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The JAKs protein family is composed of four isoforms, and JAK3 has been regarded

as a druggable target for the development of drugs to treat various diseases,

including hematologic tumors, cancer, and neuronal death. Therefore, the

discovery of JAK3 inhibitors with novel sca�olds possesses the potential to provide

additional options for drug development. This article presents a structure-based

hybrid high-throughput virtual screening (HTVS) protocol as well as the DeepDock

algorithm, which is based on geometric deep learning. These techniques were

used to identify inhibitors of JAK3 with a novel sketch from a specific “In-house”

database. Using molecular docking with varying precision, MM/GBSA, geometric

deep learning scoring, and manual selection, 10 compounds were obtained for

subsequent biological evaluation. One of these 10 compounds, compound 8,

was found to have inhibitory potency against JAK3 and the MOLM-16 cell line,

providing a valuable lead compound for further development of JAK3 inhibitors.

To gain a better understanding of the interaction between compound 8 and JAK3,

molecular dynamics (MD) simulations were conducted to provide more details

on the binding conformation of compound 8 with JAK3 to guide the subsequent

structure optimization. In this article, we achieved compound 8with a novel sketch

possessing inhibitory bioactivity against JAK3, and it would provide an acceptable

“hit” for further structure optimization andmodification to develop JAK3 inhibitors.

KEYWORDS

JAK3, virtual screening, bioactivity evaluation, molecular dynamics, geometric deep

learning

1. Introduction

As a family of non-receptor tyrosine kinases, Janus kinases (JAKs) play a crucial
role in type I and type II signal cascade pathways mediated by cytokines (1).
Upon activation by binding with their specific ligands, JAKs undergo apposition
and activation, leading to phosphorylation, dimerization, nuclear translocation, DNA
binding, and target gene induction in the downstream signal transducer and activator
of transcription (STAT) proteins (2). The activated JAK/STAT signal pathway is
closely associated with inflammation, immune responses, and other physiological
processes. Abnormal activation could lead to inflammatory diseases and cancer.
Hence, JAKs have become an attractive target for the treatment of various clinical
indications, such as autoimmune disease, myelofibrosis, tumors, and alopecia (3–5).
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There are four members of the JAK family, namely JAK1,
JAK2, JAK3, and tyrosine kinase 2 (Tyk2) (6). Of note, JAK3 is
mainly expressed in hematopoietic cells and is involved in the γ-
common chain (γc) to release the specific cytokines (i.e., IL-2,
IL-4, IL-7, IL-9, IL15, and IL21) for the continuous development
of T-cells, B-cells, and natural killer (NK) cells (7). By contrast,
JAK1, JAK2, and Tyk2 are ubiquitous expressions compared with
JAK3. It has been reported that JAK3 is a promising target for
the treatment of hematological malignancies. For instance, the
JAK3/STAT5b and JAK3/STAT6 cascade pathways play significant
roles in leukemic B-cell precursors, and the overexpression of
the JAK3 gene in B-lineage lymphoid malignancies has also been
detected (8, 9). Meanwhile, the overexpression of mutated JAK3
has been confirmed in patients with acute T-cell lymphocytic
leukemia, acute B-cell lymphocytic leukemia, acute myeloid
leukemia, and lymphomas (10). Indeed, hematologic malignancies
are among the most common cancers, and understanding
their incidence and death is crucial for targeting prevention,
clinical practice improvement, and appropriate research resources.
Globally, incident cases of hematologic malignancies have been
increasing since 1990, reaching 1,343.85 thousand in 2019. Of
note, the age-standardized incidence rates (ASIR) for leukemia,
multiple myeloma, non-Hodgkin, and Hodgkin lymphoma were
4.26, 1.42, 3.19, and 0.34 per 100,000 population in 2019,
respectively (11).

Despite JAK3 exhibiting great capacity as a druggable target for
hematological tumors, the discovery of JAK3 inhibitors remained
an enormous challenge. At present, JAK1 and JAK2 antagonists
have been approved by the Food and Drug Administration
(FDA) and other regulatory agencies (Figure 1). Nevertheless,
the majority of JAK3 inhibitors are still in clinical studies

FIGURE 1

The structures of approved or clinically investigated JAK inhibitors.

(6, 12), such as Ritlecitinib (Figure 1) in Phase III, which
is being evaluated for dermatological disorders and other
inflammatory diseases (13, 14). Therefore, it was meaningful to
discover novel drug-like JAK3 inhibitors with specific sketches
and explore their potential usage as therapeutic agents for
hematological tumors.

For the discovery of new backbone JAK3 inhibitors, we
employed computer-aided drug design approaches. Computational
methods have been applied in the drug development process
for screening and discovery of compounds with novel sketches
in recent years (15, 16). Among them, virtual screening
tools could significantly reduce the time and cost of drug
discovery and increase development efficiency (17). In the
meantime, molecular dynamics (MD) simulation would accurately
assess the interaction between active molecules and targets
(18). We combined these two methods and constructed a
computational screening protocol to identify novel compounds
as potential JAK3 inhibitors. Initially, an “In-house” molecule
library was well prepared. Subsequently, different precision
molecular docking methods were used for further screening.
The molecules were filtered using DeepDock, a geometric
deep learning algorithm, and combined with manual selection
to achieve the final molecules. Ultimately, we identified one
JAK3 inhibitor (compound 8) with good inhibitory activity,
exhibiting significant structural differences in the backbone
with existing JAK3 inhibitors. Additionally, it also provided
an acceptable “hit” for further optimization or modification to
discover novel active compounds targeting JAK3. Meanwhile,
the screening strategy in this article also provided a reliable
reference for the development of active compounds with
other targets.
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2. Material and methods

2.1. Protein and ligand preparation

The x-ray co-crystallized protein structure (PDB ID: 5LWN)
was acquired from the RCSB protein database for further protein
preparation. A total of 110 JAK3 protein structures were recorded
in the RCSB database. After filtering by species and non-
covalent ligand, we finally selected 5LWN (1.6 Å) as our target
for performing virtual screening. Protein preparation, including
preprocessing, H-bond assignment, and restrained minimization,
was performed through the Protein Preparation Wizard module
(19) in the Schrödinger 2021-2 suite. In the preprocessing step,
any issues with the protein were identified and resolved using
default parameters by filling in the missing side chains and loops.
Henceforth, the optimization of hydrogen bond assignments was
implemented by sampling water orientations and using PROPKA
at pH 7.4. Ultimately, it was followed by restrained energy
minimization by adopting the OPLS4 force field to converge heavy
atoms to an RMSD of 0.30 Å.

2.2. Database preparation

Two components, namely the commercial compound database
ChemDiv and MCE’s drug-like compound database, constituted
the “In-house” database applied for screening. All ligands were
performed by default parameters through the LigPrep module
(Schrödinger 2012-2 suite). Hydrogenation, salt removal, tautomer
generation, and ionization state calculation using the Epik (version
5.6) program at pH 7.0 ± 2.0 were carried out under the OPLS4
force field. Furthermore, up to 32 stereoisomers can be generated
for each ligand under the computational condition of retaining
specific chirality.

2.3. Receptor grid generation

For the next docking step, the corresponding file was created
based on the center coordinates of the protein pocket. The center
coordinates of the original ligand were defined as the center
coordinates for the docking process, and the original ligand was
removed to generate the corresponding grid file. These procedures
were utilized by the receptor grid generation module of the
Schrödinger 2012-2 suite.

2.4. Docking-based virtual screening

In this article, this specific virtual screening workflow mainly
contained a continuous filtering procedure with different precisions
for SP, XP, and MM/GBSA. Initially, based on the “In-house”
database screening and the performance of the SP precision of the
Glide dock, the top 250,000 molecules were chosen for scoring.
Subsequently, 10 docking conformations of each compound were
set for the next round of screening through the XP precision
of Glide docking. In the third round, 20,000 molecules gained

from the Glide docking were further filtered using MM/GBSA to
obtain molecules, which were scored by applying the DeepDock
approach combined with manual selection. Finally, 10 molecules
were selected for further bioactivity evaluation.

2.5. Glide docking

The Glide molecular docking module of Schrödinger’s kit
is a powerful tool widely used in the field of computational
drug discovery. It enables the prediction of the three-dimensional
structure of a small molecule in a complex with a protein target,
which is crucial for understanding the molecular interactions
between a drug candidate and its target protein. These interactions
ultimately determine the efficacy and specificity of the drug. The
Glide module employs a combination of sophisticated force fields
and scoring functions to model the binding of the small molecule
to the protein target, considering various physical and chemical
properties such as shape complementarity, hydrogen bonding, and
electrostatic interactions.

In this experiment, both the SP precision and XP precision of
the Glide docking modules were used in the same manner. First,
the pre-prepared receptor grid file of the JAK3 target and the ligand
file were loaded into the system. The force field was set to OPLS4,
and the desired precision level was selected, which determines
the accuracy of the simulation. To achieve optimal results, the
maximum number of output structures and the number of poses
per ligand to be included were all set to 5. Finally, the docking
simulation was initiated by running the program.

2.6. MM/GBSA approach

Molecular mechanics/generalized Born surface area
(MM/GBSA) is a computational method used to estimate the
binding free energy of a molecule in a protein-ligand complex.
The method is used in computational drug discovery to predict
the binding affinity of a small molecule to a protein target.
The MM/GBSA approach combines the strengths of molecular
mechanics and generalized Born methods to provide an accurate
and efficient prediction of binding free energy.

The binding free energy change was calculated using the
MM/GBSA calculation method. The docked complexes of JAK3
with different ligands were minimized using the local optimization
feature in Prime Wizard of Maestro (20). The OPLS4 force field
was utilized to determine the binding energy for a set of receptors
and ligands. The following equation was employed to calculate the
binding free energy:

1G(bind) = 1G(solv)+ 1E(MM)+ 1G(SA)

1E(MM) represents the difference between theminimized energies
of the protein-ligand complexes and the sum of the energies of
the unbinding protein and inhibitor. 1G(Solv) represents the
variance between the GBSA solvation energy of the protein-ligand
complexes and the sum of the solvation energies for the protein
and ligand. 1G(SA) encompasses some of the surface area energies
in the protein and ligand and the difference in the surface area
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energies for the complexes. The minimization of the docked
complexes was carried out using a local optimization feature of
the Prime.

2.7. DeepDock

The DeepDock program on GitHub is a deep learning
framework for protein-ligand docking, a computational technique
used to predict the binding affinity between a protein and a small
molecule. The programuses a convolutional neural network (CNN)
to learn the relationship between a protein and ligand’s three-
dimensional structures and their corresponding binding affinity. To
begin, we applied the MASIF algorithm to determine the interfacial
characteristics of JAK3 when bound to a molecule. The model then
processes 2D molecular and protein pocket graphs as input and
derives continuous representations. Using these representations, it
calculates a statistical potential based on the likelihood of distances
between protein-molecule pairs. Finally, it uses an optimization
technique to produce the binding configuration of the molecule.

2.8. Induced fit docking

Induced fit docking (IFD) was applied for consistent poses of
compound 8. Standard protocol was employed to generate up to
20 poses by utilizing the above receptor grid and ligand sampled
according to the conformations of rings. After that, the side chains
of the protein were trimmed based on the B-factor before docking,
and these residues were restored to their original form in the
prime refinement stage. Ultimately, glide redocking was adopted to
generate a small number of additional conformations within 30.0
kcal/mol of the best structure to improve the final pose.

2.9. Inhibition rate and IC50 assay

The tested compounds were dissolved in DMSO to make a
10mM stock solution, which was further diluted to a drug solution
of 25µM. Initially, 2× ATP and substrate solution and 2× kinase
and metal solution were prepared using assay buffer (MgCl2 2mM,
MnCl2 1mM, SEB 12.5 nM, and DTT 0.5mM). From each well
of the 96-well plate, 25 µl of the drug solution was taken and
then transferred to a 384-well plate, which was provided with two
duplicate wells. Then, 2.5 µl of 2× kinase and metal solution was
mixed and incubated in a polystyrene-coated 384 assay plate for
10min at 25◦C. 2× XL665 and antibody solution were prepared
using a detection buffer. A volume of 5 µl of kinase detection
reagent was added to the well and incubated for 60min at 25◦C.
The fluorescence signals of 620 nm (Cryptate) and 665 nm (XL665)
were read using amicrotiter plate reader. Staurosporine is a positive
control compound and is a prototypical ATP-competitive kinase
inhibitor in that it binds to many kinases with high affinity. Its main
biological activity is the inhibition of protein kinases through the
prevention of ATP binding to the kinase (21). The experiment was
performed in parallel three times, and the average value was taken.

Initially, the tested compound was dissolved in DMSO to
create a 10-mM stock solution, which was further diluted to a
drug solution with 50× test concentrations for later use. The
test concentrations were reached through dilution at a 10-fold
gradient and were 0.1 nM, 1 nM, 10 nM, 100 nM, 1,000 nM, and
10,000 nM, respectively. First, 2× ATP and substrate solution and
2× kinase and metal solution were prepared using assay buffer
(MgCl2 2mM, MnCl2 1mM, SEB 12.5 nM, and DTT 0.5mM).
From each well of the 96-well plate, 25 µl of the drug solution
was taken and then transferred to a 384-well plate, which was
provided with two duplicate wells. Then, 2.5 µl of 2× kinase and
metal solution was mixed and incubated in a polystyrene-coated
384 assay plate for 10min at 25◦C. 2×XL665 and antibody solution
were prepared using a detection buffer. A volume of 5 µl of kinase
detection reagent was added to the well, and incubated for 60min
at 25◦C. The fluorescence signals of 620 nm (Cryptate) and 665 nm
(XL665) were read using the microtiter-plate reader. Finally, the
IC50 value of JAK3 kinase was calculated using the equations. In this
assessment, tofacitinib was applied as the reference compound and
dissolved in DMSO. Tofacitinib is a JAK inhibitor on the market,
discovered and developed by the National Institutes of Health and
Pfizer. The experiment was performed in parallel twice, and the
average value was taken.

Y = Bottom

+(Top− Bottom)/(1+ 10∧((LogIC50 − X)×hillslope))

2.10. CCK-8 assay

Cell culture. The MOLM-16 cells were purchased from ATCC
and cultured in RPMI-1640medium (ATCC) with FBS (Gibco) and
penicillin-streptomycin. All cells were maintained in a complete
medium at 37◦C with 5% CO2.

Cell growth inhibition was tested by applying the enhanced
cell counting kit-8 (CCK-8, Beyotime) assay. Initially, the
MOLM-16 cells were counted, and approximately 10,000 cells
per well were seeded in a 96-well cell culture plate (Corning
Inc.). Subsequently, after incubation at 37◦C in a humidified
atmosphere with 5% CO2 for 24 h, the culture medium was
replaced by a series of concentrations of compound 8 diluted
with the corresponding culture fluid. Three replicates were made
for each measurement. After co-incubation for 72 h, 10 µl of
CCK-8 reagent was added into each well, and OD at 450 nm
was measured using a multifunction microplate reader after
incubation for 1 h at 37◦C. The percentage of each concentration
that accounted for the control was presented as cell viability.
The IC50 value was calculated using SPSS. The experiment
was performed in parallel three times, and the average value
was taken.

2.11. Molecular dynamics

The 10 molecules selected for complex conformations with
JAK3 underwent MD simulation studies. These molecules were
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then processed through the protein preparation wizard module.
The input system was constructed using the System Builder
module of the Schrödinger 2012-2 Suite. Under the default
parameters, the complex molecule was placed in the center of
a box filled with SPC water molecules. The ensemble class
for molecular dynamics simulations was set to NPT. The
temperature was set at 300K. The boundaries of the box were
established at a distance of 10 Å from the farthest radius
of the protein. Notably, 0.15M NaCl and small quantities of
Na+ and Cl- were filled in to balance the system charge. The
prepared model was loaded into the MD module for further
simulation work. The duration of the simulation was set to
1,000 ns, and the recording interval was set to 1 ns for
each recording. Finally, the dynamics simulation process was
performed under a 300K temperature and a 1.01325 bar pressure.
The results of the simulations were analyzed using simulation
interaction analysis.

3. Results

3.1. The preparation of protein

In the beginning, the protein structure of JAK3 was obtained
from the Protein Data Bank (PDB) (PDB ID: 5LWN, https://
www.rcsb.org/). Using the Schrödinger 2021-2 suite’s Protein
Preparation Workflow, the protein was prepared for further
analysis. Based on the default parameters, structural repair,
hydrogenation protonation, hydrogen bond optimization, and
energy minimization were performed for the JAK3 protein.

3.2. “In-house” database construction

The molecular diversity in the molecular library has been
proven to be a vital factor in ensuring a high hit rate for

FIGURE 2

(A) The workflow of virtual screening; Glide_SP: Glide extra precision (SP); Glide_XP: Glide extra precision (XP); MM/GBSA: molecular mechanics with

generalized born and surface area solvation. (B) The contribution of each atom was shown using a contour line in each compound. (C) The original

structures of the selected 10 compounds.
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virtual screening. To enhance this diversity, we constructed
an “In-house” database by combining the ChemDiv compound
library and the drug-like molecule library from MCE. To
further optimize this database, we utilized the LigPrep module
from the Schrödinger 2021-2 suite to prepare it for future
applications. This preparation step generates the three-dimensional
structure and ensures the molecules have the correct protonation
state (19).

3.3. Hybrid virtual screening workflow

Based on the resolved co-crystal structure of JAK3, high-
throughput virtual screening (HTVS) was conducted to find the
specific molecules based on the “In-house” database. The hybrid
virtual screening workflow consisted of the following components,
including Glide_SP and XP screening methods with two different
accuracies, as well as MM/GBSA solvation scoring and DeepDock

TABLE 1 The docking score of selected 10 small molecules.

Entry Force
field

Docking score
(SP) (kcal/mol)

Docking score
(XP) (kcal/mol)

MM–GBSA dG bind
(kcal/mol)

DeepDock
score

Inhibit rate
(%)

Compound 1 OPLS4 −9.978 −10.816 −77.05 −67.82 15.60± 0.68

Compound 2 OPLS4 −8.829 −8.583 −61.57 −98.95 44.50± 1.43

Compound 3 OPLS4 −8.491 −8.618 −72.72 −73.01 16.58± 2.18

Compound 4 OPLS4 −9.401 −9.756 −75.58 −115.33 93.37± 0.01

Compound 5 OPLS4 −8.821 −8.067 −71.47 −179.63 75.22± 0.85

Compound 6 OPLS4 −8.474 −8.114 −83.41 −82.11 27.94± 0.79

Compound 7 OPLS4 −8.374 −8.232 −76.62 −112.38 17.53± 1.63

Compound 8 OPLS4 −8.154 −8.079 −76.45 −160.79 83.46± 0.11

Compound 9 OPLS4 −8.350 −8.617 −68.84 −106.46 35.15± 1.61

Compound 10 OPLS4 −7.870 −8.419 −67.72 −85.46 25.56± 0.85

FIGURE 3

(A) The inhibition rate (%) assay of 10 selected compounds against JAK3 (staurosporine was the reference compound), n = 3. (B) The IC50 evaluation

of selected compounds (compounds 4, 5, and 8), n = 2; IC50: half maximal inhibitory concentration. (C) The anti-proliferation assay of compound 8

against the MOLM-16 cell line, n = 3; MOLM-16 cell line: megakaryoblastic leukemia cell line.
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algorithms. The purpose of assembling such a hybrid screening
workflow is to improve the precision of the final virtual screen and
to better filter out molecules with no inhibitory activity. This self-
built database contained 1.6 million small molecules and was used
as a screening library reference. The virtual screening workflow and
the corresponding results are demonstrated in Figure 2 and Table 1,
respectively. Notably, OPLS4 was applied as the force field during
the calculation.

First, the molecules in the “In-house” database were screened
using the Glide_SP module (22–24). After screening, the 250,000
molecules with scores ≤-7.068 kcal/mol were chosen, and a
more precise screen was further conducted using the Glide_XP
module, which used a more complex scoring function than
the Glide_SP score, with more restrictive restrictions on ligand-
receptor shape complementarity.

Subsequently, 20,000 molecules obtained from the Glide_XP
stage with scores ≤-8.030 kcal/mol were subjected to the
MM/GBSA calculation (25). A geometric deep learning framework
algorithm “DeepDock” was further applied to evaluate the

contribution of different atoms to these molecules for target
binding to assist in the subsequent manual selection. Finally, 10
compounds were acquired from the rest of the 5,000 molecules.
Noteworthily, the selecting method included comprehensive
consideration of the scoring and interactions to remove the
wrong binding mode molecules. On the other hand, through
the experience of medicinal chemists, the molecules possessing
higher binding affinity were estimated, which possibly excluded
some molecules that were not drug-like. In Figures 2B, C, the
corresponding structures of 10 selected compounds based on our
workflow were exhibited.

3.4. Inhibitory activity assay

In light of the HTVS results, the inhibition activity assay
was conducted for the selected 10 compounds (25µM). As
shown in Figure 3A, compounds 4, 5, and 8 exhibited a higher
inhibition rate compared with other compounds. According to

FIGURE 4

(A) Di�erences in complex conformation before and after induced-fit docking. (B) Conformational variations of key amino acid residues (the yellow

dashed line represents the H-bond interaction force, and the purple dashed line represents the salt bridge) in the binding pocket before and after

induced fit docking. (C) The interactions of JAK3 and compound 8 before induced fit docking. (D) The interactions of JAK3 and compound 8 after

induced fit docking. (E) The 2D diagram of protein-ligand interaction before induced fit docking. (F) The 2D diagram of protein-ligand interaction

after induced fit docking.
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the experimental results, the IC50 values of compounds 4, 5,
and 8 against JAK3 kinase were further evaluated (Figure 3B),
and compound 8 showed inhibitory activity against JAK3 with
an IC50 value of 4,114 nM. Moreover, the anti-proliferation
test of compound 8 against hematologic cancer cells, like the
megakaryoblastic leukemia cell line (MOLM-16), was carried out
by applying cell counting kit-8 (CCK-8) (6). As demonstrated
in Figure 3C, the IC50 value was reached at 1,834 nM for
the MOLM-16 cell line. Initially, compound 8 was reported
as a type II CDK2 inhibitor in the clinical study. Herein,
we discovered that this compound also exhibited bioactivity
against JAK3. The combined activity assessment demonstrated
the reliability of our HTVS workflow, and it also provided
a favorable hit for further structure optimization to develop
JAK3 inhibitors.

3.5. Induce fit docking

Due to the Glide SP/XP docking module, without taking
into account the flexibility of the protein, the assessment of
the effect on side-chain conformation change and backbone
movement of the protein was further performed before MD
simulation via an induced-fit docking approach (Figure 4). As
shown in Figures 4A, B, the conformation displayed slight
differences and also demonstrated the necessity of induced-fit
docking. Furthermore, the more reasonable binding conformation
of compound 8 with JAK3 was obtained, and additional H-
bond and hydrophobic interactions were observed after induced-
fit docking (Figures 4C–F). Finally, a more stable and rational
binding mode was achieved for further MD simulation. Compared
with Figures 4E, F, compound 8 could generate additional

FIGURE 5

(A) Root-mean-square error (RMSD) value of compound 8 (red) and JAK3 (blue). (B) The interactions of JAK3 with compound 8. The yellow dashed

lines represented H-bonds. (C) The contribution of the compound 8—JAK3 complex. (D) The 2D diagram of protein-ligand interaction. The pink

arrows represented H-bond interactions. (E) The root-mean-square fluctuation (RMSF) measured the average deviation of the residue of the JAK3

protein.
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H-bond interactions with Lys855 and Arg953 after induced-
fit docking.

3.6. Molecular dynamics and binding mode
analysis of compound 8

According to the results of bioactivity evaluation and induced-
fit docking, the MD simulation of compound 8 with JAK3 was
carried out using the Schrödinger 2021-2 suite (26, 27). As
displayed in Figure 5A, theMD simulation was conducted for 1,000
ns, and the binding complex was in equilibrium. During the last 100
ns, the protein and ligand achieved stable status. Subsequently, the
last conformation was chosen for further analysis. The N atom of
the pyrimidine moiety could generate a strong H-bond interaction
with Lys855. Besides, the O atom of amide formed an additional H-
bond interaction with Leu905 (Figure 5B). Meanwhile, the –CF3 of
compound 8 could be inserted into a specific hydrophobic pocket
surrounded by the side chains of Leu905, Gly906, and Arg953
to form strong hydrophobic interactions (Figures 5C, D). These
specific interactions made compound 8 possess inhibitory activity
against JAK3.

3.7. MD simulation analysis insights into the
e�ective inhibition of JAK3 inhibitors

The selected inhibitors underwent individual MD simulations
for 1,000 ns, and their protein-ligand interactions were continually
monitored as shown in Figure 6. H-bond interaction played a
crucial role in ligand-protein binding and was important in
drug design due to its significant impact on active compound
design, metabolism, and adsorption. For the 10 molecules being
selected above, compound 8 formed H-bond interactions with
the amino acid residues Lys855 and Leu905 of the protein. Of
note, the interaction fractions (ordinate) reached 0.6, suggesting
the specific interactions were stably maintained for at least
60% of the simulation time, and meanwhile, it also elucidated
the reason why compound 8 demonstrated strong inhibitory
activity against the JAK3 and MOLM-16 cell lines (Figure 6).
Compound 8 could have a strong H-bond interaction with
Arg953 compared with other compounds in the JAK3 complex,
indicating the importance of this specific residue for the ligand–
JAK3 binding. Additionally, our previous calculations indicated
that compound 8 possessed the third and second highest free
energy as calculated by MMGBSA and DeepDock, respectively

FIGURE 6

The contribution of the compound-JAK3 complex after MD simulation. (A–J) refers to compounds 1–10.
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(Table 1). These results suggested that these two scoring methods
in the JAK3 inhibitor discovery process might have higher
evaluation efficacy.

4. Discussion and conclusion

As a druggable target, the JAK3 pathway has been studied
widely, and some inhibitors are in clinical study (Figure 1) (2,
28). Importantly, JAK3 has also been confirmed as a target
for the treatment of hematologic tumors (6). Therefore, it is
meaningful to discover JAK3 inhibitors to treat cancer. Recently,
virtual screening with artificial intelligence has become a popular
method for drug discovery with low cost and high efficiency
(29). Hence, we also introduced this combined strategy in
our study.

The high expression or mutation of JAK3 is closely associated
with cancer, especially hematologic tumors. Hence, the discovery
of effective drugs targeting JAK3 is a hot area of research for
the treatment of hematologic tumors and other related diseases.
In this study, multiple HTVS methods were applied to identify
molecules with high docking scores that could be evaluated for
bioactivity. These methods included Glide_SP, Glide_XP, MM-
GBSA, andDeepDock. Among the selected compounds, compound
8 exhibited inhibitory activity against JAK3 and MOLM-16 cells
being tested in vitro (JAK3: 4,114 nM, MOLM-16 cell line:
1,834 nM). The precise binding mode between compound 8 and
JAK3was also characterized throughMD simulations and indicated
the importance of Arg953 for the ligand-JAK3 binding, which will
serve as a reference for future structure optimization and drug
development. Finally, this study also analyzed all 10 molecules
through MD simulation, demonstrating the reason for compound
8 possessing better bioactivity against JAK3 compared with
other compounds. This study identified a JAK3 inhibitor with
a novel mother nucleus, providing a valuable foundation for
the design and development of JAK3 inhibitors. Besides, our
study also provided an appropriate “hit” for further structure
modification to discover a new JAK3 inhibitor with high bioactivity
and selectivity.
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