neutralization capacity. Measured index values 
were converted into WHO 20/136 approved international units of 
1000 Binding Antibody Unit per milliliter (BAU/mL) using the 
following equation: (sCOVG index) × 21.8 = BAU/mL, where the 

diagnostic cut-off value was 21.8 BAU/mL), assay sensitivity was 10.9 
BAU/mL (21).

2.4. Measurement of SARS-CoV-2 specific 
cellular immunity

Measurement of SARS-CoV-2 specific T-cell mediated immunity 
was performed as described in detail previously by our group (18, 19). 
Briefly, measurement of SARS-CoV-2 specific T-Cell memory was 
performed according to the instruction of the manufacturer using the 
SARS-CoV-2 Prot_S T Cell Analysis Kit (PBMC) (Miltenyi Biotec, 
Cat. No.: 130-127-586). The PBMCs were isolated by gradient 
centrifugation using Leucosep tubes (Greiner Bio-One, Cat. No.: 
163288) following the instructions of the manufacturer. After the 
isolation of PBMCs and in vitro stimulation, staining with the 
antibodies, a minimum of 2 × 105 CD3+ cells were acquired on 
CytoFLEX S FACS (Beckman Coulter). Manual gating was used to 
determine CD4+ or CD8+ T-cells within live CD14−/CD20−, CD3+ 
lymphocytes in CytExpert (Beckman Coulter). Reactive cells were 
gated as CD4+ TNF-α+, CD4+ IFN-γ+, CD4+ CD40L+, CD8+ TNF-α+ 
and CD8+ IFNγ+ upon stimuli with the following pool of SARS-CoV-2 
derived synthetic peptides: S-(spike, PepTivator SARS-CoV-2 Prot_S, 
Cat. No.: 130-126-701), M-(membrane, PepTivator SARS-CoV-2 
Prot_M, Cat. No.: 130-126-702), N-(nucleocapsid, PepTivator SARS-
CoV-2 Prot_N, Cat. No.:130-126-698) according to the instructions 
of the manufacturer (Miltenyi Biotec). The controls were the patient 
matched PBMCs left untreated. Gating was above the negative cells in 
the untreated control samples analyzed individually for each patient. 
The gating strategy has already been published by our group in the 
Supplementary Figure S1 in the reference Szebeni et al. (18). Cell 
numbers in the reporting gates were normalized to parental CD4+ or 
CD8+ T-cells (reactive cell number/parental cell number × 106), then 
the background was normalized via subtraction of untreated from the 
stimulated. Finally, reactive cell numbers are shown in relation to 106 
CD4+ or CD8+ T-cells (Mean ± SEM/1 × 106 parental CD4+ T-cells, 
SD), the cut-off value was 400 reactive cells of 106 parental population.

2.5. Statistics

Data were analyzed with GraphPad Prism 8.0.1. Normality of 
distributions were tested with D’Agostino & Pearson test with an 0.05 
alpha value. None of the groups were normally distributed datasets, 
so we  used non-parametric Mann–Whitney test for two group 
comparisons and Kruskal–Wallis test was applied for three group 
comparisons. Dunn’s test was used for multiple comparisons. 
Differences are considered significant at *p < 0.05, **p < 0.01, and 
***p < 0.001.

TABLE 1 Demographic data of the enrolled HCs and HD patients vaccinated with anti-SARS-CoV-2 specific vaccines.

Age (years, 
mean ± SD)

Female
BBIBP-
CorV

AZD1222 BNT162b2
Therapy: 

anti-CD20

Disease 
duration 
(years, 

mean ± SD)

All HCs, n = 46 43 ± 12 n = 30 (65%) n = 16 (35%) n = 14 (30%) n = 16 (35%) – –

All patients with HDs, n = 49 63 ± 14 n = 20 (40%) n = 15 (30%) n = 16 (33%) n = 18 (37%) n = 11 (22%) 4.2 ± 3.2
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3. Results

3.1. SARS-CoV-2 specific humoral 
immunity in HDs following vaccination

The receptor binding domain (RBD) specific anti-spike (S) IgG 
isotype antibodies were measured in HDs versus healthy controls 
following complete vaccination after 4 months. Three types of SARS-
CoV-2 specific vaccines were tested, the inactivated vaccine (BBIBP-
CorV), or adenovirus vector-based (AZD1222), or mRNA 
(BNT162b2) technology-based vaccines (Figure 1A). Dunn’s test 
was used for multiple comparisons and significant differences are 
marked in Figure 1. The humoral response rate corresponds to the 
percentage of subjects in one group in terms of the production of 
SARS-CoV-2 reactive IgG antibodies over the cut-off value 21.8 
BAU/mL. The simple ‘response’ in Results 3.1 corresponds to SARS-
CoV-2 reactive IgG production. The anti-RBD IgG level (mean of 
the BAU/mL ± SEM, SD) was the highest upon BNT162b2 
vaccination in HDs (1264 ± 348.6, SD: 1479) vs. HCs (1325 ± 318.9, 

SD: 1276) among the studied groups. The BBIBP-CorV vaccination 
in HDs (339.8 ± 216.9, SD: 840 ***p < 0.001) and AZD1222 in HDs 
(669.9 ± 310.5, SD: 1242) *p < 0.05) resulted in weaker antibody 
response vs. BNT162b2 in HCs (1325 ± 318.9, SD: 1276). The BBIBP-
CorV in HCs showed less anti-RBD antibody production 
(41.09 ± 7.4, SD: 30 *p < 0.05) vs. AZD1222 in HCs (211.8 ± 89.48, 
SD: 335), or vs. BNT162b2  in HCs (1325 ± 318.9, SD: 1242 
***p < 0.001) respectively (Figure 1A). The humoral response rate of 
HC vs. HD patients above the diagnostic cut-off value was 69% vs. 
33% for the inactivated vaccine BBIBP-CorV; 93% vs. 56% for the 
vector-based AZD1222, or 100% vs. 72% for the mRNA-based 
BNT162b2 vaccine (Figure 1B), respectively.

Anti-CD20 therapy was given in the 22% (n = 11) of HDs 
(Table  1). The relatively low number of subjects (BBIBP-CorV:5; 
AZD1222:2, BNT162b2:4) receiving anti-CD20 therapy did not allow 
statistical comparisons of anti-RBD antibody levels between the 
vaccination groups. Although only one of eleven HD patients crossed 
the cut off 21.8 BAU/mL value in the anti-CD20 therapy group 
irrespectively of the type of vaccines. On the contrary, 27 of 38 HDs 

FIGURE 1

Humoral immune response to SARS-CoV-2 in HDs vs. HCs. The IgG-type anti-RBD (spike) antibodies were measured from the sera of the patients. 
(A) Subjects for studying BBIBP-CorV were n = 16 (HC) and n = 15 (HD), for AZD1222 were n = 14 (HC) and n = 16 (HD) for BNT162b2 were n = 16 (HC) and 
n = 18 (HD). (B) The response rate was calculated of the vaccination groups. Sub-group analysis was carried-out focusing on (C,D) anti-CD20 treatment 
or (E) disease duration. Mean (green line) and SEM (red whisker) values are demonstrated. *p < 0.05, **p < 0.01, and ***p < 0.001.
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(71%) showed positive response rate to vaccination without CD20 
blocking therapeutics (Figure 1C). Pooling data of cases underwent 
the anti-CD20 therapy resulted in significantly weaker anti-RBD IgG 
level: 302 ± 291 (SD: 965) BAU/mL than 928 ± 215 (SD: 1324) BAU/
mL without CD20 blocking in the HD group, **p < 0.01 (Figure 1D). 
Eleven (73%), or sixteen (100%), or fifteen (83%) HD cases were 
diagnosed more than 1 year ago of the withdrawal of the blood. There 
was no statistical difference among the types of vaccines in terms of 
SARS-CoV-2 reactive IgG production due to disease duration 
following diagnosis (Figure 1E).

3.2. SARS-CoV-2 specific cellular immunity 
in HDs following vaccination

Next, the SARS-CoV-2 reactive cellular immunity was assayed by 
flow cytometry. The PBMCs were reactivated with SARS-CoV-2 
antigens (S-, M-, N-peptide pools) and CD4+ or CD8+ T-cells were 
assayed to produce TNF-α, IFN-γ, and CD40L ex vivo. The cellular 
response rate corresponds to the percentage of subjects in one group 
in terms of the TNF-α, IFN-γ, or CD40L cytokine producing CD4+ or 
CD8+ T-cells over the cut off value that is 400 reactive cells of 106 
parental population (Supplementary Figure S2). The simple “response” 
in Results 3.2 corresponds to the number of S-M-N-peptivator 
activated T-cells normalized to the background unstimulated controls. 
There was no statistical difference in the absolute number of reactive 
CD4+ TNF-α T-cells in HDs versus HCs. However, as a trend HDs 
showed weaker CD4+ TNF-α+ T-cell activation, responsive cells 
(mean ± SEM/1 × 106 parental CD4+ T-cells) were 814 ± 491 (SD: 1552) 
for HC versus 153 ± 73 (SD: 293) for HDs in the AZD1222 vaccinated 
group. The mRNA-based BNTB162b2 vaccination resulted in the 
activation of 382 ± 148 (SD: 591) reactive CD4+ TNF-α T-cells in the 
HC group vs. 161 ± 55 (SD: 235) cells in HDs (Figure 2A). The number 
of CD4-TNF-α positive cells was highest in the BBIBP-CorV vaccine 
group: 2082 ± 1104 (SD: 3982) in HCs and 1955 ± 1655 (SD: 6079) in 
HDs (Figure 2A). Measurement of IFN-γ induction in CD4+ T-cells 
showed also higher SARS-CoV-2 specific activation in HCs vs. HDs, 
detecting for BBIBP-CorV: 1767 ± 911 (SD: 3286) vs. 190 ± 57 (SD: 
213) (*p < 0.05); for AZD1222: 1619 ± 950 (SD: 3005) vs. 110 ± 33 (SD: 
131); and for BNT162b2: 191 ± 75 (SD: 301) vs. 103 ± 31 (SD: 130) 
reactive CD4+ IFNγ T-cells, respectively (Figure 2B). Then CD40L 
expression was significantly higher in CD4+ T-cells in the HC vs. HDs 
for BBIBP-CorV: 2511 ± 849 (SD: 3062) vs. 323 ± 145 (SD: 543) 
***p < 0.001; and for AZD1222: 1980 ± 912 (SD: 2884) vs. 193 ± 94 (SD: 
377) **p < 0.01, respectively (Figure 2C). The BNTB162b2 vaccine 
caused also higher CD40L activation in CD4+ T-cells in HCs vs. HDs, 
namely 630 ± 224 (SD: 895) vs. 286 ± 123 (SD: 522) reactivated cells 
were detected, but it was not statistically significant difference 
(Figure 2C). Interestingly the inactivated virus vaccine BBIBP-CorV 
induced significantly higher CD40L response in HCs vs. BNT162b2: 
2511 ± 849 (SD: 3062) vs. 630 ± 224 (SD: 895) *p < 0.05 (Figure 2C).

The cellular response rate, the proportions of CD4+ TNF-α+ 
responder cases to vaccination in HC vs. HD for BBIBP-CorV were 
61.5% vs. 35.7%; 40% vs. 12.5% for AZD1222, and 25% vs. 16.7% for 
BNT162b2. The proportions of CD4+ IFN-γ+ responders in HC vs. HD 
for BBIBP-CorV were 61.5% vs. 21.4%; for AZD1222 40% vs. 6.3%; 
for BNT162b2 18.8% vs. 5.6%. The proportions of CD4+ CD40L+ 
responders in HC vs. HD for BBIBP-CorV were 92.3% vs. 21.4%, for 

AZD1222 80% vs. 18.8%, and for BNT162b2 50% vs. 22.2% 
(Supplementary Figures S2A–C).

The cytotoxic CD8+ T-cell mediated cellular immunity was 
measured for the induction of TNF-α or IFN-γ production. The HDs 
showed not significantly but tendentiously higher SARS-CoV-2 
reactive CD8+ TNF-α T-cell reactivation vs. HCs for AZD1222: 
466 ± 183 (SD: 734) vs. 288 ± 213 (SD: 674); and for BNT162b2: 
485 ± 327 (SD: 1387) vs. 169 ± 43 (SD: 171) (Figure 3A). In BBIBP-
CorV vaccine group CD8+ TNF-α positive cells were comparable in 
HCs and HDs: 277 ± 158 (SD: 561) vs. 225 ± 90 (SD: 337) (Figure 3A). 
The IFN-γ response in CD8+ T-cells was also higher in HDs vs. HCs 
as a tendency for BBIBP-CorV: 265 ± 153 (SD: 593) vs. 86 ± 38 (SD: 
139); for AZD1222: 733 ± 389 (SD: 1556) vs. 392 ± 189 (SD: 599); and 
for BNT162b2: 363 ± 101 (SD: 429) vs. 87 ± 41 (SD: 165) *p < 0.05, 
respectively (Figure 3B).

The proportions of CD8+ TNF-α+ responder cases to vaccination 
in HC vs. HD for BBIBP-CorV were 23.1% vs. 21.4, 20% vs. 31.3% for 
AZD1222, and 12.5% vs. 16.7% for BNT162b2. The proportions of 
CD8+ IFN-γ+ responders in HC vs. HD for BBIBP-CorV were 7.7% vs. 
14.3%; for AZD1222 30% vs. 37.5%; for BNT162b2 12.5% vs. 33.3% 
(Supplementary Figures S2D–E).

Next, we aimed to investigate the effect of anti-CD20 therapy on 
T-cell mediated peripheral immunity. Pooling cases both in the HC or 
HD groups irrespective of the vaccination type and dividing HDs 
based on anti-CD20 therapy status into two groups, the monoclonal 
antibody treatment in HDs tendentiously resulted in further weaker 
reactivation of CD4+ T-cells upon SARS-CoV-2 antigen exposure. The 
numbers of CD4+ TNF-α+ reactive cells were 1060 ± 401 (SD: 2507) in 
HCs, 807 ± 587 (SD: 3668) in HDs without anti-CD20 therapy, or 
134 ± 57 (SD: 170) in HDs with anti-CD20 therapy (Figure 4A). The 
numbers of CD4+ IFN-γ+ reactive cells were 1083 ± 397 (SD: 2481) in 
HCs, 144 ± 27 (SD: 169) in HDs without anti-CD20 therapy, or 74 ± 32 
(SD: 97) in HDs with anti-CD20 therapy (Figure 4B). The numbers of 
CD4+ CD40L+ reactive cells were 1603 ± 391 (SD: 2443) in HCs, that 
was significantly reduced to 304 ± 83 (SD: 520) in HDs (***p < 0.001) 
without anti-CD20 therapy, or further decreased in HDs with anti-
CD20 therapy 101 ± 47 (SD: 141) (***p < 0.001) (Figure  4C). The 
CD8+TNF-α+ or CD8+ IFN-γ+ reactive, SARS-CoV-2 specific T-cell 
numbers did not differ significantly among the HCs and HDs with no 
significant effect of anti-CD20 therapy (Figures  4D–E). The virus 
reactive CD8+ IFN-γ cells were slightly increased in the anti-CD20-
treated HD group compared to “untreated” HDs and HCs (Figure 4E).

4. Discussion

Patients with hematological malignancies represent a specifically 
susceptible population to COVID-19 with a heightened risk of severe 
disease and fatality (1–3). As the COVID-19 vaccination campaigns 
around the world unfolded and studies with large cohorts of HD 
patients arose, robust data was collected regarding vaccination efficacy 
and safety in HD patients. However, most trials investigated the effect 
of mRNA-and vector-based vaccines. Therefore, information on 
inactivated vaccines is limited. However, inactivated virus vaccines 
against SARS-CoV-2, such as BBIBP-CorV (Sinopharm, China), 
CoronaVac (Sinovac, China), Covaxin (India), COVIran Barekat 
(Iran), contributed significantly to worldwide vaccine coverage (22, 
23). In Hungary, BBIBP-CorV was administered at large scales besides 
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other vaccines, even to people at higher risk, like the elderly and 
patients with various cancers, including hematological malignancies. 
To the best of our knowledge, only one study addressed the efficacy of 
the BBIBP-CorV vaccine in cancer patients (24), and a comprehensive 
analysis of different vaccine types, including BBIBP-CorV in the 
context of HD is completely lacking. Here, we report our findings 
about the efficacy of the BBIBP-CorV vaccine compared to mRNA 
vaccine BNT162b2 (Pfizer BioNTech) and vector-based AZD1222 
(AstraZeneca) vaccines to trigger humoral and cellular immunity in 
patients with hematological disease.

The receptor binding domain (RBD) specific anti-spike (S) IgG 
isotype antibodies were measured in HDs versus healthy controls 
following complete vaccination after 4 months. The highest antibody 
titers were attained in the BNT162b2 group (both controls and HDs), 

independent of disease status. Due to varying BAU/mL values within 
each group and the small size of the groups, no significant difference 
was observed between healthy controls and HDs in the case of any of 
the examined vaccine types (Figure 1A). The calculated seroconversion 
rates (Figure 1B) were more informative about the humoral response 
of HDs upon different vaccines than raw anti-RBD antibody values. 
Namely, seroconversion rates of HDs fell behind that of matching 
healthy controls: 33% vs. 69% (BBIBP-CorV), 56% vs. 93% 
(AZD1222), 72% vs. 100% (BNT162b2). This decreased performance 
of BNT162b2 and AZD1222  in HD patients is consistent with a 
pooled humoral response rate of 67.7% of HD patients found in the 
latest meta-analysis, where data was extracted mainly from articles on 
mRNA and adenoviral vaccines (9). The proportion of BBIBP-CorV 
vaccinated HDs mounting anti-S IgG response was only 33% which is 

FIGURE 2

The CD4+ T-cells were assayed following ex vivo S/M/N peptide stimulation. Subjects in HCs vs. HDs were for BBIBP-CorV-2 n =13 vs. n = 16; for 
AZD1222 n = vs. n = 16; for BNT162b2 n = 16 vs. n = 18. The reactive TNF-α  (A), or IFN-γ  (B), or CD40L  (C) producing CD4+ T-cells were quantified. Mean 
(red line) and SEM (green whisker) values are demonstrated. *p < 0.05, **p < 0.01, and ***p < 0.001.

https://doi.org/10.3389/fmed.2023.1176168
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Szabó et al. 10.3389/fmed.2023.1176168

Frontiers in Medicine 07 frontiersin.org

FIGURE 3

The CD8+ T-cell responses in HCs vs. HDs receiving different vaccines. The CD8+ T-cells were assayed following ex vivo S/M/N peptide stimulation. 
Subjects in HCs vs. HDs were for BBIBP-CorV-2 n = 13 vs. n = 16; for AZD1222 n = 10 vs. n = 16; for BNT162b2 n = 16 vs. n = 18. The reactive TNF-α  (A), or 
IFN-γ  (B) producing CD8+ T-cells were quantified. Mean (red line) and SEM (green whisker) values are demonstrated. *p < 0.05, **p < 0.01, and 
***p < 0.001.

FIGURE 4

T-cell mediated SARS-CoV-2 specific peripheral immunity in HCs (n = 39), HDs (n = 39) or HDs that underwent anti-CD20 therapy (n = 9). The reactive 
TNF-α (A), or IFN-γ  (B), or CD40L (C) producing CD4+ T-cells were quantified. The reactive TNF-α (D), or IFN-γ (E) producing CD8+  T-cells were 
quantified. Cases vaccinated with BBIBP-CorV, or AZD1222, or BNT162b2 were pooled to investigate the effect of anti-CD20 therapy on T-cell 
mediated immunity. (C) The anti-CD20 therapy significantly reduced the CD4+  CD40L+  reactive cell numbers in HDs.
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comparable with the 38.1% from the only previous report by 
Ariamanesh and coworkers (24). The observed waning humoral 
response in HDs is in line with literature data affected by several 
patient factors such as age, sex, serostatus, treatments and 
comorbidities (25, 26). It should be noted that 5 out of 15 patients 
(33.3%) vaccinated with BBIBP-CorV received anti-CD20 therapy. On 
the other hand, 2 out of 16 (12.5%) and 4 out of 18 (22.22%) patients 
vaccinated with AZD1222 or BNT162b2 were on anti-CD20 therapy, 
respectively. Thus, anti-CD20 therapy was overrepresented in the 
BBIBP-CorV group, which could skew the vaccination response in 
this group. There is a clear consensus that immunosuppressive B-cell-
directed treatments markedly impair immunogenicity in HD patients. 
Monoclonal anti-CD20 therapy in HD patients was associated with a 
considerably lower or undetectable humoral response due to 
prolonged B-cell depletion. Seroconversion of these patients was even 
poorer if the anti-CD20 was administered within 6–12 months before 
vaccination (10–14). Therefore, the impaired humoral response of HD 
patients undergoing anti-CD20 therapy in our cohort was expected, 
which manifested in significantly lower (**p < 0.01) anti-RBD IgG 
levels in patients treated with anti-CD20 (Figure 1D). This effect was 
observed with all the studied vaccine types (Figure 1C), although the 
low number of subjects per vaccine type does not allow statistical 
comparison and drawing clear conclusions.

It has been emphasized that adding cellular response metrics to 
the gold standard antibody titer and neutralizing activity 
measurements would provide a better insight into the overall immune 
response to COVID-19 vaccination. However, cellular assays are more 
logistically complex to conduct compared to antibody measurements 
because they require viable PBMC samples with longer and more 
complex handling protocols (27). Both ELISpot (enzyme-linked 
immune absorbent spot) and flow cytometric assay are used to 
determine the magnitude of cellular response by measuring the ratio 
of cytokine-secreting cells within the PBMC population after antigen-
specific activation. In contrast, flow cytometry has the extra advantage 
of providing additional information about the type of responding 
cells. Such studies incorporating flow cytometry assays to compare the 
cellular immune memory elicited by COVID-19 vaccines are limited, 
especially those with a simultaneous side-by-side comparison of 
multiple vaccine types.

Here, we  compared SARS-CoV-2 specific T-cell responses 
induced by BNTB162b, AZD1222, and BBIBP-CorV in HD patients 
versus healthy individuals by flow cytometry. The strength of the 
current work is the separate enumeration of responsive CD4+ and 
CD8+ T-cells based on IFN-γ/TNF-α/CD40L expression. There was 
no significant difference in CD4+ TNF-α+ or CD4+ IFN-γ+ T-cell 
frequencies between HCs and HDs except for higher CD4+ IFN-γ+ 
T-cells in HCs vs. HDs in BBIBP-CorV group (Figure 2B), although, 
in the HD group, the % of responders above the cut-off value of SARS-
CoV-2 specific T-cells was lower in all vaccine groups. The frequency 
of CD4+ CD40L+ T-cells in HD patients was significantly lower 
compared to healthy volunteers in BBIBP-CorV and AZD1222 
vaccine groups. In the case of BNTB162b, the proportion of CD4+ 
CD40L+ T-cells was also lower, but the difference was not significant 
(Figure 2C). The percentage of responders among healthy individuals 
was also highest in the CD4+ CD40L+ group in all vaccines, and in 
HDs, their proportion was reduced in all vaccine groups. The cytotoxic 
CD8+ T-cell mediated immunity was measured by the induction of 
TNF-α or IFN-γ production. There was no significant difference in the 

number of reactive CD8+ TNF-α+ T-cells between HCs and HDs, but 
interestingly, their number was higher in HDs vs. HCs in AZD1222 
and BNTB162b group (Figure  3A). In HDs, tendentiously more 
responsive CD8+ IFN-γ+ T-cells were detected than in HCs in BBIBP-
CorV and AZD1222 groups, and the difference was significant in the 
BNTB162b group (Figure 3B).

For comparison, we enlist the articles addressing SARS-CoV-2 
specific T-cell response of people with hematological malignancies, 
which is only a tiny fragment of studies on mRNA or vector-based 
vaccines demonstrating cellular immunity after complete vaccination 
in 29%–88% of HD patients. Majority of the studies applied IFN-γ 
release assay (16, 17, 28, 29); IFN-γ ELISpoT (10, 12, 30–35); and 
IFN-γ/IL-2 FluoroSpot assay (36–38) or the combination of these (39). 
One study evaluated T-cell responses by immunosequencing the 
TCRβ chain (15). Some of these studies enrolled healthy controls as 
well and showed that the percentage of HD patients with SARS-CoV-2 
reactive IFN-γ secreting T-cells is lower compared to that of healthy 
volunteers (10, 12, 28, 29, 32–35). Admittedly, our results are difficult 
to directly parallel with bulk anti-SARS-CoV-2 T-cell responses by 
these reports. The method used by Ehmsen and co-workers enabled 
the dissemination of CD4+ restricted IFN-γ responses from CD4+ plus 
CD8+ IFN-γ responses in HD patients vaccinated with mRNA 
vaccines (16). Among patients with HD, 45% exhibited positive IFN-γ 
responses by T-cells, 81% of whom were positive for both CD4+ and 
CD8+ T-cells, and 18% only elicited a CD8+ T-cell response (16). 
Furthermore, a report by Clemenceau and colleagues combined IFN-γ 
ELISpoT and flow cytometry for quantifying cellular immunity in 
AML and MDS patients receiving allogeneic stem cell therapy 
identifying spike-specific IFN-γ and TNF-α secreting cells within 
CD4+ and CD8+ T-cell populations. They found a higher percentage 
of SARS-CoV-2 specific CD4+ TNF-α+ T-cells in allo-HSCT receiving 
patients than in healthy controls. However, after pooling the responses 
in CD4 and CD8 arms, only 78% of patients achieved cellular 
immunity compared to 100% of controls (40). Finally, another recent 
study focused on the analysis of SARS-CoV-2 specific CD8+ T-cells in 
CLL and MDS patients after BNTB162b vaccination using 
DNA-barcoded peptide-MHC multimers covering the full SARS-
CoV-2 Spike-protein they were able to map CD8 T-cell recognition 
sites and identified 59 antigen epitopes. Surprisingly, they also showed 
a higher frequency of vaccine-induced antigen-specific CD8+ T-cells 
in the patient group than in healthy donors (41). This observation is 
consistent with our findings on increased SARS-CoV-2 specific CD8 
T-cells in the HD group (Figure  3). Based on literature data, the 
authors may speculate that induction of T-cell mediated cellular 
responses by inactivated viral vaccine may rely at least partially, on the 
cross-presentation of viral antigens to MHC-I not exclusively 
demonstrated on MHC-II leading to CD8+ T-cell activation, that is 
further boosted by the identified CD4+ Th1 (IFN-γ+and/or TNF-α+) 
helper T-cells (42, 43).’

The effect of anti-CD20 therapy on cellular immunity of 
hematological malignancy patients to SARS-CoV-2 is rarely presented 
in the related articles with divergent conclusions. The frequency of 
T-cell mediated responses were diminished in anti-CD20 treated 
chronic lymphocytic leukemia (CLL) patients (14%) compared to 
patients without the immunosuppressive therapy (29%) (32). In 
another study, majority of the lymphoma patients (75.3%) achieved 
cellular responses and their frequency was slightly lower (70%) in 
patients on anti-CD20 therapy (17). In a third study the rate of T-cell 
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responses was not reduced in HD patients on anti-CD20 monotherapy 
compared to HD patients without anti-CD20 (33). In our cohort, 
pooled HD patients on anti-CD20 therapy showed tendentiously 
lower number of SARS-CoV-2 reactive CD4+ T-cells compared to HD 
patients with no anti-CD20 treatment (Figures 4A–C) and this result 
was further confirmed by the reduced or zero % of patients on anti-
CD20 achieving the cut-off value of 400 responding CD4 T-cells in a 
million (data not shown). SARS-CoV-2 reactive CD8+ IFN-γ T-cell 
numbers in HDs were slightly increased by anti-CD20 therapy but the 
difference was not significant (Figure 4E). Interestingly, after complete 
COVID-19 vaccination S-specific CD8 T-cell response rate was also 
higher in rheumatic disease patients receiving anti-CD20 therapy 
(81.8%) than in immunocompetent controls (66.7%) (44).

In summary, the present study is a side-by-side comparison of 
three different vaccine platforms (BNTB162b, AZD1222, and BBIBP-
CorV) generating humoral and cellular immunity in a diverse cohort 
of participants with hematological diseases and in healthy volunteers. 
It has to be noted that our access to the control group was at younger 
age 43 ± 12 (median, y) while HD patients were 63 ± 14 (median, y) 
without significant difference. The humoral immunity to SARS-CoV-2 
based on seropositivity values was impaired in patients with HDs in 
line with existing data in the literature. In HDs, the observed 
seroconversion rates imply the following order in vaccine efficacy 
inducing humoral immunity: BNTB162  ≫  AZD1222  ≫  BBIBP-
CorV. Anti-CD20 therapy had a detrimental impact on the humoral 
responses regardless of vaccine type. On the other hand, the 
proportions of patients among HDs with sufficient SARS-CoV-2 
specific T-cells above the cut-off value painted a different picture: CD4 
T-cell responses in patients with hematological diseases were reduced, 
and CD8 T-cell responses were sustained or even elevated in all 
vaccine group compared to healthy controls. Bange et al. (45) have 
shown an increased CD8 T-cell mediated SARS-CoV-2 specific 
immunity in HDs as a compensatory mechanism to deficient humoral 
response. Vaccine performance hierarchy in HD patients generating 
CD4 TNF-α and CD4 IFN-γ responses was: BBIBP-
CorV ≫ AZD1222 ≫ BNTB162b. Regarding CD4 CD40L responses 
in HDs based on frequency rates, the performance of the three 
vaccines was comparable. Furthermore, CD8 T-cell response rates of 
HDs were highest in the AZD1222 vaccine group. Although the CD20 
is a classical B-cell marker, it has been recently elucidated that it can 
be a meaningful marker of pro-inflammatory T-cells (46–48). The 
anti-CD20 treatment significantly reduced the S-, M-, N-reactive 
CD4+ CD40L+ T-cell numbers in HDs.

Overall, patients with malignant hematologic disease have higher 
risk of mortality than the general population in the case of COVID-19 
infection, which can be aggravated by other risk factors such as age, 
comorbidities, and immunosuppressive therapies. Despite of the 
clinically less severe latest variants of SARS-CoV-2, the best-case 
scenario in COVID-19 disease management is to prevent it, especially 
in vulnerable populations like hematology patients. In our study, 
we have demonstrated the significant weaker response to vaccines in 
immunologically impaired population such as hematology patients. 
Based on our results, the protective humoral immune activity of 
hematologic patients against SARS-CoV-2 can be best supported by 
mRNA-based vaccination with BNTb162b compared to other vaccines 
in this study. On the other hand, inactivated virus vaccine seems to 
be a better choice to elevate T-cell mediated cellular activity against 
SARS-CoV-2. It has to be noted that because of the already known 

decline in the humoral immune response over time, there is a high 
need for booster shots to prevent severe COVID-19 especially in 
immunocompromised patients (19, 49–51). However, data about the 
induction of humoral and cellular immunity followed by BBIBP-CorV 
vaccination with a side-by-side comparison of AZD1222 and 
BNT162b2 is restricted to few cited papers, limitations of the current 
research should be mentioned such as the followings. (1) The authors 
had access to patient-derived blood from heterogenous HDs, (2) our 
study lacks multi-center execution, (3) and the access to the HC group 
was with younger age median. (4) Latest Omicron subvariants 
displayed increased evasion of neutralizing antibodies induced by 
SARS-CoV-2 vaccination compared to the first Omicron and prior 
variants (52). Further research is warranted to investigate the effects 
of different SARS-CoV-2 vaccines on each HDs separately, with clear 
focus on the booster vaccination protocols also. The sequential 
combinations of different vaccine types could be the answer for the 
higher humoral and cellular SARS-CoV-2 protective immunity, but 
more studies need to be conducted to ensure safety and efficacy.
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