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Background: Staging of melanoma and follow up after melanoma diagnosis

aims at predicting risk and detecting progression or recurrence at early stage,

respectively in order to timely start and/or change treatment. Tumor thickness

according to Breslow, status of the sentinel node and value of the lactate

dehydrogenase (LDH) are well-established prognostic markers for metastatic risk,

but reliable biomarkers identifying early recurrence or candidates whomay benefit

best from medical treatment are still warranted. Liquid biopsy has emerged to be

a suitable method for identifying biomarkers for early cancer diagnosis, prognosis,

therapeutic response prediction, and patient follow-up. Liquid biopsy is a blood-

based non-invasive procedure that allows analyzing circulating analytes, including

extracellular vesicles.

Methods: In this study we have explored the use of 7 miRNAs, namely hsa-

miR-149-3p, hsa-miR-150-5p, hsa-miR-21-5p, hsa-miR-200c-3p, hsa-miR-134-

5p, hsa-miR-144-3p and hsa-miR-221-3p in plasma exosomes to discriminate

melanoma patients from controls without melanoma in a cohort of 92 individuals.

Results and discussion: Our results showed that three out seven miRNAs, namely

hsa-miR-200c-3p, hsa-miR-144-3p and hsa-miR-221-3p were di�erentially

expressed in plasma-derived exosomes from melanoma patients and controls.

Furthermore, the expression of the threemiRNAsmay be a promising ancillary tool

as a melanoma biomarker, even for discriminating between nevi and melanoma.

KEYWORDS
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Introduction

The staging of melanoma aims at estimating the risk of metastases in order to

define individuals who benefit from close follow-up and/or medical oncological treatment.

The most potent markers to estimate the risk of metastases are tumor thickness of the

primary melanoma, the status of the sentinel lymph node (SLN), and the value of lactate

dehydrogenase (LDH). Therefore, a high risk for metastatic disease is associated with thicker

tumors (>0.8mm), the positivity of the SLN, and increased values of the LDH. For high-risk
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individuals (stages II B, C, D, and stage III), the mutational

analysis of primary tumor or metastases is performed in order to

offer adjuvant treatment, i.e., targeted treatment (mainly BRAF

and MEK inhibitors for BRAF mutant melanoma) or immune

checkpoint inhibitors (ICI).

In contrast, follow-up after melanoma diagnosis aims at

detecting secondary cancers, recurrence, or progression at an

early stage in order to timely initiate or change concurrent

oncologic medical treatment. Follow-up includes regular clinical

and radiological examinations and assessment of LDH. It has been

shown that ∼30–40% of metastases in patients with stages II or III

are self-detected, which highlights the need to improve biomarkers

for disease monitoring (1, 2). In this regard, liquid biopsy has

been proven to be a suitable method for monitoring and treatment

response evaluation but also for early diagnosis. Several studies

in metastatic melanoma patients highlighted the clinical utility of

liquid biopsy in detecting and monitoring BRAF/NRAS mutations

(3–5). Nonetheless, wild-type patients currently cannot benefit

from this monitoring approach. Liquid biopsy provides a source

also for other circulating analytes, such as exosomes, circulant

cancer cells, andmicroRNA (miRNA). Particular attentionwas paid

to circulating tumoral microRNA (miRNA) based on their stability

and easy methodology for detection. Recent studies reported on the

molecular characterization of skinmelanoma through their analysis

from liquid biopsy (6–8).

Seven miRNAs, hsa-miR-149-3p, hsa-miR-150-5p, hsa-miR-21-

5p, hsa-miR-200c-3p, hsa-miR-134-5p, hsa-miR-144-3p, and hsa-

miR-221-3p, are of particular interest in melanoma tumorigenesis.

Both hsa-miR-21-5p and hsa-miR-221-3p are onco-miRNAs, and

hsa-miR-21-5p was found upregulated in melanoma tissues, and in

vitro experiments have established its role in cell cycle regulation

by targeting the cyclin-dependent kinase inhibitor 2C (CDKN2C)

(9). On the contrary, hsa-miR-200c-3p and hsa-miR-144-3p are

onco-suppressor microRNAs (10, 11), however, hsa-miR-200c-3p

is highly expressed in serum and plasma of patients with others

solid tumors (12–14). Other dysregulated microRNAs are hsa-miR-

134-5p and hsa-miR-150-5p, and hsa-miR-134-5p is involved in

the regulation of cell proliferation, apoptosis, invasion, and drug

resistance; only recently, its expression was investigated in liquid

biopsies from patients with melanoma (7, 15). Data on hsa-miR-

150-5p in melanoma are contradictory as in tissues and cultured

cells, it seems to act as a possible tumor suppressor (16), while

it appears highly expressed in plasma of patients with melanoma

(6), and hsa-miR-149-3p seems to be involved in the interaction

between cancer cells and tumor microenvironment (17).

In this study, we investigated the abovementioned miRNAs as

possible diagnostic/monitoring biomarkers in plasma extracellular

vesicles of a cohort of melanoma patients and controls.

Methods and materials

Plasma collection

This is a multi-centric study where participants were recruited

from four Italian hospitals, namely, the University Hospital of

Trieste, the Galliera Hospitals of Genoa, the National Cancer

Institute of Aviano (CRO), and the Santa Maria Degli Angeli

Hospital of Pordenone. Written informed consent was obtained

from each participant, and the study was approved by the

ethical committee of the study coordinator (ID study 2937,

approval protocol number CEUR-2019-PR-05 of 10/09/2019).

Whole peripheral blood samples were collected in EDTA or

PAXgene Blood ccfDNA tubes (Cat. No.768165; PreAnalyticX,

Qiagen, Hilden, Germany) during dermatological examination,

before the excision of the pigmented lesion. Therefore, during

the collection of blood, the diagnosis of melanoma was suspected.

Finally, blood samples were withdrawn from 92 individuals.

All participating hospitals enrolled consecutive patients from 01

September 2019 through 28 February 2021. To fulfill the ISO

standard for pre-analytical processes (42), blood samples were

collected in EDTA only from some patients of the University

Hospital of Trieste, where plasma separation and molecular tests

were carried out. In that case, after blood withdrawal, EDTA tubes

were transferred to the laboratory at a controlled temperature

(4–8◦C) within 2 h of collection. For all the other samples,

in order to preserve samples’ stability during the storage and

transport, PAXgene Blood ccfDNA tubes were used. Blood samples

collected in PAXgene Blood ccfDNA tubes were delivered at

the central laboratory within 7 days from blood withdrawal.

Tube storage and transportation were carried out at a controlled

temperature (≤25◦C) as suggested by the manufacturer. Plasma

was immediately separated by centrifugation upon arrival in

the laboratory.

Plasma separation was obtained by centrifugation for 15min at

3,000x g at room temperature in agreement with the manufacturer’s

indications for PaxGene tubes and following the ISO standard for

EDTA tubes (42). Briefly, EDTA tubes were centrifuged for 10min

at 1,600x g at 4◦C, and after plasma transferal to new tubes, it was

centrifuged for 10min at 13,000x g at 4◦C. Plasma supernatant was

aliquoted into 1ml vial and stored at−80◦C until use.

RNA isolation from exosomes and
extracellular vesicles

Total RNA from exosomes and extracellular vesicles (EVs) was

isolated from 2ml of plasma using the ExoRNeasy Maxi Kit (Cat.

No.77164; Qiagen, Hilden, Germany) following the manufacturer’s

instructions. Before starting the procedure, the frozen plasma

was incubated at room temperature for slow thawing, and then

centrifugation of 5min at 4◦C at 3,000x g was performed to

eliminate cryoprecipitates and residual cellular material. The

standard protocol described in the ExoRNeasy Serum/Plasma

Handbook has been followed (18). After centrifugation, plasma was

diluted in a ratio of 1:1 with the binding buffer provided by the

manufacturer and added to the membrane affinity column that

binds exosomes and EVs to the membrane. Steps of centrifugation

and washing were performed to eliminate non-specific retained

material. The bound vesicles were then lysed and eluted with

QIAzol. As a control, after the Qiazol elution step, 1 µl of spike-

in mix (UniSp2, UniSp4, and UniSp5; Cat. No. 339390; Qiagen,

Hilden, Germany) was added to the solution and incubated at room

temperature for 5min. Chloroform was added to obtain aqueous

and organic phase separation. Subsequently, the aqueous phase was
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TABLE 1 microRNAs information: microRNA sequences, ID accession number, and annealing temperature.

Name Accession ID Sequence Annealing
temperature

hsa-miR-191-5p MIMAT0000440 5′CAACGGAAUCCCAAAAGCAGCUG 55◦C

hsa-miR-24-3p MIMAT0000080 5′UGGCUCAGUUCAGCAGGAACAG 55◦C

hsa-miR-149-3p MIMAT0004609 5′AGGGAGGGACGGGGGCUGUGC 52◦C

hsa-miR-150-5p MIMAT0000451 5′UCUCCCAACCCUUGUACCAGUG 52◦C

hsa-miR-221-3p MIMAT0000278 5′AGCUACAUUGUCUGCUGGGUUUC 55◦C

hsa-miR-200c-3p MIMAT0000617 5′UAAUACUGCCGGGUAAUGAUGGA 55◦C

hsa-miR-134-5p MIMAT0000447 5′UGUGACUGGUUGACCAGAGGGG 55◦C

hsa-miR-21-5p MIMAT0000076 5′UAGCUUAUCAGACUGAUGUUGA 52◦C

hsa-miR-144-3p MIMAT0000436 5′UACAGUAUAGAUGAUGUACU 55◦C

added to the spin column, and total RNA was eluted in 14 µl of

RNase-free water (2 µl were of dead volume), split into aliquots,

and stored at −80◦C. The RNA quantity and purity were checked

through a NanoDropTM ND-1000 spectrophotometer (Thermo

Fischer Scientific, Waltham MA 02451, USA). Total RNA yield

was calculated by multiplying the concentration by the elution

volume (12 µl).

Hemolysis

The impact of hemolysis was evaluated by measuring the

absorbance at 414 nm and 375 nm using a NanoDropTM ND-

1000 spectrophotometer (Thermo Fischer Scientific, Waltham MA

02451, USA), and the ratio between the two absorbances was

calculated. Samples with a ratio less than or equal to two were

considered free from hemolysis (19).

Reverse transcription and real-time PCR
setting up

Both the reverse transcription and the real-time PCR

reactions were set up as reported in the Supplementary file

(Supplementary Table S2).

Reverse transcription and real-time PCR of
microRNA

In total, 3 µl of total RNA were reverse transcribed using

a miRCURY LNA RT kit (Qiagen, Hilden, Germany; Cat. No.

339340) following the manufacturer’s protocol. During the setting

up of the mix, 0.5 µl of spike-in mix (UniSp6 and cel-miR-39-3p)

was added to the reaction solution.

The real-time PCR has been carried out with 40-fold diluted

cDNA (40X), Fast EvaGreen qPCR Master Mix 2X (Biotium,

Fremont CA 94538, USA; Cat. No. 31003), and 1 µl of specific

pre-designed and validated miRCURY LNA miRNA PCR assays

(QIAGEN, Hilden, Germany; Cat. No. 339306) in a total reaction

volume of 10 µl. Each reaction was run in duplicate in a CFX96

Touch real-time PCR Detection system (Bio-Rad, Hercules CA,

USA), using the following cycling conditions: 95◦C for 10min,

45 cycles of 95◦C/10 s, and 55◦C or 52◦C/1min; in addition, the

melting curve was carried out to evaluate the specificity of amplified

products (Table 1).

For relative quantification, the “11Ct” method was used (20),

where, as normalizer, the geometric mean of hsa-miR-191-5p and

hsa-miR-24-3p was employed; and as a calibrator, a pool of cDNA

made of 12 melanoma and 12 healthy samples was used. In four

cases, no expression was detected for hsa-miR-221-3p even after

repeating the analysis. In order to include those cases in the

statistical analysis for hsa-miR-221-3p, their Ct value was set to 45,

representing the amplification cycle number in the corresponding

protocol, namely, the detection threshold.

Statistical analysis

In total, two individuals were excluded from the analysis for the

high missing rate in microRNA levels (>30%). Individuals without

real-time PCR output were excluded from data analysis (1 case for

hsa-miR-150-5p, 1 control, and 1 case for hsa-miR-134-5p). Data

distribution was checked by the Shapiro–Wilk normality test, and

the parametric or non-parametric tests were used for statistical

analysis. Given the setting of multiple testing, the significance level

was set to α = 0.05/7= 7e – 3 (Bonferroni correction).

The diagnostic power was calculated by ROC analyses

(confidence interval for AUC was calculated using the Delong

method), the optimal cutoff values were obtained by the Youden

index (21), and the Swets classification was used to describe the

area under the curve (AUC) (22). For combined analysis, z-scores

for miRNAs were calculated and used to obtain the average value.

Measures of performance relative to the optimal cutoff (sensitivity,

specificity, and accuracy) were internally validated. Since the

performance measured in the data used to obtain the classifier

will be higher than what we would obtain in new observations,

leading to an optimistically biased evaluation, such “optimism” was

estimated with the bootstrapping technique (23), and all measures

were reported after subtracting this value. Statistical analyses were
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TABLE 2 Clinical features of melanoma patients and controls.

Dataset characteristics

CASES All 44 (52%)

Gender N (%) Female 16 (36%)

Male 28 (64%)

Stage N (%) I–II 26 (59%)

III–IV 18 (41%)

Ulceration status N

(%)

Present 24 (54%)

Absent 13 (29%)

Unknown 7 (16%)

Lymphocyte

infiltrate brisk N

(%)

Positive 4 (9%)

Negative 23 (52%)

Unknown 17 (39%)

Age mean (SD) [Years] 69 (11)

Breslow’s thickness

mean (SD)

[mm] 3.7 (3.8)

Hospital N (%) TS 27 (61%)

GE 3 (7%)

CRO 2 (4%)

PN 12 (27%)

CONTROLS All 41 (48%)

Gender N (%) Female 16 (39%)

Male 25 (61%)

Diagnosis N (%) Nevus 22 (54%)

Basal cell carcinoma 10 (24%)

Histiocytoma 2 (5%)

Capillary hemangioma 1 (2%)

Venous lake 1 (2%)

Seborrheic keratosis 2 (5%)

Unknown 3 (7%)

Age mean (SD) [years] 66 (12)

Hospital N (%) TS 1 (2%)

GE 33 (80%)

CRO 2 (5%)

PN 5 (12%)

Total 85 100%

carried out using GraphPad Prism 8.0 software (San Diego, CA

92108, USA) and R 4.2.1 environment.

Results

In this prospective multicenter study, blood samples for

miRNA profiling were obtained from consecutive patients with

the clinical and dermoscopic suspected diagnosis of melanoma

and a control group without melanoma. Seven miRNAs were

profiled by quantitative real-time PCR (qPCR) in plasma from

patients with malignant melanoma (MM) and patients without

melanoma (woM).

Clinical features

In total, 44 patients with histologically confirmed malignant

melanoma (MM) and 41 patients without melanoma (woM) were

gender and age-matched. Of the 92 blood specimens, 7 were

excluded from the control group (at collection 48 individuals)

because of a previous diagnosis of melanoma. The clinical

characteristics of all subjects are reported in Table 2.

In detail, the mean age of patients with malignant melanoma

was 69 years (SD= 11), while in the control group, the average age

was 66 years (SD = 12, p = 0.1). The cases group consisted of 16

women (36%) and 28 men (64%), whereas 16 women (39%) and 25

men (61%) comprised the control group (p= 1.0).

At the time of blood collection, 26 (59%) patients were in stage

I–II, and 18 (41%) were in stage III–IV of the disease. Patients’ age

was not correlated with the tumor’s stage (p = 0.5, rho = 0.11).

Among controls, most patients (54%) had a diagnosis of nevus

(blue nevus, junctional nevus, and dysplastic nevus).

Hemolysis

The sample’s hemolysis was evaluated by the A414/A375 ratio.

On average, the ratio did not exceed the critical value of 2, but

a slight difference was measured between the cases and control

groups (1.9 ± 0.5 and 1.7 ± 0.5, p = 0.01, respectively). The

A414/A375 ratio did not vary with respect to the collection tubes (p

= 0.08) and hospital pre-analytical processes (p= 0.4).

Total RNA yield and purity

Total RNA amount and purity were investigated by a

NanoDropTM ND-1000 spectrophotometer (Thermo Fischer

Scientific, Waltham MA 02451, USA). No differences were

found between cases and control groups in terms of both

RNA yield and purity, as reported in the Supplementary file

(Supplementary Table S1).

microRNA expression and patients’ features

The correlation between microRNAs fold change and patients’

features was investigated. Overall, our results suggested that

miRNAs expression was not affected by gender although hsa-

miR-150-5p expression was positively correlated with patients’

age (rho= 0.33, p= 8−4).
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FIGURE 1

Association between tumor stage and microRNA expression. Box-plot of relative expression (log-scale) for hsa-miR-200c-3p, hsa-miR-144-3p, and

hsa-miR-221-3p separately for I–II and III–IV stages. The dashed line shows the cuto� on the expression level calculated by the Youden index.

The microRNA expression and clinical
features

The relationship between microRNA expression and clinical

features, namely, the melanoma stage, Breslow’s thickness,

the ulceration status, and the presence of brisk lymphocyte

infiltrate, was investigated. An association between hsa-miR-200c-

3p expression and the tumor stage was detected with significantly

higher expression levels in patients with stages III and IV

melanomas (Mann–Whitney test, p =2e−5). Contrarily, hsa-miR-

144-3p and hsa-miR-221-3p were over-expressed in patients with

stages I and II melanomas (Mann–Whitney test, p = 9e – 4 and

p = 9e – 4, respectively) compared to higher stages (Figure 1).

These three markers showed good performance in discriminating

patients with stages I and II from patients with stages III and IV:

AUC was 0.86 (95% CI [0.74,0.97]) for hsa-miR-200c-3p, 0.79 (95%

CI [0.65,0.93]) for hsa-miR-144-3p, and 0.80 (95% CI [0.66,0.93])

for hsa-miR-221-3p.

The microRNA expression in cases and
control groups

The expression of all microRNAs was compared between

the group of patients with malignant melanoma (MM) and the

control group (woM). The hsa-miR-200c-3p expression prevailed

in plasma from MM (Mann–Whitney test, p = 5e – 5). On the

contrary, hsa-miR-144-3p and hsa-miR-221-3p were significantly

highly expressed in controls (Mann–Whitney test, p = 6e – 4, p

= 5e – 3, respectively) (Figure 2). The association was confirmed

using the multivariable analysis including age and gender as

covariates (Supplementary Table S4). The diagnostic power of the

abovementioned microRNAs was calculated by a ROC analysis

(Supplementary Table S3). Considering the discrimination ability,

hsa-miR-221-3p and hsa-miR-144-3p resulted only moderately

accurate (AUC values 0.68, 95% CI [0.56, 0.79] and 0.71,

95% CI [0.60, 0.83], respectively), whereas hsa-miR-200c-3p

could be considered a fair accurate marker (AUC value 0.75,

95% CI [0.64, 0.85]).

The microRNA expression in nevi and
melanoma

For clinicians, the differential diagnosis between melanomas

and nevi could be challenging. Therefore, the fold change obtained

from nevi was compared to the fold change of samples with

melanoma, stratified by stages.

In particular, hsa-miR-200c-3p accurately discriminated

patients with nevi from patients with melanoma (AUC 0.78, 95%

CI [0.66, 0.90]), whereas hsa-miR-144-3p resulted to be moderately

accurate in the discrimination (AUC 0.76, 95% CI [0.63, 0.90]).

Our results showed that hsa-miR-221-3p was a poor discriminator

(AUC 0.71, 95% CI [0.54, 0.82]). By combining the three markers

(hsa-miR-200c-3p, hsa-miR-144-3p, and hsa-miR-221-3p), the best

discrimination was obtained (AUC 0.84, 95% CI [0.71, 0.95]), as

shown in Figure 3.

Discussion

In this study, we investigatedmiRNAprofiles of plasma-derived

exosomes from melanoma patients and controls. Three out of

seven miRNAs, namely, hsa-miR-200c-3p, hsa-miR-144-3p, and

hsa-miR-221-3p, were differentially expressed in plasma-derived

exosomes from melanoma patients and controls. We showed that

those miRNAs are differentially expressed in cases compared to

controls but also in patients with early vs. advanced melanoma

stages. Among miRNAs, hsa-miR-200c-3p was highly expressed in

the plasma of melanoma patients. Moreover, it was significantly

more expressed in stage III-IV melanoma samples in comparison

to stage I-II. This miRNA is a member of the miR-200 family,

which has a critical role in the epithelial-mesenchymal transition

(EMT) in cancers (14). As a circulating biomarker, hsa-miR-200c-

3p was increased in the plasma of metastatic breast cancer patients
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FIGURE 2

Association between case/control status and microRNA expression. Box-plot of relative expression (log-scale) of hsa-miR-200c-3p,

hsa-miR-144-3p, and hsa-miR-221-3 separately for malignant melanoma patients (MM) and patients without melanoma (woM). The dashed line

shows the cuto� on the expression level calculated by the Youden index.

(14), and it was associated with progression-free survival events

and reduced overall survival (24). Nevertheless, the results on hsa-

miR-200c-3p are contradictory even in melanoma studies, where it

has been reported as a tumor suppressor miRNA in tissues (25).

Our results of a high expression of hsa-miR-200c-3p, especially

in high stages of melanoma, confirm previous findings in other

solid tumors (14). Notwithstanding the downregulation of hsa-

miR-200c-3p in primary melanoma tissues has been associated

with shorter survival and its expression was found higher in

primary tumors than in melanoma metastases (26). Interestingly,

hsa-miR-200c-3p upregulation in melanoma cells has been shown

to lead to a rounded mode of invasion (27). In agreement with

others, our results highlighted that the regulation and activity of

the miR-200 family, including hsa-miR-200c-3p, is highly context-

dependent (27). Micro RNAs, as per definition, are pleiotropic

regulators with possible conflictual functions depending on the

tumor microenvironment and involved cell type (28). Our results

on hsa-miR-200c-3p can find an explanation for the well-known

activity of the miR200 family as regulators of the epithelial

mesenchymal transition. Taken that low miR-200 levels favor EMT,

higher levels promote the mesenchymal epithelial transition, which

permits cells that have escaped the primary tumor to establish

colonies in a new location (14). This fits well with exosomes’

function as active mediators of intercellular communication by

transporting and protecting their cargoes. In our study, higher

hsa-miR-200c-3p in circulating exosomes can be explained by the

presence of circulating melanoma cells that try to seed other

tissues and are prone to mesenchymal epithelial transition (MET),

and this is more likely seen in advanced melanomas (stages III

and IV), as shown in our results. A predicted target of hsa-

miR-200c-3p is the microtubule-associated protein MAP2 (see

Supplementary material), which seems to act as an inhibitor of

melanoma cell proliferation, invasion, and tumor growth (29).

MAP2 is mainly involved in dendritic morphology and has already

been reported as a good prognostic marker in melanoma (30). The

MAP2 activity in melanoma has also been supported by the gene

expression profiling analysis (http://gepia2.cancer-pku.cn/#index),

as shown in the Supplementary file of results. In detail, MAP2

resulted in significantly higher expression in the normal skin tissue

when compared tomelanoma. According to our results, higher hsa-

miR-200c-3p levels in melanoma vs. controls and in higher stage

melanoma support for a repression of MAP2 expression.

Both hsa-miR-144-3p and hsa-miR-221-3p expression levels are

significantly lower in melanoma patients than in controls and,

contrary to hsa-miR-200c-3p, they also resulted in significantly

higher expression in low stages of melanoma compared to

advanced melanoma. In uveal melanomas, miR144 was shown

to act as tumor suppressor miRNA through ADAM10 and

c-Met modulation (31). A decrease in hsa-miR-144-3p has

already been reported in plasmatic levels in RCC patients with

more advanced clinical-stage tumors, which also supports our

findings (32). In melanoma cells, hsa-miR-144-3p has been

shown to inhibit cell migration, supporting its tumor suppressor

role (33).

It should be noted that the low hsa-miR-221-3p expression in

high-stage melanoma patients in our study contrasts relatively with

previous reports, showing a high expression of hsa-miR-221-3p

in plasma samples of cancer patients with lung adenocarcinomas

(34) and hepatocellular carcinomas (35). However, with regard to

melanoma, Pfeffer et al. (36) were not able to detect any difference

in the plasma levels of hsa-miR-221-3p between melanoma patients

and healthy controls. In the serum of melanoma patients, Li

et al. (37) identified miR-221 as a predictor of poor outcomes

in melanoma patients, but recently other authors did not find

significant differences in hsa-miR-221-3p levels in serum between

healthy donors and melanoma patients (38). Similarly, Gasparello

et al. (39) found that hsa-miR-221-3p did not discriminate between

early CRC patients and healthy donors. In agreement with our

findings, Deng et al. found that high hsa-miR-221-3p expression

was associated with better 5-year disease-free survival of triple-

negative breast cancer patients (40), and in uveal melanoma,

Vashishtha et al. (41) found that the downregulation of hsa-miR-

221-3p was associated with metastatic disease. Some reports on

melanoma and hsa-miR-221 did not specify whether−5p or−3p

species were analyzed (37). Discrepancies on miR-221 can find

indeed an explanation by target differences between 5p/3p species
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FIGURE 3

Discrimination analysis. ROC curves representing the discrimination ability of hsa-miR-200c-3p, hsa-miR-144-3p, and hsa-miR-221-3p, and the

three markers expression combined, distinguishing patients with nevi and patients with melanoma. Accuracy (Acc), sensitivity (Sens), and specificity

(Spec) values were obtained using the optimal cuto� point by the Youden index and corrected by optimism through internal validation.

and sample differences (tissue vs. plasma). Overall, hsa-miR-221-

3p and hsa-miR-221-5p seem to act mostly on different targets (by

miRDIP and miDB), which explains our findings.

In conclusion, our data show that the combined expression

level of three miRNAs, namely, hsa-miR-200c-3p, hsa-miR-144-

3p, and hsa-miR-221-3p, is a strong candidate biomarker for

discriminating between nevi and melanoma with high accuracy.

If validated, this finding has possible implications both for early

diagnosis and follow-up procedures. Taking the association with

the melanoma stage, it is more likely that hsa-miR-144-3p and

hsa-miR-221-3p could be relevant for early diagnosis while hsa-

miR-200c-3p for follow-up monitoring of high-risk stages. We

acknowledge that the main limitation of our study is the lack

of an external validation cohort and that no target mRNAs

were analyzed to support our hypotheses. Furthermore, although

hemolysis analysis did not return any significant difference with

respect to tubes and pre-analytical processes, we acknowledge

an inhomogeneity in the collection of cases and controls among

participant centers, without excluding a possible impact on results.

Therefore, a larger and independent series of samples are needed

to validate our results and to inspect the real clinical value of those

miRNAs in melanoma diagnosis and follow-up.
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