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Background: Severe acute respiratory syndrome caused by a coronavirus (SARS-
CoV-2) is responsible for the COVID-19 disease pandemic that began in Wuhan, 
China, in December 2019. Since then, nearly seven million deaths have occurred 
worldwide due to COVID-19. Mexicans are especially vulnerable to the COVID-19 
pandemic as Mexico has nearly the worst observed case-fatality ratio (4.5%). As 
Mexican Latinos represent a vulnerable population, this study aimed to determine 
significant predictors of mortality in Mexicans with COVID-19 who were admitted 
to a large acute care hospital.

Methods: In this observational, cross-sectional study, 247 adult patients 
participated. These patients were consecutively admitted to a third-level referral 
center in Yucatan, Mexico, from March 1st, 2020, to August 31st, 2020, with 
COVID-19-related symptoms. Lasso logistic and binary logistic regression were 
used to identify clinical predictors of death.

Results: After a hospital stay of about eight days, 146 (60%) patients were discharged; 
however, 40% died by the twelfth day (on average) after hospital admission. Out of 22 
possible predictors, five crucial predictors of death were found, ranked by the most 
to least important: (1) needing to be placed on a mechanical ventilator, (2) reduced 
platelet concentration at admission, (3) increased derived neutrophil to lymphocyte 
ratio, (4) increased age, and (5) reduced pulse oximetry saturation at admission. The 
model revealed that these five variables shared ~83% variance in outcome.

Conclusion: Of the 247 Mexican Latinos patients admitted with COVID-19, 40% 
died 12  days after admission. The patients’ need for mechanical ventilation (due 
to severe illness) was the most important predictor of mortality, as it increased the 
odds of death by nearly 200-fold.
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Introduction

Severe acute respiratory syndrome caused by a coronavirus (SARS-CoV-2) is responsible for the 
COVID-19 disease pandemic that began in Wuhan, China, in December 2019 (1). Since then, nearly 
seven million deaths have occurred worldwide due to COVID-19 (2). Mexicans are especially 
vulnerable to the COVID-19 pandemic as Mexico has the worst observed case-fatality ratio in the 
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world (4.5%) (3). Since Hispanics represent a vulnerable population, 
factors predicting mortality must be understood in this ethnic group.

Older age, lower income, race/ethnicity, the need for invasive 
mechanical ventilation, HIV status, metabolic acidosis, and acute 
respiratory distress syndrome have consistently been related to worse 
outcomes in patients admitted to general wards, including other 
Hispanic populations (4–7). Compared to white patients, Mexican 
Latinos are more likely to have COVID-19-associated hospitalizations 
and admissions into the intensive care unit (ICU) and have a higher 
relative risk of death due to COVID-19 (8). Beyond demographic and 
some clinical biomarker parameters focused on identifying risk 
factors for mortality, other biomarkers are rarely reported in Hispanic 
populations. Thus, examining additional clinical biomarkers in whole 
blood may enhance outcome predictability.

In the Mexican population, available information used to develop 
predictive models has primarily considered demographic variables 
from a public database (9, 10), including cases not identified by the 
severity of the disease. Therefore, selection bias of this information 
might exist, and the generalizability of results may not be guaranteed. 
Since Mexican Latinos represent a vulnerable population, this study 
aimed to determine predictors of death in Mexicans with COVID-19 
who were admitted to a large general acute care hospital using LASSO 
regression to identify demographic variables and routine care 
biomarkers that can predict risk factors of mortality. Based on some 
recent reports that age, several blood parameters, and the need for 
invasive mechanical ventilation are predictive of outcomes in various 
patient populations afflicted with COVID-19 (11–18), this study 
aimed at modeling predictors of mortality in patients with previous 
Severe COVID-19. We hypothesized that some of these predictors 
would also be  prognostic in Mexican Latinos. Specifically, 
we  hypothesized that age, sex, pulse oximetry saturation, and 
neutrophil count at admission would predict mortality.

Materials and methods

Study design

This was an observational cross-sectional study from the High 
Specialty Regional Hospital of Yucatan, Mexico, from March 2020 to 
August 2020. We consecutively enrolled 250 patients with confirmed 
COVID-19 during the period. Inclusion criteria were adults over 
18 years old admitted to the hospital. To be admitted to the hospital, 
patients must be persistently short of breath, especially those whose 
pulse oximetry value was ≤94% on room air or who had symptoms of 
persistent cough, chest tightness, dizziness, and confusion (19). The 
High Specialty Regional Hospital Ethics Committee in Yucatan, Mexico, 
approved this study (Protocol number 2020–024). All patients provided 
written informed consent to participate in this study in compliance with 
the Helsinki Declaration and the Hospital Ethics Committee. Data were 

obtained and used from the admitted patient’s electronic medical record 
and recorded in password-protected computers.

Statistical analysis

Continuous variables are expressed as mean (SD), and categorical 
variables are expressed as absolute values and percentages. A Mann–
Whitney U test was used to compare age, pulse oximetry saturation at 
admission, days of hospital stay, and all the peripheral venous blood 
variables between patients alive at discharge and patients dying in the 
hospital. A comparison of proportions was used to compare the male/
female ratio, those needing IMV, those with acute respiratory distress 
syndrome (ARDS) at admission, those with organ failure at admission, 
obesity, self-reported diabetes, and hypertension between these 
groups. A two-proportion z-test was also used to compare the 
proportion of patients with abnormal values for various blood 
variables between groups. Reference values for neutrophil and 
lymphocyte counts and the neutrophil-to-lymphocyte ratio were 
obtained from Forget et  al. (20). Reference values for leukocyte, 
eosinophils, and platelet counts were from Wakeman et  al. (21). 
Reference values for the platelet-to-lymphocyte ratio were from Wu 
et al. (22). High C-reactive protein values were defined as >3.0 mg/L 
(23). High D-dimer values were defined as >500 μg/L for patients 
≤50 years of age and age-adjusted cut-off value by multiplying the 
patient’s age by 10 for those >50 years of age (24). A high derived 
neutrophil to lymphocyte ratio (dNLR) was defined as ≥2.6 (25). 
Several variables were outside the normal reference range between the 
two groups: patients alive at discharge compared to patients dying at 
the hospital. To account for multiple comparisons, the Benjamini-
Hochberg procedure was used to control the false discovery rate (26), 
which we set to 0.05.

The least absolute shrinkage and selection operator (LASSO) 
regression was first used to identify possible predictors of mortality 
outcome. As there were several possible predictors of mortality 
outcome, LASSO regression (logistic) was used to select the most 
important predictor variables while minimizing prediction errors and 
overfitting. K-fold cross-validation (10-fold) was used to improve 
model performance.

The independent variables (predictors) used in LASSO 
regression were (1) age, (2) sex, (3) intubated and receiving invasive 
mechanical ventilation (1 = yes, 0 = no), (4) number of days on the 
mechanical ventilator, (5) length of hospital stay before being 
discharged or dying (days), (6) pulse oximetry saturation on 
admission (SpO2) (%), (7) whether the patients had acute 
respiratory distress syndrome (ARDS) on admission (1 = yes, 
0 = no), (8) organ failure on failure on admission (1 = yes, 0 = no), 
(9) history of hypertension (1 = yes, 0 = no), (10) history of diabetes 
(1 = yes, 0 = no), (11) obesity (defined as a body mass index ≥30 kg/
m2, determined by physician visual inspection), (12) the admission 
ward where the patient was first placed [1 = intensive care unit 
(ICU), 0 = somewhere in hospital as there was no space in the ICU], 
(13) leukocyte concentration at admission, (14) neutrophil 
concentration at admission, (15) lymphocyte concentration at 
admission, (16) eosinophil concentration at admission, (17) 
C-reactive protein (CRP) at admission, (18) D-dimer (DDIMER) 
concentration on admission, (19) platelet concentration at 
admission, (20) neutrophil to lymphocyte ratio (NLR) on admission 

Abbreviations: SARS-CoV-2, Severe acute respiratory syndrome caused by a 

coronavirus; MX, Mexico; ARDS, acute respiratory distress syndrome; dNLR, 

neutrophil to lymphocyte ratio; LASSO, Least absolute shrinkage and selection 

operator; ICU, intensive care unit; CRP, C-reactive protein; NLR, neutrophil to 

lymphocyte ratio; BIC, Bayesian Information Criterion; VIF, variance inflation factor; 

AUC, area under the curve.
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(21) derived neutrophil-to-lymphocyte ratio at admission (dNLR, 
defined as the absolute neutrophil count divided by the difference 
between leukocytes and neutrophils) (27, 28), and (22) platelet to 
lymphocyte ratio at admission. Since the blood parameters were not 
normally distributed [per Kolmogorov–Smirnov test of normality 
(29)] and were substantially positively skewed, the data of the 
leukocyte concentration, neutrophil concentration, lymphocyte 
concentration, NLR, dNLR, eosinophil concentration, D-dimer 
concentration, and platelet count at admission were transformed by 
taking the logarithm of the values [Log10(X + 1)]. For the baseline 
CRP concentration, the values were not normally distributed; they 
were moderately positively skewed, so the data was transformed by 
taking the square root of its concentration.

Once the LASSO logistic regression identified the most important 
predictors of mortality outcome, binary logistic regression was used 
to develop several models based on the LASSO-identified predictors. 
Binary logistic regression was performed using the backward: 
likelihood ratio method. This stepwise method enters all independent 
variables at once. Then it removes each variable one at a time 
according to the probability of the likelihood-ratio statistic until only 
the significant variables remain in the model. Several models were 
compared via the Bayesian Information Criterion (BIC) for fit. Models 
with a lower Bayesian Information Criterion (BIC) fit better than 
those with higher BICs (30). All independent predictors were also 
evaluated via the variance inflation factor (VIF) (31) to control for 
multicollinearity. A VIF of 1 indicates no multicollinearity, while 
values >1 indicate some multicollinearity. For example, suppose the 
VIF for a predictor variable is 2.0. In that case, it means that the 
variance of the coefficient for that predictor (i.e., its standard error) in 
the full model is twice as large as the variance of the coefficient in the 
model with just that predictor; or in other words, twice as large than 
would be the case with no collinearity effect (31). A variance inflation 
factor ≥ 2.5 indicates considerable collinearity (31). However, to 
be conservative, it was decided that any predictor from a model with 
a VIF ≥ 2.0 would be eliminated.

Goodness-of-fit for binary logistic models was assessed using the 
Hosmer-Lemeshow test (32). This test compares the predicted 
probabilities of the logistic model to the observed outcomes of the 
data and assesses whether the model is a good fit for the data. The 
sample is divided into predefined bins or groups based on the model’s 
predicted probabilities to perform the test. The observed and expected 
frequencies in each bin are then compared using a chi-square test 
statistic. If the model fits the data well, the observed and expected 
frequencies should be similar, the test statistic will be small, and the 
value of p will be >0.05. However, if the test statistic is large, it suggests 
that the model is not a good fit for the data and p < 0.05. When the 
Hosmer-Lemeshow test for a given model candidate was statistically 
significant (p < 0.05), the model was not used for further evaluation. 
Any case with a standardized residual ≥2.5 was removed from the 
final model. For any missing data, multiple imputations 
were performed.

All data were analyzed by IBM SPSS Statistics (Version 29, 
Chicago IL) and R (33). The “glmnet” R package Version 4.1–6 
obtained LASSO regression and binary logistic results (34, 35), and 
the BIC was obtained from “AICcmodavg” R package version 2.3–1. 
A value of p of <0.05 was used to signify statistical significance.

Results

After removing outliers, 247 subjects ranging from 21 to 94 years 
of age (mean, 54 years old) were included in the analysis. 
Approximately one-third of the patients were female. Other variables 
are presented in Table  1. The number and percentage of patients 
outside the normal reference range are presented in Table 2.

After cross-validation, the LASSO logistic regression analysis 
revealed an overall model of six predictors plus the intercept 
(Supplementary Table S1). The best LASSO logistic model output is 
presented in Supplementary Table S2. LASSO logistic regression 
revealed six statistically important predictors of mortality outcome 
ranked by the most to least significant: (1) the patient was so ill that 
he/she needed to be placed on a mechanical ventilator, (2) logarithm 
of the platelet concentration at admission, (3) the logarithm of the 
derived neutrophil to lymphocyte ratio at admission, (4) the number 
of days of hospital stay, (5) age, and (6) pulse oximetry saturation at 
admission. A higher platelet concentration and pulse oximetry 
saturation at admission were protective against mortality and a shorter 
length of hospital stay. The mean binomial deviance was the smallest 
when lambda = 0.0129 (Supplementary Figure S1). However, since the 
length of hospital stay is not known at admission, leaving the variable 
in the model could be questioned as the length of stay is not known 
until later. Furthermore, when we used binary logistic regression on 
the same predictors as the LASSO model, multicollinearity was absent 
when the length of hospital stay was removed from the model. Indeed, 
the difference in BIC between the five and six predictor model was 
negligible (the difference in the BIC between the five and six predictor 
model was 1.1, which is negligible) (30).

As such, the binary logistic analysis revealed an overall model of 
five predictors that were statistically reliable in predicting which 
patients would be alive at discharge to which patients would die in the 
hospital after admission [−2 Log-Likelihood = 99.0, Nagelkerke 
R2 = 0.83; Omnibus tests of model coefficients χ2 = 235.2, df = 5, 
p < 0.001, Bayesian Information Criterion (BIC) = 132.3]. The need to 
be placed on mechanical ventilation was the most significant predictor 
of mortality, followed by the logarithm of platelet concentration. The 
logarithm of the dNLR and age (years old) were the other positive 
predictors of mortality. On the other hand, higher SpO2 and platelet 
counts were protective against mortality (Table 3). The model was a 
good fit [Hosmer and Lemeshow Test, χ2 = 5.94, df = 8, p = 0.65] 
(Table 3). Other visual graphics of the model’s fit are presented in 
Supplementary Figures S2–S4 in the online supplement. The variance 
inflation factor was below 2.0 for all five predictors: Mechanical 
Ventilation = 1.81, the logarithm of the derived neutrophil to 
lymphocyte ratio = 1.17, age = 1.38; pulse oximetry saturation at 
admission = 1.05; logarithm of the platelet counts = 1.51.

The model demonstrated that patients’ need for mechanical 
ventilation (due to severe illness) was the most important predictor of 
mortality, as it increased the odds of death by nearly 200-fold. Every 
1% increase in pulse oximetry saturation upon admission decreased 
the odds of death by about 4%; for every one-year increase in age, the 
odds of death increased by 8%. In addition, for every 1 unit increase 
in the log of platelet concentration, the odds of death decreased by 
nearly 100%. For every 1 unit increase in the log of dNLR, the odds of 
death increased by 14-fold (Table 3).
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Discussion

The primary purpose of this study was to identify reliable 
predictors of mortality in adult Mexican Latinos with severe 
COVID-19 admitted to the hospital. These patients were admitted 
due to persistent shortness of breath or had symptoms of cough, 
chest tightness, dizziness, or confusion (19). The predictors of 
mortality from most to least important (but still statistically 
significant) were (1) being so sick that patients needed to be placed 
on a mechanical ventilator, (2) low platelet concentration at 
admission, (3) increased dNLR at admission, (4) increased age, and 
(5) decreased pulse oximetry saturation at admission. Increased 
hospital stay also predicted mortality; nevertheless, it was not 
included in the model as the length of stay is unknown 
at admission.

In general, patients that ended up dying in the hospital had more 
leukocytes and neutrophils, had a larger NLR and dNLR at admission, 
and had higher values for CRP and D-Dimer compared to those alive 
at discharge. Also, the prevalence of those with ARDS and systemic 
organ failure was higher in the group that ended up dying than those 
alive at discharge (Table 2). This demonstrates an association between 

mortality and morbidity outcomes for white blood cell parameters, 
ARDS, and the need for invasive mechanical ventilation, similarly 
found in Chinese patients afflicted with COVID-19 (11, 14, 15).

Published studies using the Mexican COVID-19 Epidemiologic 
Surveillance System demonstrated that being male, increased age, and 
having comorbidities such as diabetes, COPD, obesity, hypertension, 
and immunosuppression were associated with death (9, 10). In 
contrast, the current data found that hypertension, obesity, diabetes, 
and organ failure did not predict mortality.

A recent report has identified that requiring invasive mechanical 
ventilation does not predict mortality but rather the delay of 
intubation in patients with similar characteristics (36). This finding 
may represent our population since there was an ~8-day delay in 
assistance at the emergency department for evaluation after initial 
symptoms (37). Altogether, our results should strengthen the 
recommendation to seek prompt medical attention after a 
COVID-19 diagnosis.

The previous history of comorbidities has been associated with 
adverse outcomes, yet, the data usually have included patients with all 
disease severity ranges. In severe COVID-19, we found no difference 
in morbidities other than older age, as previously reported (10). 

TABLE 1 Patient characteristics of those afflicted with COVID-19.

Patients that were alive 
at discharge (n = 146)

Patients that ended up 
dying at the hospital (n = 101)

Combined Total 
(n = 247)

Sex 95 M; 51F 72 M; 29F 167 M; 80F

Age (yrs) 49 (14) [47–52]* 61 (14) [25–83] 54 (15) [52, 56]

Was mechanical ventilation ever Needed? Yes = 15 * No = 131 Yes = 94 No = 7 Yes = 109 No = 138

Days on mechanical ventilation 1.6 (6.2) [0.8–2.6]* 9.2 (7.5) [7.8–10.7] 4.7 (7.7) [3.8–5.7]

Hospital stay (days) 7.6 (8.0) [6.4–9.0]* 12.3 (8.7) [10.6–14.2] 9.5 (8.6) [8.5–10.7]

Pulse oximetry saturation at admission (%) 88% (7%) [87–89%]* 72% (19%) [68–75%] 81% (15%) [79–84%]

Acute Respiratory Distress Syndrome (ARDS) at 

admission

Yes = 45* No = 101 Yes = 75 No = 26 Yes = 109 No = 138

Organ failure on admission Yes = 8* No = 138 Yes = 27 No = 74 Yes = 35 No = 212

History of hypertension Yes = 44 No = 102 Yes = 39 No = 62 Yes = 83 No = 164

Self-reported Type II Diabetes Yes = 38 No = 108 Yes = 38 No = 63 Yes = 76 No = 171

Obesity (BMI ≥30 kg/m2) Yes = 74 No = 72 Yes = 55 No = 46 Yes =129 No = 118

Site of admission Hospital (no space in ICU) = 132 

ICU = 4

Hospital (no space in ICU) = 69 ICU = 32 Hospital (no space in 

ICU) = 201 ICU = 36

Leukocyte concentration at admission (cells per mm3) 10,552* [9,830–11,349] 14,743 [13,475–16,017] 12,266 [11,552–12,969]

Neutrophil concentration at admission (cells per mm3) 8,441* [7,672–9,224] 12,195 [11,792–14,197] 10,271 [9,548–10,971]

Lymphocyte concentration at admission (cells per mm3) 1,251* [1,151–1,354] 1,054 [933–1,192] 1,170 [1,100–1,241]

Neutrophil to Lymphocyte Ratio at admission 8.8* [7.7–10.0] 16.3 [14.2–18.5] 11.9 [10.6–13.2]

Derived neutrophil to lymphocyte ratio 4.7* [4.1–5.2] 8.4 [7.5–9.4] 6.2 [5.6–6.7]

Platelet concentration at admission (x 109 platelets per L 

of blood)

321 [294–352] 260 [260–300] 305 [288–324]

Platelet to lymphocyte ratio at admission 318 [284–355] 364 [313–419] 337 [306–373]

Eosinophil concentration at admission (number of cells 

per μL of blood)

65* [49–83] 37 [20–57] 53 [41–66]

C-Reactive Protein concentration at admission (mg/L) 145* [128–162] 220 [192–247] 175 [161–191]

D-Dimer concentration at admission (ng/mL) 1,256* [953–1,637] 3,103 [2,203–4,007] 2,004 [1,596–2,492]

Data are shown as mean. [Brackets] represent the 95% bias-corrected and accelerated (BCa) Bootstrapped CI for the mean. The asterisk * signifies that the difference between groups was 
statistically significant at a false discovery rate of 5% when adjusted for multiple testing (22 tests). The derived neutrophil to lymphocyte ratio is neutrophils ÷ (leukocytes – neutrophils).
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Therefore, the value of our results is to be generalized in patients with 
severe COVID-19.

The binary logistic regression model was initially based on the 
response from the LASSO logits regression (Supplementary Tables S1, 
S2; Supplementary Figure S1). The model had an acceptable 
goodness-of-fit, and the normality assumption of residuals was met 
(Supplementary Figures S1–S3). It was determined that five 
important predictors (out of 22) best-predicted mortality outcomes. 
Of these five predictors, the top three most important predictors of 
mortality outcome – in order of influence – were: the need for 
invasive mechanical ventilation, low platelet count at admission, 
and increased dNLR at admission. All five predictors did not have 
significant confounding or multicollinearity. High pulse oximetry 
saturation values at admission and high platelet counts at admission 
were protective of mortality, while increases in age, dNLR, and the 
need for invasive mechanical ventilation increased the odds of 
death. These findings support the findings of Camacho-Moll et al. 
(38), whose final logistic model included respiratory and organ-
injured routine biomarkers (38). Even though some studies  
have shown that CRP and D-dimer can be  a prognosticator in 
morbidity and mortality in those with COVID-19 (13, 17, 18), the 
concentrations were similarly high in both groups, so they  
did not present as essential predictors in mortality outcome in 
this study.

Preliminary risk factors for mortality in the Mexican 
population have been described during the first wave of COVID-19 
(37). The need for invasive mechanical ventilation and an NLR ≥ 9 
significantly increased the odds of dying from COVID-19 (37). 
Subsequently, some studies involving the native Mexican Latino 
population have suggested cut-off values of NLR ranging from 5.43 
(AUC 0.80) to >10.0 (OR 2.2) as predictors of poor outcome (39–
42). We determined that dNLR was more predictive than NLR in 
the current study. While we did not have a cut-off in dNLR, every 
1 unit increase in the log of dNLR increased the odds of death by 
14-fold (Table 3). Therefore, a subsequent analysis could reinforce 
this finding and be applied in clinical practice.

A common practice of binary logistic regression is examining 
the fraction of correctly classified responses. Here, one chooses a 
cut-off on the predicted probability of positive responses (Usually 
at 50.0%) and then predicts that responses will be positive if the 
predicted probability exceeds this cut-off (43). If we did this using 
the binary logistic model in Table  3 and a cut-off of predicted 
probability of 50% and then predicting mortality outcome if the 
probability ≥50.0%, the area under the ROC (AUC) curve would 
be 0.912. Furthermore, the remaining classification results would 
be as follows: the true negative rate (specificity) = 90%, the true 
positive rate (sensitivity) = 92%, the false positive rate = 10%, the 
false negative rate = 8%, the false discovery rate = 13%, the false 

TABLE 2 The number and percentage of subjects outside of the normal reference range.

Patients that were 
alive at discharge 

(n = 146)

Patients that ended 
up dying at the 

hospital (n = 101)

Combined 
total (n = 247)

Number & percentage of patients whose pulse oximetry saturation at admission 

was <90%

79 (54%)* 82 (81%) 161 (85%)

Number & percentage of patients whose Leukocyte concentration at admission 

was outside of the normal reference range (< 3,600 or > 9,200 cells per mm3) (21)

76 (52%)* 84 (83%) 160 (65%)

Number & percentage of patients whose Neutrophil concentration at admission 

was outside of the normal reference range (<1,800 or 6,900 cells per mm3) (20)

85 (58%)* 86 (85%) 171 (69%)

Number & percentage of patients whose neutrophil to lymphocyte ratio (NLR) at 

admission was outside of the normal reference range (<0.8 or > 3.7) (20)

113 (77%)* 95 (94%) 208 (84%)

Number & percentage of patients whose derived neutrophil to lymphocyte ratio 

(dNLR) at admission was clinically high (≥ 2.6) (25)

103 (71%)* 90 (89%) 193 (78%)

Number & percentage of patients whose lymphocyte concentration at admission 

was outside of the normal reference range (<1,300 or 3,800 cells per mm3) (20)

90 (62%) 76 (75%) 166 (67%)

Number & percentage of patients whose platelet concentration at admission was 

outside of the normal reference range (< 140 or > 320 × 109 platelets per L of blood 

for males; and < 180 or > 380 × 109 platelets per L of blood for females) (21)

55 (38%) 50 (50%) 105 (43%)

Number & percentage of patients whose platelet to lymphocyte ratio (PLR) at 

admission was outside of the normal reference range (< 36.6 or > 149.1 for males; 

and < 43.4 or > 172.7 for females) (22)

115 (79%) 78 (77%) 193 (78%)

Number & percentage of patients whose Eosinophil concentration at admission 

was clinically high (> 400 cells per μL of blood) (21).

4 (3%) 3 (3%) 7 (3%)

Number & percentage of patients whose C-Reactive Protein concentration at 

admission was clinically high (> 3 mg/L) (23).

145 (99%) 101 (100%) 246 (100%)

Number & percentage of patients whose D-Dimer concentration at admission was 

clinically high (> 260 ng/mL) (24).#
122 (84%) 88 (87%) 210 (85%)

Percentages were rounded to the nearest whole number for simplicity. # The D-Dimer value was missing for two patients alive at discharge and three patients dying in the hospital, so the 
number of subjects was 144 and 98, respectively. The asterisk * signifies that the difference in proportions between groups was statistically significant at a false discovery rate of 5% when 
adjusted for multiple testing.
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omission rate = 6%, positive predictive value = 87%, negative 
predictive value = 94%. Performing this type of 2 × 2 binary 
classification is frowned upon since a logistic model is a model for 
the probability of an event, not a model for the event’s occurrence 
(43). Second, the fraction of correctly classified responses highly 
depends on the cut-point chosen for a “positive” prediction (43). 
Third, one can add a highly significant variable to the model and 
decrease the percentage classified correctly (43). Classification 
error is insensitive and statistically inefficient (43). Fourth, if 
diseases were present in only 2% of the population, one could 
be 98% accurate in diagnosing the disease by ruling that everyone 
is disease free by avoiding predictors. The proportion classified 
correctly fails to consider the task’s difficulty (43). That is why the 
AUC is not a valid measure of a diagnostic / screening test (44). 
Therefore, the model presented in Table 3 is solely for prediction.

Since the beginning of the pandemic, researchers worldwide have set 
out to identify the factors related to adverse outcomes in patients requiring 
hospital admission due to unfavorable disease progression. Demographic 
factors, morbidities, clinical data, laboratory tests including routine 
biomarkers, and those tests challenging to implement routinely (including 
cytokines, and growth factors, among others) have been identified in the 
ordinary care of cases. With these data, risk calculators have been 
proposed and implemented in the emergency care room to recognize 
cases that could have an adverse outcome. These calculators include 
multiple demographic, laboratory, and imaging variables with various 
areas under the curve (AUC) of 0.75 to 0.88. Among these calculators: 
LUCAS (45), 4-C Mortality Index (46), NEWS2 (47), and COVID-
GRAM (48) have been developed in different populations.

The four calculators mentioned above (44–47) have advantages and 
disadvantages in identifying cases that could potentially have adverse 
outcomes. However, the common denominator is that none included 
Mexican Latinos. Therefore, they lack external validity applicable to our 
population. Furthermore, as stated above, AUC is not a valid measure of 
a diagnostic / screening test (44). If a study wanted to model the 
occurrence of an event, using Mathew’s correlation coefficient would be a 
better classification statistic (41, 49, 50).

Also, another limitation of the previously mentioned calculators is 
that they come from the same population (NEWS2 versus COVID 
GRAM Italian population) and have not had the same predictive accuracy 
(47). COVID GRAM has been tested in a group of European Hispanics 
in Spain, and the results are not similar to the Chinese population (51). 
Specific data on outcomes in a Latino population are limited to some 
countries. Peruvian patients admitted with COVID-19 have identified 
age, oxygen saturation less than 80% at admission, use of ivermectin, 
azithromycin, and leukocyte levels on admission as risk factors for 
mortality (52–54), but in other Latino population data is scarce.

Some of the limitations of this study include the limited sample 
size and the fact that data was collected at a single hospital site. A 
multi-center study would have increased the sample size and the 
findings’ generalizability. However, in the Yucatan Peninsula, 
opportunities for collaboration are scarce, and the number of hospital 
centers in the region is lacking. Nevertheless, we bootstrapped the 
results in the logistic regression model to improve reliability and 
reduce sampling error. Thus, despite these limitations, the model is 
appropriate for the population studied.

Conclusion

This paper presents one of the first statistical models used in 
the Mexican population to predict mortality outcomes. It was 
determined that the most important predictors of death resulting 
from severe COVID-19 illness were the need for invasive 
ventilation, reduced platelet counts, increased dNLR, increased 
age, and reduced pulse oximetry saturation, all measured at 
hospital admission. The model revealed that these five variables 
shared ~83% variance in outcome. Based on these findings, some 
potential future research directions include (1) validation of the 
identified preditors in large and more diverse populations, (2) 
investigation of the impact of interventions like immune 
modulators and mechanical ventilation strategies on mortality, and 
(3) and long-term follow-up on the survivors.

TABLE 3 Results of the binary logistic regression analysis (n = 247 patients).

95% CI for 
odds ratio

Variables B S.E. Wald z-value Sig. Odds 
ratio

Lower to 
Upper

Age (years) (Range = 21 to 94 years old) 0.073 [0.02, 0.14] 0.022 10.6 3.25 0.001 1.08 1.03 to 1.12

Is mechanical ventilation needed? (1 = yes, 0 = no) 5.26 [4.39, 7.82] 0.77 46.4 6.81 <0.001 193 43 to 878

Pulse oximetry saturation at admission (%) 

(Range = 20 to 100%)

−0.043 [−0.10, −0.01] 0.022 4.4 −2.01 0.044 0.96 0.92 to 0.99

The logarithm of dNLR at admission Log10(X + 1) 

[Range of Log10 (X+1)= 0.18 to 1.47]

2.65 [0.46, 6.70] 1.27 4.1 −2.09 0.037 14.1 1.2 to 169.5

The logarithm of platelets counts at admission 

Log10(X + 1) [Range of Log10 (X+1)= 1.46 to 3.26 x 

109 cells per L]

−6.41 [−11.70, −3.28] 2.02 10.0 −3.17 0.002 0.002 0.00003 to 0.09

Constant 9.53 [0.67, 19.76] 4.86 3.85 1.96 0.050

Each independent variable had 1 degree of freedom, including the constant. Brackets represent the 95% bootstrapped CI for the coefficients. Bootstrapped results are based on 1,000 
bootstrapped samples. Three outliers (1%) were removed (standardized residuals ≥ 2.5). The variance inflation factor was the following for each predictor: age = 1.37; pulse oximetry saturation 
at admission = 1.05; mechanical ventilation = 1.80; logarithm of the platelet counts = 1.51; logarithm of dNLR = 1.16. Bayesian Information Criterion (BIC) = 132, (Hosmer & Lemeshow 
Goodness-of-Fit = χ2 = 6.11, df = 8, p = 0.64), j – 2 log likelihood = 99.0, Nagelkerke’s pseudo R2 = 0.83. In the first column, the minimum and maximum values in the dataset are presented 
within parentheses. So the model is accurate between each of these ranges. The [Brackets] in the second column represent the 95% CI.
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