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Introduction: Rib fractures are a prevalent injury among trauma patients, and 
accurate and timely diagnosis is crucial to mitigate associated risks. Unfortunately, 
missed rib fractures are common, leading to heightened morbidity and mortality 
rates. While more sensitive imaging modalities exist, their practicality is limited 
due to cost and radiation exposure. Point of care ultrasound offers an alternative 
but has drawbacks in terms of procedural time and operator expertise. Therefore, 
this study aims to explore the potential of deep convolutional neural networks 
(DCNNs) in identifying rib fractures on chest radiographs.

Methods: We assembled a comprehensive retrospective dataset of chest radiographs 
with formal image reports documenting rib fractures from a single medical center 
over the last five years. The DCNN models were trained using 2000 region-of-interest 
(ROI) slices for each category, which included fractured ribs, non-fractured ribs, and 
background regions. To optimize training of the deep learning models (DLMs), the 
images were segmented into pixel dimensions of 128 × 128.

Results: The trained DCNN models demonstrated remarkable validation accuracies. 
Specifically, AlexNet achieved 92.6%, GoogLeNet achieved 92.2%, EfficientNetb3 
achieved 92.3%, DenseNet201 achieved 92.4%, and MobileNetV2 achieved 91.2%.

Discussion: By integrating DCNN models capable of rib fracture recognition into 
clinical decision support systems, the incidence of missed rib fracture diagnoses can 
be significantly reduced, resulting in tangible decreases in morbidity and mortality 
rates among trauma patients. This innovative approach holds the potential to 
revolutionize the diagnosis and treatment of chest trauma, ultimately leading to 
improved clinical outcomes for individuals affected by these injuries. The utilization 
of DCNNs in rib fracture detection on chest radiographs addresses the limitations 
of other imaging modalities, offering a promising and practical solution to improve 
patient care and management.
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1. Introduction

Thoracic trauma accounts for 10% of trauma cases and 25–50% of deaths caused by trauma (1). 
Rib fractures are one of the most common manifestations of chest trauma and are associated with 
higher morbidity and mortality (2). Chest radiography is the most commonly used imaging tool for 
patients with chest trauma admitted to emergency rooms (3). However, previous studies have 
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indicated that even with high specificity, chest radiographs do not show 
a high sensitivity in determining rib fractures (4), suggesting that half of 
the rib fractures cannot be detected by chest X-rays (5), and two-thirds 
of the rib fractures were solely observed through Computed tomography 
(CT) scans (6). A missing diagnosis of rib fracture has created tremendous 
stress on clinical emergency physicians facing chest trauma patients, and 
can lead to severe complications. While CT scans offer higher sensitivity, 
they are more costly and time-consuming. Point-of-care ultrasound can 
also be useful but requires additional time and is dependent on operator 
proficiency (4).

Human errors in healthcare can have serious consequences for 
patients. Diagnosing rib fractures is challenging for emergency 
physicians who treat patients with chest trauma, and misdiagnosis 
is not uncommon. In today’s overcrowded emergency rooms, the 
risk of errors is heightened, especially when it comes to diagnosing 
rib fractures from chest radiographs. Implementing Artificial 
Intelligence (AI) in the diagnosis and prognosis of diseases holds 
the potential to enhance healthcare quality (7, 8). In the case of 
chest trauma patients, the application of AI has the potential to 
reduce delays and transform workflows, ultimately revolutionizing 
the diagnosis and treatment of chest trauma and leading to 
improved outcomes.

While deep learning studies and applications for fracture 
identification on radiographs have emerged (9, 10), there remains a 
limited amount of research specifically focused on recognizing rib 
fractures in chest radiographs (11–13). Therefore, further research in the 
field is necessary.

In our study, we sought to address this issue by training deep 
convolutional neural network (DCNN) models on a comprehensive 
dataset of chest radiographs. The objective of our study was to gain 
novel insights and achieve outstanding results by developing highly 
accurate deep learning models for detecting rib fractures on plain 
chest radiographs. The main contribution of our study lies in 
addressing the challenge of diagnosing rib fractures from chest 
radiographs, which is a common yet often missed manifestation of 
chest trauma. a considerable number of rib fractures go undetected, 
leading to potential complications and increased stress on clinical 
emergency physicians. Our study yielded impressive validation 
accuracies for the trained models, with AlexNet achieving an 
outstanding accuracy of 92.6%, followed closely by GoogLeNet at 
92.2%, EfficientNetb3 at 92.3%, DenseNet201 at 92.4%, and 
MobileNetV2 at 91.2%. These results demonstrate the potential of our 
deep learning models to assist doctors in accurately diagnosing rib 
fractures on plain chest radiographs. Implementing our trained 
models in clinical practice has the potential to significantly improve 
healthcare quality for chest trauma patients. By reducing delays, 
transforming workflows, and enhancing diagnostic accuracy, our 
approach can alleviate the workload of primary clinicians and enhance 
patient safety. The practical implementation of our trained deep 
learning models holds great promise for positively impacting patient 
care and outcomes in the field of chest trauma management.

2. Background

Before DCNN became available, conventional machine learning 
for fracture classification in medical images required image 
pre-processing and feature extraction (14, 15) before proceeding to 
the classification procedure. Edge detection had to be conducted first 

during image pre-processing, such as through a Harris corner 
detection (15), Gaussian edge detection, or Sobel edge detection (16). 
Further extraction of “useful features” that machine learning can learn 
from is the key step in conventional machine learning. Many 
algorithms are dedicated to feature extraction from images (17, 18). 
Unfortunately, none of the algorithms were fully applicable without 
human assistance. Although conventional machine learning used for 
fracture imaging determination has been considered acceptable in the 
past, the accuracy has been challenged owing to increased false 
positives. Kim et al. demonstrated the extraction and quantification of 
“useful features” for use in conventional machine learning in the task 
of rib fracture identification on plain radiographs (19); however false-
positive cases were still frequently encountered.

The field of medical image detection and classification has 
witnessed a significant impact with the advancement of deep learning 
technology. One of the tremendous benefits of deep learning is that 
the machine automatically defines the features. Furthermore, deep 
learning has demonstrated its superiority over traditional machine 
learning approaches in image recognition, as indicated by several 
studies (20, 21). There is also an anticipated potential for deep learning 
in computer-aided diagnosis-based image analysis, including bone 
fracture identification (22).

Deep learning has proven to be  highly effective in image 
identification (9, 23). However, building a practical convolutional 
neural network from scratch can be extremely challenging for most 
medical image researchers due to the requirement of vast amounts of 
data and substantial computing resources. As an alternative, transfer 
learning has gained popularity in recent years, whereby pre-trained 
convolutional neural networks (CNNs) that were initially trained for 
non-medical applications are utilized (24, 25). Similar techniques have 
been effectively applied in dermatological diseases (26), diabetic 
retinopathy (27), and lung diseases (28). Furthermore, the concept of 
using transfer learning from deep CNNs for bone fracture 
identification has been demonstrated in plain wrist radiographs (10). 
In this study, our goal was to employ transfer learning with pre-trained 
deep CNNs to detect rib fractures.

3. Materials and methods

The retrospective experiment undertaken was subjected to a 
comprehensive review and received approval from the Institutional 
Review Board of MacKay Memorial Hospital (MMH-IRB No. 
20MMHIS483e), which included a thorough examination of all 
pertinent details. Moreover, all experiments carried out were 
conducted in strict compliance with relevant guidelines and 
regulations. Notably, the MacKay Memorial Hospital Institutional 
Review Board approved the waiver for informed consent.

3.1. Data acquisition

To gather the necessary data for our study, we collected a total of 
5,000 chest X-ray images from patients who had radiological reports 
confirming the presence of at least one rib fracture. These images were 
obtained from the picture archiving and communication system of 
MMH (Medical Memorial Hospital) between the years 2015 and 2020.

To ensure the inclusiveness of our dataset, we incorporated both 
posterior–anterior (PA) view images and oblique view images of the 

https://doi.org/10.3389/fmed.2023.1178798
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Huang et al. 10.3389/fmed.2023.1178798

Frontiers in Medicine 03 frontiersin.org

chest radiographs. The selection criteria for identifying the appropriate 
images with rib fractures involved a thorough examination of the 
accompanying radiological reports. Only images that clearly indicated 
the presence of at least one rib fracture were included in our dataset. 
This rigorous selection process was essential to ensure the accuracy 
and reliability of our training data, allowing us to focus solely on rib 
fractures and avoid potential confounding factors.

By adhering to these stringent data collection procedures, 
we aimed to construct a robust and diverse dataset that encompassed 
a wide range of rib fracture cases, enabling our deep convolutional 
neural network models to learn and generalize from a comprehensive 
representation of rib fractures in patients with chest trauma.

3.2. Data pre-processing

The images downloaded were transformed into PNG format and 
subjected to pre-processing to remove annotations and identities. 
Subsequently, a clinical emergency physician with 15 years of 
experience selected and gathered 2000 square-shaped patches as 
bonding boxes to delineate “fractured ribs” and “non-fractured ribs,” 
based on formal radiological reports. These patches were then 
designated as Regions of Interest (ROIs) and utilized for training our 
Convolutional Neural Network (CNN) model. Fractured rib bones on 
chest X-rays are identified by deformities in their shape, such as breaks 
in the bone cortex or fragments overriding each other (19, 29). 
Figure 1 demonstrates examples of various shapes of fractured and 
normal ribs. However, initial attempts of scanning the chest X-ray 
patches using a sliding window approach led to misidentification of 
background noise as positive signals for rib fractures. As a solution, 

we selected 2,000 Regions of Interest (ROIs) from the chest X-rays that 
contained non-rib-related information and categorized them as 
“background.” We also experimented with different pixel resolutions 
(80 × 80, 100 × 100, and 150 × 150) during the selection process and 
ultimately determined that 128 × 128 pixels were the most appropriate 
for analysis. This resolution was chosen to fully capture the lesion 
while avoiding excessive background noise.

3.3. Model training

In this study, the computer operating system utilized was 
Windows 10, developed by Microsoft Corporation, Redmond, WA, 
USA. The software used was MATLAB R2020b, developed by 
MathWorks, Inc., Natick, MA, USA, which included a built-in Neural 
Network Toolbox. The graphics processing unit (GPU) utilized was a 
GeForce GTX 1070, developed by Nvidia Corporation, Santa Clara, 
CA, USA.

To accomplish our objective, we employed five pre-trained deep 
convolutional neural networks (DCNNs) with open-source codes, 
namely AlexNet, GoogLeNet, EfficientNetb3, DenseNet201 and 
MobileNetV2 for transfer learning. AlexNet (30), previously trained 
for the large-scale ImageNet visual recognition competition (ILSVRC-
2010, 2012), comprises five convolutional layers and three fully 
connected layers. On the other hand, GoogLeNet (31) was also trained 
for ILSVRC and emerged as the winner of the ILSVRC-2014. The 
architecture of GoogLeNet, referred to as an “inception module,” 
features 22 layers of a deep CNN with 12-fold fewer parameters than 
AlexNet. EfficientNetb3 (32) is an efficient and accurate CNN model 
for computer vision tasks. It utilizes compound scaling to optimize 

FIGURE 1

The morphological characteristics of (A) ribs with fractures and (B) ribs without fractures.
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depth and width, achieving state-of-the-art performance. 
DenseNet201 (33) is characterized by its deep and densely connected 
neural network structure, facilitating efficient information flow and 
strong feature extraction. MobileNetV2 (34) is an efficient CNN 
architecture optimized for mobile and embedded devices. It utilizes 
depth wise separable convolutions and inverted residuals to achieve 
high performance while minimizing computational cost and model 
size. This makes it a powerful architecture for a range of computer 
vision tasks. Although those DCNNs were initially based on 
non-radiological images, we adapted them to construct the models for 
identifying rib fractures in our study.

In order to enhance the quantity and diversity of our dataset, 
we incorporated various data augmentation techniques during model 
training, including flipping, rotation, and parallel shifting. This 
approach served to improve the performance of our deep 
convolutional neural network (DCNN) while simultaneously 
mitigating the risk of overfitting (35). Following data augmentation, 
the enlarged dataset was partitioned into training (70%) and validation 
(30%) sets to facilitate the development and evaluation of our models. 
This process enabled us to train our DCNN on a sizeable and diverse 
dataset, while also ensuring that our models were able to generalize to 
new data beyond the training set. Regarding the training 
hyperparameters, we carefully selected and tuned them to optimize 
the training process. All five deep convolutional neural network 
(DCNN) models were trained using a fixed learning rate of 0.0001, 
with 50 epochs and a batch size of 32 images. This standardized 
training setup maintained consistency across the models and allowed 
for an adequate number of iterations to facilitate effective learning 
and optimization.

3.4. DCNN models validation statistics

Ultimately, we subjected our deep convolutional neural network 
(DCNN) models, trained to classify rib images into three categories 
(background, fractured, and non-fractured rib), to a rigorous 
evaluation process. Our assessments were comprehensive, 
encompassing validation accuracy, sensitivity, specificity, positive 
predictive value, negative predictive value, and F1 score, as well as the 
calculation of the area under the receiver operator characteristic 
(ROC) curve (AUC).

A detailed visual representation of the study’s experimental design 
is presented in Figure 2, outlining the various stages of the research 
methodology and facilitating a clear understanding of our study’s 
approach and findings.

3.5. Visual explanation of the trained model

To enhance the interpretability of our models, we implemented 
the Gradient-weighted Class Activation Mapping (Grad-CAM) 
technique, developed by Selvaraju et  al. (36). By leveraging the 
classification score gradient with respect to the convolutional features 
identified by the network, this innovative approach facilitates the 
interpretation of deep learning models. With Grad-CAM, we were 
able to generate a heatmap visualization that highlights the input 
regions that are most significant for accurate classification. In essence, 

this technique empowers convolutional neural network (CNN) 
models to be more transparent and interpretable, enabling researchers 
to better understand the underlying features and patterns that 
contribute to successful model performance.

4. Results

4.1. Comparative validation results of five 
deep learning models

Following the completion of model training, all five distinct deep 
learning models underwent evaluation using the identical validation 
dataset, each exhibiting outstanding performance. The results of these 
models are summarized in Table 1. The AlexNet transfer learning 
model achieved an accuracy of 92.6%, with a sensitivity of 91.7%, 
specificity of 93.1%, positive predictive value (PPV) of 86.9%, negative 
predictive value (NPV) of 95.7%, and an F1 score of 0.890. Similarly, 
the GoogLeNet transfer learning model achieved an accuracy of 
92.2%, with a sensitivity of 94.2%, specificity of 91.2%, PPV of 84.2%, 
NPV of 96.9%, and an F1 score of 0.889. The EfficientNetb3 transfer 
learning model achieved an accuracy of 92.3%, with a sensitivity of 
94.2%, specificity of 92.3%, PPV of 87.3%, NPV of 97.0%, and an F1 
score of 0.904. Furthermore, the DenseNet201 transfer learning model 
achieved an accuracy of 92.4%, with a sensitivity of 90.5%, specificity 
of 96.3%, PPV of 92.5%, NPV of 95.3%, and an F1 score of 0.915. 
Lastly, the MobileNetV2 transfer learning model achieved an accuracy 
of 91.2%, with a sensitivity of 90.3%, specificity of 95.1%, PPV of 
90.2%, NPV of 95.2%, and an F1 score of 0.902. Confusion matrix 
results for each model are depicted in Figure 3, and the ROC curves, 
shown in Figure 4, indicate the AUC values of 0.976 for AlexNet, 0.979 
for GoogLeNet, 0.984 for EfficientNetb3, DenseNet201, and 0.978 
for MobileNetV2.

4.2. Grad-CAM for the interpretation of the 
model

In our study, we utilized the Gradient-weighted Class Activation 
Map technique (Grad-CAM) to obtain a comprehensive visualization 
of the fracture recognition model that we  trained. This technique 
enabled us to identify the key regions within the model that 
significantly influenced the classification decision. As illustrated in 
Figure  5, our model generated a consistent Grad-CAM pattern, 
highlighting the decision-making process of the classification network, 
shedding light on the factors contributing to the ultimate classification 
outcome. This visualization technique adds to the interpretability of 
our model and enhances its clinical utility.

5. Discussion

The advancement of developing a computer-based technology for 
detecting rib fractures in chest X-ray images has the potential to 
prevent misdiagnosis and improve the quality of healthcare for 
patients, thereby avoiding severe complications resulting from delayed 
or inappropriate treatment. However, this is a challenging task due to 

https://doi.org/10.3389/fmed.2023.1178798
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Huang et al. 10.3389/fmed.2023.1178798

Frontiers in Medicine 05 frontiersin.org

inherent limitations of chest radiographs, such as overlapping organs, 
bones such as the clavicle and spine, and other ribs that may impede 
accurate image interpretation (19).

For our study, we opted to manually select the region of interest 
(ROI) with a pixel resolution of 128 × 128 for the training of our deep 
convolutional neural network (CNN) models. Medical images can 
often contain lesions, such as fractures, as well as irrelevant noise. It is 
widely recognized that using an ROI can significantly improve the 

accuracy of both conventional machine learning (19) and deep 
learning methods (37). Nevertheless, ensuring the suitability of the 
selected ROI necessitates the involvement of experts possessing 
adequate knowledge to verify whether the ROI accurately encompasses 
the ground truth of the primary disease information (38).

Compared to conventional machine learning methods used for 
rib fracture detection on chest radiographs, the deep learning method 
offers several advantages. It eliminates the need for manual feature 

FIGURE 2

The detailed flowchart of our research methodology for developing a deep convolutional neural network for rib fracture recognition on chest 
radiographs.

TABLE 1 The comparison among each deep learning model.

DCNN Accuracy Sensitivity Specificity PPV NPV F1 score AUROC (95% 
CI)

AlexNet 0.926 0.917 0.931 0.869 0.957 0.890 0.976 (0.9762 ~ 0.9864)

GoogLeNet 0.922 0.942 0.912 0.842 0.969 0.889 0.979 (0.9736 ~ 0.9853)

EfficientNetb3 0.923 0.942 0.923 0.873 0.970 0.904 0.984 (0.9773 ~ 0.9865)

DenseNet201 0.924 0.905 0.963 0.925 0.953 0.915 0.984 (0.9749 ~ 0.9862)

MobileNetV2 0.912 0.903 0.951 0.902 0.952 0.902 0.978 (0.9718 ~ 0.9833)
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extraction and showcases superior capability. Our study’s five models 
performed exceptionally well, achieving impressive AUC values: 0.976 
for AlexNet, 0.979 for GoogLeNet, 0.984 for EfficientNetb3 and 
DenseNet201, and 0.978 for MobileNetV2. By utilizing transfer 
learning techniques from a deep convolutional neural network (CNN) 
pre-trained on non-medical images, our models demonstrate the 
ability to accurately recognize rib fractures in plain chest radiographs.

Comparing to existing studies focusing on rib fracture recognition 
in chest radiographs using deep learning, one study employed 
You  Only Look Once v3 (YOLOv3) and achieved an accuracy of 
85.1% and an AUC of 0.92 (11). Another study specifically addressed 
the challenge of limited annotated positive samples by employing a 
mixed supervised learning technique, resulting in an accuracy of 
87.8% (12). Additionally, in a study specifically targeting a young age 
cohort, ResNet-50 achieved an AUC-ROC of 0.74, while ResNet-18 
achieved an AUC-ROC of 0.75 for identifying rib fractures on chest 
radiographs (13). However, when compared to our study, these 
approaches exhibited inferior performance. Moreover, we  also 
compared our study with others focusing on deep learning models for 
rib fracture recognition in CT scans. One study achieved a validating 
F1-score of 0.888, with precision and recall values of 0.864 and 0.914, 
respectively (39). Another study showed higher detection efficiency 
for fresh and healing fractures compared to old fractures, with 
F1-scores of 0.849, 0.856, and 0.770, respectively (40). Our study’s 
accuracy is comparable to these results. Considering the expense and 

time required for CT imaging, deep learning on chest radiographs is 
a more practical approach for first-line clinical practitioners.

Although our study did not compare our model’s performance to that 
of doctors, previous literature suggests that the missed rib fractures rate 
could be  as high as 20.7% (41). Given our model’s high accuracy, 
we  believe it could be  a useful tool in reducing missed diagnoses, 
especially since even minor missed injuries can have important 
consequences for patients, clinicians, and radiologists, as noted by Pinto 
et al. (42). In future applications, the utilization of the deep learning model 
holds promise in providing timely alerts to healthcare professionals 
regarding potential fractures observed in chest radiographs. This valuable 
tool would prompt primary care physicians to exercise heightened 
vigilance and consider conducting supplementary diagnostic procedures 
such as sonography or CT scans to confirm the presence of a fracture, 
thereby minimizing the risk of overlooking such injuries. By integrating 
this advanced technology into clinical practice, the deep learning model 
demonstrates its potential to significantly enhance fracture detection and 
ensure comprehensive patient care.

6. Limitations and future directions

Our study has demonstrated that the concept of transfer learning 
using pre-trained deep convolutional neural networks (DCNNs) can 
be  successfully applied in recognizing rib fractures in chest 

FIGURE 3

Confusion matrix for the three-class classification deep convolutional neural network (DCNN) models, including (A) AlexNet, (B) GoogLeNet, 
(C) EfficientNetb3, (D) DenseNet201, and (E) MobileNetV2.
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radiographs. However, we acknowledge a limitation in our study: only 
one experienced clinician labeled a substantial number of ROIs 
without reference from another expert. This introduces the potential 
for bias when evaluating the impact of DCNN training. In the future, 
to address this issue when precise delineated labels are scarce, we may 
consider adopting the Mixed Supervised Learning method (12). This 
approach can help reduce the need for fine annotation tasks and 
further enhance the training process. Furthermore, the application of 
DCNN has often been criticized for being a “black box” with no clear 
explanations for its underlying processes. Nevertheless, as long as 
robust testing methods are employed to prove its acceptable level of 
safety and efficacy, this cutting-edge technology cannot be disregarded 
(10). Additionally, we utilized the technique of Grad-CAM to visualize 
the classification decision of the deep learning model, which further 
aided in providing an explanation for the results.

Regarding the representativeness of the dataset, we acknowledge 
that there may be inherent biases in the dataset, including potential 
variations in imaging protocols and patient demographics. It is 
important to consider these factors when interpreting the 
generalizability of our results to other healthcare settings. To further 
address this limitation, future studies should aim to include 
multicenter datasets with diverse patient populations to ensure the 
broader applicability of our findings.

To advance future research efforts, we  should endeavor to 
implement the trained DCNN model utilizing a patch-based sliding 
window scanning method (43, 44) to interpret chest radiographs 
obtained from trauma patients in an emergency setting and highlight 

the suspected fractured ribs. Therefore, we have the opportunity to 
deploy this advanced tool as a computer-aided diagnostic system in 
the clinical setting, effectively preventing instances of misdiagnosis. 
Moreover, we provide a visual depiction (Figure 6) that highlights the 
utilization of inference (represented by the yellow box) in our model 
for the detection of potential rib fractures on chest radiographs.

In terms of the integration of AI-assisted diagnosis into clinical 
practice, future research should examine the impact of incorporating 
the trained DCNN models into the existing workflow of healthcare 
professionals. Assessing the acceptance, usability, and effectiveness of 
these models in real clinical settings will provide valuable insights into 
the practical implementation and potential benefits for both patients 
and medical practitioners.

7. Conclusion

In our study, we have convincingly demonstrated the proficient 
capabilities of transfer learning-based deep convolutional neural 
network (DCNN) models in accurately identifying fractured ribs in 
chest radiographs. By utilizing transfer learning with well-established 
architectures such as AlexNet, GoogLeNet, EfficientNetb3, 
DenseNet201, and MobileNetV2, we achieved validation accuracies 
ranging from 91.2 to 92.6%, highlighting the remarkable performance 
of these models. In comparison to existing studies focusing on rib 
fracture recognition in chest radiographs using deep learning, our 
study outperformed these approaches. Furthermore, when comparing 

FIGURE 4

ROC curves comparing five three-class DCNN models: (A) AlexNet, (B) GoogLeNet, (C) EfficientNetb3, (D) DenseNet201, and (E) MobileNetV2. Classes 
represented: 1 – background, 2 – fractured rib, and 3 – non-fractured rib.
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our study with those focusing on deep learning models for rib 
fracture recognition in CT scans, our accuracy was found to 
be comparable.

The successful implementation of this methodology paves the way 
for the development of a computer-aided system that can effortlessly 
recognize suspected regions of rib fractures and promptly alert 
clinicians. Such advancements represent significant strides toward 
elevating the standard of care provided in high-stress emergency 
settings, where timely and decisive action is often critical.

Nevertheless, it is essential to acknowledge the limitations of our 
study. While our DCNN models demonstrated exceptional 
performance, there may still be cases where rib fractures are missed 
or misdiagnosed. Additionally, the generalizability of our findings to 
diverse patient populations and imaging settings should 
be carefully considered.

In terms of future works, several areas warrant further exploration. 
Firstly, refining the computer-aided system to enhance its performance 
and robustness in real-world clinical scenarios is crucial. This includes 

FIGURE 5

The Grad-CAM visualization: (A) an image depicting a fractured rib with a corresponding mark, alongside its respective Grad-CAM visualization, 
(B) non-fractured rib image with Grad-CAM, and (C) background image with Grad-CAM.
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addressing potential challenges such as image variability, limited data 
availability, and integrating the system seamlessly into existing clinical 
workflows. Furthermore, conducting prospective studies and 
involving a larger patient cohort would strengthen the evidence base 
and validate the utility of the developed system in clinical practice. 
Moreover, incorporating clinical feedback and iterative model 
refinement can contribute to continuous improvement and adaptation 
of the system to evolving clinical needs. The cautious integration of 
this assistance system holds great potential in enhancing workflow 
productivity, reducing the likelihood of errors, and ultimately 
minimizing harm to patients.
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