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Rational: Deep learning (DL) has demonstrated a remarkable performance 
in diagnostic imaging for various diseases and modalities and therefore has 
a high potential to be used as a clinical tool. However, current practice shows 
low deployment of these algorithms in clinical practice, because DL algorithms 
lack transparency and trust due to their underlying black-box mechanism. For 
successful employment, explainable artificial intelligence (XAI) could be introduced 
to close the gap between the medical professionals and the DL algorithms. In this 
literature review, XAI methods available for magnetic resonance (MR), computed 
tomography (CT), and positron emission tomography (PET) imaging are discussed 
and future suggestions are made.

Methods: PubMed, Embase.com and Clarivate Analytics/Web of Science Core 
Collection were screened. Articles were considered eligible for inclusion if XAI 
was used (and well described) to describe the behavior of a DL model used in MR, 
CT and PET imaging.

Results: A total of 75 articles were included of which 54 and 17 articles described 
post and ad hoc XAI methods, respectively, and 4 articles described both XAI 
methods. Major variations in performance is seen between the methods. Overall, 
post hoc XAI lacks the ability to provide class-discriminative and target-specific 
explanation. Ad hoc XAI seems to tackle this because of its intrinsic ability 
to explain. However, quality control of the XAI methods is rarely applied and 
therefore systematic comparison between the methods is difficult.

Conclusion: There is currently no clear consensus on how XAI should be deployed 
in order to close the gap between medical professionals and DL algorithms for 
clinical implementation. We advocate for systematic technical and clinical quality 
assessment of XAI methods. Also, to ensure end-to-end unbiased and safe 
integration of XAI in clinical workflow, (anatomical) data minimization and quality 
control methods should be included.
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1. Introduction

Computer-aided diagnostics (CAD) using deep learning (DL) 
have been widely used in diagnostic imaging for various diseases 
and modalities (1–5). It shows almost similar or superior 
performance in comparison to medical professional aided 
diagnostics and therefore has great potential to be introduced in 
clinical workflow (6). However, despite the promising results, DL 
algorithms have not achieved high deployment in clinical practice 
yet. Unlike simpler machine learning (ML) approaches, DL 
algorithms do not require manual extraction of features depending 
on volumes of interest (VOIs) annotation. Instead, DL algorithms 
extract features in an unsupervised way, i.e., extract features without 
a priori defined assumptions and regulations. Ideally, efficient 
learning and explainability, i.e., understanding of the underlying DL 
model, should work together in synergy (Figure 1). Although DL 
algorithms have superior learning capabilities, they lack 
transparency due to this underlying black-box mechanism. 
Therefore, the DL algorithms are difficult to validate, i.e., which 
features trigger model decision, and lack trustworthiness which is 
one of the main causes of its low deployment (7–9).

To close this gap, transparency of these DL algorithms should 
be  improved to provide the medical professional and other 
stakeholders with a pragmatic explanation of the model its decision 
(10). Explainable artificial intelligence (XAI) can mitigate this gap, 
because their attribution (i.e., feature importance) methods provide 

the user with information on why a specific decision is made. This 
way the user can back propagate the models decision to target 
specific attributions present in the image. XAI may, therefore, have 
the potential to be used as a new imaging biomarker (IB) in routine 
management of patients. In other words, XAI may be  able to 
function as an indicator of normal and/or pathogenic biological 
processes, which can complement medical professionals in medical 
decision-making. Also, XAI may provide new insight in disease 
characteristics, which alternatively can be used as an indicator of 
responses to an exposure or (therapeutic) intervention. However, 
XAI should also provide transparency about the quality/legibility of 
its decision, explanation, and (possible) associated errors. So, before 
XAI can be used as an useful and trustworthy IB for either testing 
research hypotheses, or clinical decision-making, it must cross 
“translational gaps,” through performing and reporting technical 
validation, clinical validation and assessment of cost-effectiveness 
(11, 12). Also, the new European Medical Device Regulation (EU 
MDR) endorses strict regulations regarding transparency that need 
to be met before such a tool can be implemented in clinical practice 
(13). XAI may be  one of the keys to more transparent, ethical 
(unbiased) safe and trustworthy deployment of DL algorithms in 
clinical practice, but better understanding of current practice 
is required.

This literature review addresses the XAI methods related to DL 
algorithms in medical imaging. We limit the scope of this review to 
(functional) magnetic resonance (MR), computed tomography (CT), 

FIGURE 1

Conceptual difference between post hoc and ad hoc XAI methods.
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and positron emission tomography (PET) imaging, which are three of 
the major cross-sectional imaging modalities. Also, we will try to 
establish a definition of what high quality explanation means at the 
end of this review.

2. Materials and methods

A systematic search was performed in the databases: PubMed, 
Embase.com and Clarivate Analytics/Web of Science Core Collection. 
The timeframe within the databases was from inception to 3rd 
October 2022 and conducted by GLB and BdV. The search included 
keywords and free text terms for (synonyms of) “explainable” or 
“interpretable” combined with (synonyms of) “artificial intelligence” 
combined with (synonyms of) “medical imaging.” A full overview of 
the search terms per database can be  found in 
Supplementary Tables 2–4. No limitations on date or language were 
applied in the search.

To be included in this literature review, studies had to meet the 
eligibility criteria presented in Table 1. Included studies were classified 
based on post and/or ad hoc analysis (Figure 1):

 - Post hoc methods: These refer to XAI methods that are used after 
DL model development;

 - Ad hoc methods: These refer to XAI methods that are used during 
DL model development.

Additional background literature was included to provide 
(in-depth) information of the XAI methods. This was done through a 
specific search in PubMed.

In the result section, a general taxonomy of the attribution 
methods will be provided. Subsequently, per XAI method a (technical) 
conceptual explanation, its application, its advantages/disadvantages 
and a comparison with other XAI methods will be provided. Also, 
we will address the translation gaps present in the literature and a 
flowchart to a priori determine which XAI method to use in medical 
imaging will be provided. The structure of the flowchart is based on 
the taxonomy of the available XAI methods as present in the result 
section of this manuscript and based on from our perspective XAI 
important disease characteristics identified from the included 
literature. In addition, we will discuss metrics used in literature for 
technical and clinical quality assessment of these XAI models. Finally, 
the current and future direction in this field will be summarized. In 
Supplementary material a more extensive technical explanation is 
provided per XAI method.

3. Results

Searches of the literature databases resulted in the inclusion of a 
total of 117 studies (Figure 2). From the 117 studies, 10 did not have 
full-text available, 31 did not use or did not clearly describe the usage 
of XAI methods, eight did not use (medical) image data and three did 
not use DL, and therefore these were excluded from the review. Of the 
75 studies included in the review, 54 studies reported data from post 
hoc analysis, 17 reported data from ad hoc analysis and four reported 
data from both ad hoc and post hoc analysis. A total of 24 additional 

studies were included to provide background information. 
Supplementary Table 1 presents an overview of the 75 studies included 
in the review.

3.1. Taxonomy of XAI methods

The XAI methods in this study are classified based on the XAI 
taxonomy as shown in Figure 3. Post hoc analysis provides model 
explanation after the classification is made, i.e., an AI model that is 
able to learn, but requires an additional model to provide an 
explanation. On the contrary, ad hoc explanation models are AI 
models, which are designed to be  intrinsically explainable, i.e., a 
model that is both able to learn and to explain. Agnostic models are 
XAI methods that are able to explain multiple (technical) different AI 
models, while other XAI methods only work with one specific AI 
model such as a convolutional neural network (CNN). Global XAI 
methods are models, which are able to capture per-voxel attribution 
and inter-voxel dependencies, while local XAI methods are only able 
to provide per-voxel attribution. High-resolution XAI provides a 
per-voxel attribution value, while low resolution XAI provides a single 
attribution value for multiple voxels.

3.2. Post hoc XAI methods

The majority (~75%) of the DL algorithms in this literature study 
used post hoc XAI methods due to its wide availability and its plug-
and-play deployment. In the following section, the post hoc methods 
will be  divided into gradient-propagation methods, perturbation 
methods and briefly segmentation and radiomic methods will 
be discussed. An overview of the post hoc attribution methods are 
shown in Table  2 (and a more extensive explanation in 
Supplementary material: Appendix A).

3.2.1. Gradient-propagation approaches

3.2.1.1. Vanilla gradient (VG)
VG is a XAI method that create an attribution map by 

calculating gradients over the layers using a single forward and 
backward propagation, i.e., the input image is fed into the AI 

TABLE 1 Eligibility criteria for inclusion/exclusion.

Eligibility criteria

Inclusion criteria Exclusion criteria

XAI used and well describe in the 

method and result section

Either XAI is not used or is not well 

described in the method and/or result 

section

Medical image data available and used 

as input for DL model

 - MRI;

 - CT;

 - PET

Either no medical image data available 

or not used as input for DL model

 - Either not MRI;

 - Or CT;

 - Or PET

DL model used No DL model used
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model and an output score is calculated (forward) and 
subsequently the dependence (gradient) between the neurons/
convolution layers (subunit of the AI network that learns/extracts 
features from the input image) and the output is calculated 
(backward) to create an attribution map. Due to its simplicity, it 
is an intuitive attribution method and it requires low 
computational power. An attribution based framework called 
NeuroXAI compared VG and other attribution based visualization 
methods for MRI analysis of brain tumors (14). These methods 
were both utilized for classification and segmentation feature 

visualization. In comparison to the other attribution methods, VG 
generated noisy attribution maps and suffers from gradient 
saturation, i.e., change in a neuron does not affect the output of 
the network and therefore cannot be  measured. In a different 
study in which the contrast enhancement phase from CT images 
is predicted, similar results were seen using VG for feature 
visualization (15). In addition, VG lacks the ability to differentiate 
between classes (e.g., healthy vs. disease) (16). This illustrates that 
VG lacks ability to generate clear and class discriminative 
attribution maps.

FIGURE 2

PRISMA flow-chart.
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3.2.1.2. DeconvNET
DeconvNET is effectively an equivalent of VG apart from the way 

it calculates the gradient over a Rectified Linear Unit (ReLU) function 
(17), i.e., a linear function that will output only positive input values 
and helps with improving model convergence during model training. 
TorchEsegeta, a framework for interpretable and explainable image-
based DL algorithms, compared multiple attribution methods for 
interlayer CNN visualization in the segmentation of blood vessels in 
the human brain (18). VG and deconvNET provided more human-
interpretable results than the other attribution methods (e.g., 
DeepLIFT and GradCAM++), since they mainly focused on the 
vessels, while other methods also showed non-vessel activation.

3.2.1.3. Guided back propagation (GBP)
GBP both incorporates the VG and the deconvNET (19). This results 

in fewer activated voxels and therefore in less noisy attribution maps than 
by using each method individually. In the NeuroXAI framework, GBP 
showed target specific attribution maps with indeed less noise in 
comparison to VG (14). In a study performed for predicting brain 
abnormalities using MRI, an additional smoothing function to the GBP 
was proposed to suppress the amount of noise and the effect of non-target 
specific attributions even more (20). The attribution maps showed low 
noise and accurate localization of a range of morphological distinct 
abnormalities. However, although GBP may show less noisy attribution 
maps, it may also result in overly sparse attribution maps, which are not 
useful for complete image characterization (21).

All three gradient based methods are very sensitive to understand 
how the neural network layers extract features, but are not class 
discriminative. Also, because of ReLU and pooling layers, local 
gradients may saturate. Therefore, important features may vanish over 
the layers in the network and that may result in incomplete model 
explanation or even focus on irrelevant features.

3.2.1.4. Layer-wise relevance propagation (LRP)
LRP is a XAI method that operates by propagating the class score 

backward over the neural layers to the input image using LRP specific 
rules (22). The concept of LRP is to conserve inter-neuron dependency, 

i.e., what has been received by a neuron layer will be redistributed to 
the following lower layer in equal quantity. The decomposition is 
based on propagating relevance scores between the neurons instead 
of gradients and therefore, we tackle the difficulties of the saturation 
problem. In a study for screening of abdominal aortic aneurysm in CT 
images (23), LRP showed clear class difference based on activation 
difference in the lumen of the aorta. However, high activation for both 
classes was also seen in the vertebra, which indicates that either the 
DL model is biased, the DL model did not converge, the vertebra is a 
confounder, or that LRP also incorporates non-target specific features 
in its attribution map. A similar result was seen for COVID-19 
classification, in which LRP was not able to visualize target-specific 
features (24). However, other studies showed class-discriminative 
regions and precise localization of lesions using LRP (25, 26). This 
difference may be explained by differences in DL model performance, 
biased data and LRP configuration, although there may not be one 
absolute reason.

3.2.1.5. DeepLIFT
DeepLIFT is a XAI method that uses a neutral reference activation 

(e.g., neuron activation of CT scan without pathology/disease) to solve 
the saturation problem (27). This reference activation is used to 
describe the change of a new neuron activation in comparison to the 
reference activation. From these differences, contribution scores are 
calculated for each neuron to compute an attribution map. DeepLIFT 
was compared with LRP and VG for identification of Multiple 
Sclerosis (MS) patients on MRI (26). This was done by perturbation 
of the three attribution maps for three VOIs. From quantitative 
assessment, it can be seen that DeepLIFT performs slightly better than 
LRP and much better than VG in extracting target-specific features. 
Both LRP and DeepLIFT are able to tackle gradient saturation, which 
may be  the reason why it performs better than VG in this 
classification task.

3.2.1.6. Class activation map (CAM)
CAM is one of the most well-known model specific attribution 

methods (28, 29). It uses a Global Average Pooling (GAP) layer 

FIGURE 3

Taxonomy of XAI methods.
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TABLE 2 The different post hoc XAI methods scored [low/no (red), average (orange), and high/yes (green) performance] based on target specificity, 
spatial-resolution and local/global voxel dependency capability, model agnostic, and technical simplicity, respectively.

Post hoc Characteristics

VG
*

DeconvNET 
*

GBP
*

LRP
*

DeepLIFT
*

CAM
*

Grad-CAM
*

Occlusion
* ^ 

LIME
*

SHAP
*

*Depends on DL model convergence. ^Depends on occlusion method.
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instead of multiple dense layers, which introduces linearity after the 
last convolution layer and before the final dense layer. Since CAM 
only uses features from the last convolution layer, low-dimension 
attribution maps are generated. Therefore, the low-dimension CAM 
is able to visualize whether a model is able to roughly focus on 
specific targets, but due to its low specificity, it lacks discriminative 
power to accurately characterize class based features (30, 31). 
Perturbation analysis of multiple attribution methods also showed 
that gradient based methods have higher specificity than CAM (15). 
Yet, CAM can be discriminative in classification tasks in which the 
classes have clear visual differences, e.g., healthy brain vs. 
Alzheimer’s brain (32) or by performing patch based (more 
focused) tumor analysis instead of whole image tumor analysis 
(33, 34).

3.2.1.7. Gradient-CAM (Grad-CAM)
Employment of XAI methods has showed tremendous growth 

due to COVID-19 detection (35). In general you can distinguish these 
methods based on using the whole CT image, or only using a 
segmentation of the lungs for COVID-19 detection. Especially, whole 
image based COVID-19 detection showed major performance 
difference in attribution mapping. Grad-CAM, an extension of CAM, 
was the most used attribution method and showed both very specific 
(36, 37) as also non-specific attributions (24, 38–41), but was overall 
able to roughly locate the potential COVID-19 lesions to make 
accurate predictions. To remove the influence of non-target specific 
features, a priori segmentations of the lungs was proposed (42–47). 
This way both the DL algorithms as the XAI methods can only extract 
features from the lungs. This anatomical based XAI method showed 
higher specificity than by using the whole CT image using Grad-
CAM. This shows that DL and XAI methods benefit from medical 
based data minimization, in other words reducing the amount of 
trainable features and/or removing non-informative features from the 
input image.

Similar non-target specific attribution maps were also seen for the 
automated grading of enlarged perivascular spaces in acute stroke (48) 
and cerebral hemorrhage detection (49) using the whole image 
(without data minimization). Similar as for the COVID-19 studies to 
solve this specificity problem, a priori anatomical segmentation was 
used to classify and visualize mortality risks based on myocardial PET 
(50), Alzheimer’s disease (51) and schizophrenia based on MRI (52). 
However, although data manipulation suppresses the presence of 
non-target specific features, Grad-CAM still suffers from low 
specificity due to its low-dimensional attribution maps (43, 53). In a 
study for classification of lung cancer histology based on CT images, 
the authors suggested that based on the Grad-CAM attribution maps, 
the activated features around the tumor correspond to regions 
harboring occult microscopic disease (2). However, this is more likely 
caused by this low-dimensionality characteristic of Grad-CAM, 
because CT does not have high enough spatial resolution to detect 
these microscopic diseases.

Similar to CAM, Grad-CAM can be class discriminative in case 
of classification tasks with clear radiological difference between the 
classes (5, 54–58). However, in case of tasks with less obvious 
radiological differences, e.g., predicting survival based on tumor 
characteristic, Grad-CAM lacks fine-grained details, complementary 
attribution methods should be used such as VG and GBP (15, 18). 
A study that combined GBP with Grad-CAM, a method called 

guided Grad-CAM (gGrad-CAM), showed better localized 
attribution maps with higher resolution in MRI analysis of brain 
tumors (14). This advocates for combining the advantages of 
attribution methods for human-interpretable and precise 
model visualization.

There have been multiple other improved variation of Grad-CAM, 
such as Grad-CAM++. Grad-CAM++ has been introduced to provide 
better localization of target-specific features than Grad-CAM (59). 
Grad-CAM averages the gradients of the feature maps, which may 
suppress the difference in importance between the different gradients. 
Grad-CAM++ replaces this with a weighted average, which measures 
the importance of every unit of a feature map. It showed more target-
specific attribution maps than Grad-CAM in the prediction of knee 
osteoarthritis using MRI (25).

The advantage of gGrad-CAM is clearly shown in a study where 
they compared different attribution methods for brain glioma 
classification (14). Grad-CAM provided the least noisy attribution 
maps and GBP provided attribution maps with high resolution but not 
class-discriminative. However, gGrad-CAM provided both class-
discriminative as high resolution maps in which the edges of the 
tumor are highlighted instead of the whole tumor. Similar results were 
also seen for classification of frontotemporal dementia (60), although 
the skull was seen important for the classification as well.

However, non-target specific features in attribution maps do not 
only arise because of underperformance in DL algorithms and/or 
attribution methods. Artifacts can also play a major role in tricking 
DL algorithms and attribution methods (61). That is why it is 
important to have high quality data, perform (medical based) data 
minimization and have a priori (DL-based) quality control methods 
to detect bias present in the data (62, 63). In addition, it is also not 
always trivial what convolution layer should be used to compute the 
attribution map (64). Deeper layers may have higher hierarchical 
structures, but may suffer from low specificity and therefore using a 
shallower layer may contain more informative features.

3.2.2. Perturbation XAI methods

3.2.2.1. Occlusion mapping
Occlusion mapping is a simple to perform approach that 

reveals the feature importance of a model using systematic 
perturbation/conditioning over the image (e.g., replacing input 
pixels with zeros). In contrast to previous methods, occlusion 
maps do not take the feature maps into account, but only the 
different patches (grid- or atlas-wise combination of multiple 
pixels) of the input image. Therefore, it is a very intuitive method, 
which can easily be  adapted to specific occlusion analysis. An 
example of this is a study that investigated the use of DL algorithms 
in predicting and visualizing Alzheimer’s disease and Autism 
using MRI. But instead of rectangles, the Harvard-Oxford cortical 
and subcortical structural atlas was used for occlusion mapping 
(65). This provides a method that can easily be compared with 
more traditional atlas based analysis and therefore provides a 
medical based, transparent and intuitive visualization of the 
DL algorithm.

Randomized Input Sampling for Explanation (RISE) is an 
equivalent of occlusion mapping, but instead of systematic 
perturbation of the input image, it generates multiple random 
perturbation maps, which are pointwise multiplied with the input 
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image (66). Another occlusion method is square grid, where 
perturbation is performed using square grid divisions (62). These 
methods produce intuitive results, but are too rigid to follow 
anatomical/pathological structures present in the images, and require 
large computational power due to many forward and 
backward propagations.

3.2.2.2. Local interpretable model-agnostic explanations 
(LIME)

Instead of a predefined or random occlusion function, LIME 
perturbates super-pixels, which are a group of pixels that share 
common pixel/voxel characteristics. For COVID-19 detection using 
CT, super-pixels followed anatomical/pathological structures/
characteristic of the image and therefore gave a better representation 
of the image than the previous occlusion methods (67–69). However, 
since LIME uses super-pixels as a whole, it provides occlusion maps 
with relatively low specificity. Also, from these COVID-19 studies it 
can be seen that non-target specific features (e.g., chest wall) show 
high activation. This suggests that also occlusion mapping suffers from 
non-target specific activation. In addition, LIME requires initialization 
parameters (kernel size, maximum distance, etc.) to compute super-
pixels, which can be difficult to optimize.

3.2.2.3. SHapley additive exPlanations (SHAP)
SHAP is an advanced XAI algorithm that calculates SHAP values, 

which represent the attribution of each voxel to the change of the 
expected model prediction when conditioning on that voxel using 
reference samples (70). DeepSHAP is an extension of SHAP and works 
in an almost similar way as DeepLIFT. It can provide both local as 
global explanation based on individual pixels/voxels, but also whether 
a pixel/voxel is negatively associated or positively associated with the 
predictive class. Because of this, DeepSHAP may be  difficult to 
interpreted as is shown in a study to predict brain tumors using MRI 
(67). However, in a study in which the volumetric breast density on 
MRI was calculated using DeepSHAP, intuitive DeepSHAP maps were 
created (71). This difference may be the result of difference in data size 
and quality between the studies, but may also be impacted by the 
quality of the reference samples to create the attribution maps. Also, 
because of the required reference samples, DeepSHAP may not work 
optimal in classification tasks where there are substantial (non-)rigid 
anatomical/pathological variation present in the images. Feature 
explanation may therefore be  negatively impacted by anatomical 
differences between the reference samples and the input image and 
therefore may show non-specific attributions.

3.2.3. Probability maps, deep feature maps, 
radiomics, and physics/clinical data

Previous described post hoc attribution methods predominantly 
focus on classification models, which are trained using weak labels, 
i.e., one label for the whole image. In contrast, segmentation DL 
algorithms use voxel-level annotations and compute voxel-level 
probability maps. Therefore, these probability maps are less complex 
to understand.

These probability maps were used to detect prostate lesion from 
multi-parametric MR sequences, which were easily interpretable and 
it allowed to perform prostate lesion analysis in new image data (72, 
73). Similar probability maps were also created to detect lumbar spine 
MR intensity changes (74). However, further specific Modic type 

categorization was performed using a non DL-based, but interpretable 
signal-intensity based nearest neighbor algorithm.

These segmentations can also be used to explore radiomic (e.g., 
intensity, morphology, and texture) based differences between classes. 
A joint detection and radiomic based classification algorithm was 
developed to explore the radiological difference between COVID-19 
and community acquired pneumonia and showed clear difference 
between the two classes using understandable radiomic features (75). 
A similar approach was used for detection and classification of lung 
nodule malignancies (76, 77).

Although these methods (partly) tackle the problem of black-
boxes, voxel-level annotation is very cumbersome and radiomic 
analysis depends on accurate VOI annotations, and a priori defined 
assumptions and regulations. This may suppress the full potential of 
DL algorithms and therefore have a possibility to underperform.

Another explainable method, is the use of deep feature maps 
(intermediate attribution maps) of the DL-based models (78). These 
deep feature maps provide the user with attributions maps of the 
intermediate model layers, which visualizes the underlying feature 
extraction mechanism used by the DL-based model. It therefore can 
give the user an understanding of what features are used, but more 
importantly how these features are processed throughout the model.

Physics-based AI models could also aid in higher transparency, as 
these models can explain feature extraction through well-defined 
mathematical formulas/assumptions, i.e., physics-aware AI. These 
models incorporate physics/mathematical knowledge prior to 
training. However, this approach is predominately used for image 
reconstruction and has low application/added-value for classification 
(yet) (79).

Also, clinical data (e.g., patient history) could aid in better 
performance and transparency of The AI algorithms. for detection of 
prostate cancer using MRI, clinical data improved The diagnostic 
performance significantly (73). In a different study, both clinical data 
and radiomics features showed a complementary role in the prediction 
of EGFR and PD-L1 status using CT images (30).

3.3. Ad hoc XAI models

Ad hoc XAI models are intrinsically able to learn and explain, 
which is different to the DL models that predominantly focusses on 
learning to achieve high performance (learning) and require a post hoc 
XAI algorithm to explain model behavior. An overview of the ad hoc 
attribution methods are shown in Table  3 (and a more extensive 
explanation in Supplementary material: Appendix A).

3.3.1. Explainable deep neural network (xDNN)
xDNN is a XAI method that uses a prototype identification layer 

in the network to identify new data samples based on similarity to 
predefined data samples (prototypes) (80). For this, representative 
prototypes need to be selected for each class, which can be a difficult 
task, especially in case of a cohort with a wide variety in disease 
morphology. Also, difference in class morphology is not always trivial 
and therefore obtaining representative prototypes can be difficult. 
However, xDNN can be very powerful in tasks where there is known 
difference between classes, as is the case for COVID-19 screening 
(81–84) and artifact detection (63). In these studies representative 
prototypes were used to assess new images based on their similarity. 
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This provides the user with transparent and intuitive model 
explanation, which in some way mimics the way we humans extract 
features based on previous experience.

3.3.2. Capsule networks
Capsule networks are described to be the new sensation in DL, 

since they are able to eliminate the pose and deformation challenges 
faced by CNNs, require less data and less computational power (85). 
A capsule tries to describe the presence and the instantiation 
parameters (orientation, thickness, skewed, position, etc.) of a 
particular object (e.g., tumor or lung) at a given location as a vector. 
Subsequently, the vectors from a lower capsule layer try to predict the 
output for the higher layer based on the instantiation parameters. 
Lower layer vectors with high agreement are routed to the following 
layer and the other vectors are suppressed, ideally resulting in only 
target specific attribution maps. A study proposed a novel capsule 
network-based mixture of expert (MIXCAPS) for detection and 
visualization of lung cancer nodules in CT images (86). MIXCAPS is 
an extension of the traditional capsule network, where instead of a 
single CNN, a mixture of (expert) CNNs specialized on a subset of the 
data and an ensemble of capsule networks is used. The authors 
compared MIXCAPS with a single capsule network, a single CNN and 
a mixture of CNNs and showed superior performance using 
MIXCAPS. However, its full potential has not been shown yet and 
requires further understanding before it will be used as the standard 
DL algorithm in this field.

3.3.3. Attention mapping
A trainable spatial self-attention mechanism is in contrast to post 

hoc attention mechanisms, trained during model training to support 
(important) feature extraction (87) and replaces traditional 
non-learnable pooling operations (e.g., max-pooling). Spatial 
attention mapping uses attention estimators to compute attention 

mask from a convolution layer as a goal to extract important local 
feature vectors. Attention mapping showed high correspondence 
between attention scores of specific regions and classification score in 
a study that assessed interpretable imaging biomarkers for Alzheimer’s 
disease using MRI (88). In addition, attention mapping for COVID-19 
detection showed better capabilities to extract more complex and 
scattered regions (24, 89). Attention mapping has also showed 
superior target-specific feature extraction in inverted papilloma and 
nasal polyp classification using CT (90), adenocarcinoma screening 
using CT (91) and segmentation of multiple organs from MRI (92).

Attention mapping has also been investigated in combination with 
Multi Instance Learning (MIL). MIL tries to tackle the downsides of 
weak labels and labor intensive per-voxel annotation. Instead MIL 
uses a set of labeled bags, each consisting of multiple instances (slices). 
In case of binary classification, a bag will be annotated negative if all 
the instances in the bag are negative (e.g., no presence of disease) and 
will be positive if there is at least one instance in the bag which is 
positive. Therefore, MIL intrinsically provides a more interpretable 
decision and in combination with attention mapping it gives insight 
into every voxel its contribution to the bag label. This combination 
have been used for the detection of COVID-19 using CT and showed 
more precise and complete detection of the infection areas of 
COVID-19 than weak labeled methods (93, 94). A similar method has 
been used to predict EGFR mutation status using CT and improved 
the interpretability of the model (95). This indicates that attention 
mechanisms (in combination with MIL) provide more spatial resilient 
CNNs, as it mimics the human behavior of focusing on more relevant 
features, while suppressing irrelevant features.

An alternative attention mechanism has been suggested for 
detection of COVID-19 from CT by feature encoding using a gated 
recurrent neural network in the horizontal and vertical direction using 
a feature block grid (96). In contrast to traditional CNNs, this 
mechanism allows to capture the horizontal and vertical dependencies 

TABLE 3 The different ad hoc XAI methods scored [low/no (red), average (orange), and high/yes (green) performance] based on target specificity, 
spatial-resolution and local/global voxel dependency capability, model agnostic, and technical simplicity, respectively.

Ad hoc Characteristics

xDNN
*

Attention 
estimator *

Capsule 
network *

*Depends on DL model convergence.
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of the features present in the image. This attention mechanism helps 
to make the model interpretable. However, it lacks specificity due to 
its grid-wise attention mechanism.

3.4. Explainability quality of attribution 
methods

Performance assessment of DL algorithms is almost always 
expressed in terms of diagnostic performance (e.g., accuracy, 
sensitivity) or overlap (e.g., Dice coefficient) with the gold standard. 
Although CNNs are seen as the current state-of-the-art algorithms in 
this field, there is no clear consensus what XAI method has superior 
performance over the other methods. One of the problems with these 
XAI methods is that the performance of the attribution methods is 
often not expressed in measurable (quantitative) metrics. Most 
comparisons are performed solely on visual inspection, which is 
susceptible to human subjectivity, especially in case of non-trained 
readers. Current literature therefore lacks high-quality and objective 
technical and clinical assessment of the attribution methods, which 
makes objective comparison between the XAI methods difficult.

However, from the studies that used technical and clinical quality 
assessment, in general you can divide measurable metrics into human-
based and computer-based derived metrics. Human-based metrics 
predominantly use correspondence scores to assess overlap between 
decision relevant VOIs and the gold standard VOIs. In a study where 
they assessed the correspondence of the attribution map with the 
aorta, the radiologist used a 5-point Likert scale to determine 
correspondence (23). An equivalent score, the mean alignment index 
(MAI) was used to evaluate the attribution map for COVID-19 
detection (44). Another study measured the effect of diagnostic 
performance with and without attribution maps (spinal Modic maps) 
(74). First, they provided three radiologist with a MRI without the 

attribution maps and after a 4-week washout period, the radiologist 
regraded the same dataset with the attribution maps. Although a 
4-week washout period might not be sufficient, such methods are able 
to validate the effect of attribution methods in complementing 
medical professionals in medical decision making and therefore helps 
improving the trustworthiness of these algorithms in this field.

Computer-based metrics also use metrics to measure overlap 
between the attribution maps and a gold standard. A study calculated 
correspondence between the attribution maps with brain tumor 
segmentations using a localization hit and the intersection over Union 
metric (55). In other studies, correlation analysis was performed to 
compare pneumonia ratio between radiologists and thresholded 
attribution maps for COVID-19 detection (24) and between 
attribution scores of brain regions and classification accuracy in 
Alzheimer’s disease (88). Another method proposed is the use of 
perturbation of the input image based on the attribution maps (26). 
The idea behind this is that important features from the attribution 
map should correspond with important features from the input image, 
which is expressed as the area over the perturbation curve (AOPC). 
So the more the prediction score decreases by perturbation, the better 
an attribution method is capable to identify relevant input features, 
resulting in a high AOPC.

3.5. Disease specific XAI

Utilization of disease-specific XAI is not unambiguous and 
therefore we propose a flowchart (based on taxonomy of the XAI 
methods) to determine what XAI methods present in the literature are 
from our perspective (most) applicable based on disease specific 
characteristics/patterns (Figure 4). In this flowchart we differentiate 
between local and global and low- and high-resolution XAI methods, 
what we think are two (important) taxonomies that can be determined 

FIGURE 4

Flowchart of XAI methods applicable for disease specific characteristics.
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a priori for the development of XAI methodology. Differentiation of 
the XAI methods is based on disease spread, disease volume and effect 
size between the classes. Disease spread is divided into localized (e.g., 
only primary tumor) and diffuse (e.g., diffuse large B-cell 
non-Hodgkin lymphoma), where diffuse spread is again subdivided 
into non-interlesion (e.g., predicting non-Hodgkin vs. Hodgkin 
lymphoma) and interlesion (e.g., prediction of overall survival for 
Hodgkin lymphoma) dependency. Although the difference between 
the two seems small, a non-interlesion dependency can be described 
in terms of a regional (small ROI/VOI) linear relation with the output 
[e.g., (non-)presence of bone metastasis in Hodgkin vs. non-Hodgkin 
patients], while interlesion interaction requires an explanation/
relation for all pixels/voxels (e.g., relationship between primary tumor, 
lymph node and distant metastases). Interlesion (voxel) interaction 
therefore requires both local as global XAI, while localized disease 
only requires a XAI method to extract local features. Disease volume 
is divided into non-bulky (e.g., stage I pancreatic cancer) and bulky 
(e.g., diffuse large B-cell non-Hodgkin lymphoma). The effect size, i.e., 
the magnitude of the difference between classes, may in some cases 
be more difficult to determine a priori. Yet, we divide the effect size in 
small (e.g., predicting progression free survival in stage III colon 
cancer) and large (e.g., predict presence of glioma in brain vs. healthy 
brain). This flowchart can be helpful for researchers to determine a 
priori what XAI methods currently present in literature can aid in 
explaining their DL model. However, in the end researchers should 
determine how the complexity of the AI task compares with the 
complexity of the XAI method and therefore the flowchart should 
only be seen as an additional tool for XAI application.

4. Discussion

There has been growing interest in the deployment of XAI to 
explain DL black-boxes in the field of MR, CT, and PET imaging. 
However, this review demonstrates that there is a variety of XAI 
methods available and that there is currently no clear consensus 
present in literature on how and what XAI should be deployed to 
realize utilization of DL algorithms in clinical practice. Although a 
variety of XAI methods are proposed in literature, technical and 
clinical quality assessment of these methods is rarely performed. Also, 
there is little evidence of the impact of attribution methods to 
complement medical professionals in medical decision making and 
what medical professionals expect and demand of XAI (74). This all 
illustrates that current XAI methods on their own may not be sufficient 
to realize deployment in clinical practice, but requires additional/
tweaked (XAI) methods to improve transparency and trustworthiness. 
Therefore, we advocate for an end-to-end solution, which integrates a 
priori data-quality control, data pre-processing, (self-)explainable 
modules and technical and clinical (X)AI model quality control (26, 
74). In addition, to the best of our knowledge we are the first study 
that provides a guide for current available XAI utilization based on 
disease/AI task specific characteristics (Figure  4). Also, we  have 
provided a hands-on summary of the (dis-)advantages of each XAI 
method (Tables 2, 3). Both can be helpful for researchers to a priori 
determine which XAI method can be useful for their disease-specific 
AI task.

The majority of the studies utilized post hoc attribution methods 
to explain model behavior. For successful employment, these XAI 

methods should be  transparent, explainable and safe for all 
stakeholders. Current post hoc XAI methods are overall able to provide 
transparent and understandable attribution maps, but show low 
specificity, resulting in non-target specific attribution maps. 
Anatomical data minimization seems to suppress the effect of this, but 
due their intrinsic technical characteristics some still lack to provide 
class discriminative performance. In recent years, more advanced post 
hoc methods have been proposed, such as DeepSHAP. DeepSHAP 
uses multiple reference image samples from both classes and is 
therefore able to provide both positive as negative attributions. 
Therefore, DeepSHAP enables reasoning both for and against a 
models decision, which is important to consider for a complete image 
analysis and diagnosis. Although this provides high model 
transparency and greater insights, excessive information may result in 
lower understandability by the medical professional. Also, DeepSHAP 
may be negatively impacted by anatomical (non-)rigid variation in 
images and reference images and therefore may not work optimal in 
medical imaging.

From this perspective it is important to consider what medical 
professionals consider as complementing information for decision 
making. It is therefore critical to focus on addressing the epistemic 
and non-epistemic concerns of this group in specific contexts and 
occasions of these DL algorithms. These algorithms should 
be  designed in the context of its user, which includes flawless 
integration in the user’s clinical workflow, respect the autonomy of the 
user and provide transparent and effective outputs (97). One of the 
overall issues of XAI is the low specificity of the computed attribution 
maps, i.e., non-informative attributions make it overly difficult to 
interpreted the attribution maps. This may be  due to the wide 
non-medical application of these XAI methods, i.e., they are not 
optimized for medical imaging. Therefore, although these methods 
may be useful in more simple (non) medical AI tasks, more difficult 
medical AI tasks may require XAI methods specifically developed for 
medical imaging. In other words, these systems should be designed 
around stakeholders/imaging modalities to ensure both transparent 
and trustworthy outputs.

Although not extensively present in literature, ad hoc XAI models 
do provide intrinsic explanation of their decision and seem to be more 
target-specific than post hoc XAI methods. Self-attention mapping has 
showed great interest, because it is able to intrinsically explain, showed 
higher target specificity than post hoc algorithms and is also relatively 
simple to understand and integrate into current systems. However, 
self-attention mapping is not able to find global feature dependencies, 
which can be  important in disease mapping. Yet, self-attention 
mapping in combination with DeepSHAP enables it to find global 
features, which supports to combine ad hoc and post hoc XAI methods 
in future research. Another promising XAI method is capsule 
networks, which are intrinsically able to handle spatial relationship 
between features and therefore have seen to be more resilient to spatial 
variance than CNNs. Also, agreement by routing provides an intuitive 
explanation of which feature belongs to which object. Therefore, 
capsule networks have been suggested as the new state-of-the-art DL 
model, but more research is required to explore its full potential.

To ensure unbiased and safe end-to-end integration of DL systems, 
also data quality control should be performed. Especially for systems 
with small data exposure, poor data quality can have high impact of the 
models its reliability. For example measuring the signal-to-noise-ratio 
for data quality harmonization, DL-based artifact detection model (62, 
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63) or simple visual inspection can be proposed to provide information 
of the quality of the data before utilization in the diagnostic DL 
systems. Also, quality control of the attribution maps should 
be performed to assess the use of XAI as potential IB. Unfortunately, 
only few studies (26, 55) implemented quality control systems to assess 
whether the attribution maps do present target-specific features. The 
absence of complete and transparent technical and clinical reporting 
limits the usability of finding in studies and in consequence, the 
acceptance of XAI as IB in clinical practice. In response to this, a new 
version of the Transparent Reporting of a multivariable prediction 
model for Individual Prognosis Or Diagnosis (TRIPOD) Statement 
was published (12). The TRIPOD Statements provides a checklist for 
reporting of studies developing, validating, or updating a prediction 
model for diagnostic and/or prognostic purpose. In combination with 
standardized modality and/or disease specific implementation 
guidelines (11), higher transparency and effectivity of XAI as new IB 
can be utilized in future research.

5. Conclusion

High quality explanation is user and task subjective and therefore 
we require pragmatic explanations to address the concerns of DL 
algorithms for each stakeholder/imaging modality. Ad hoc XAI 
methods seem to provide state-of-the-art explanation algorithms, 
which advocates for shifting from post hoc to integrating self-
explainable modules in the DL models. However, there is (still) no 
unambiguous (self-)explainable XAI method addressing all concerns, 
which advocates for combining XAI methods, perform anatomical 
data minimization and implement data quality systems to ensure 
end-to-end unbiased and safe system integration into the context of 
the stakeholder/imaging modality.

Although XAI shows a great potential to be used as IB in clinical 
practice, technical and clinical quality assessment is currently rarely 
reported. We recommend the utilization of developing and reporting 

guidelines, accepted by the AI-community, to ensure a higher 
transparency and quality of future developed XAI algorithms.
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