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Objectives: Predicting whether axillary lymph nodes could achieve pathologic 
Complete Response (pCR) after breast cancer patients receive neoadjuvant 
chemotherapy helps make a quick follow-up treatment plan. This paper presents 
a novel method to achieve this prediction with the most effective medical imaging 
method, Dynamic Contrast-enhanced Magnetic Resonance Imaging (DCE-MRI).

Methods: In order to get an accurate prediction, we first proposed a two-step 
lesion segmentation method to extract the breast cancer lesion region from 
DCE-MRI images. With the segmented breast cancer lesion region, we then used 
a multi-modal fusion model to predict the probability of axillary lymph nodes 
achieving pCR.

Results: We collected 361 breast cancer samples from two hospitals to train and 
test the proposed segmentation model and the multi-modal fusion model. Both 
segmentation and prediction models obtained high accuracy.

Conclusion: The results show that our method is effective in both the 
segmentation task and the pCR prediction task. It suggests that the presented 
methods, especially the multi-modal fusion model, can be used for the prediction 
of treatment response in breast cancer, given data from noninvasive methods 
only.
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1 Introduction

The incidence of breast cancer has been increasing in recent years, and breast cancer is one 
of the most common malignant cancers in women. In 2023, it is estimated that there will 
be 297,790 new cases of invasive breast cancer diagnosed and 43,170 women will die from breast 
cancer in the U.S. (1). At present, neoadjuvant chemotherapy (NAC) plays an important role in 
breast cancer treatment, and research (2–5) shows that whether axillary lymph nodes achieve 
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pathologic Complete Response (pCR) is an important prognostic 
predictor for breast cancer patients who receive NAC, and that pCR 
indicates a lower risk of local recurrence and a better long-term 
prognosis for patients. Therefore, it is of great importance if we can 
predict whether axillary lymph nodes will achieve pCR after patients 
receive NAC; this helps make a follow-up treatment plan and improve 
patients’ prognosis.

As a non-invasive method, imaging examination plays an 
important role in the clinical diagnosis and treatment of cancer. 
Specifically, in the evaluation of treatment response to NAC in breast 
cancer, Magnetic Resonance Imaging (MRI) is the most commonly 
used imaging evaluation method in clinical practice (6). However, 
based on radiologists’ subjective evaluation of imaging features, MRI 
shows high sensitivities (83–92%) and intermediate specificities 
(47–63%) in preoperative diagnosis of axillary lymph nodes achieving 
pCR after NAC (7). Nevertheless, recently, artificial intelligence has 
shown great promise in analyzing medical images, helping to identify 
image information beyond the ability of the naked eye, and providing 
objective quantitative evaluation to support clinical decision-making 
(6). Specifically, deep neural networks, especially convolutional 
networks, attract great attention in the field of medical imaging 
analysis (8). Thus, the objective of this paper is to utilize deep neural 
networks to process MRI images of breast cancer in order to predict 
whether axillary lymph node metastasis in breast cancer could achieve 
pCR after patients receive NAC.

Compared with other types of medical imaging technologies, such 
as Computed Tomography (CT) and Positron Emission Tomography 
(PET), MRI provides better imaging capability for soft tissues and is 
widely adopted in breast cancer diagnosis and treatment. In our work, 
we use Dynamic Contrast-enhanced Magnetic Resonance Imaging 
(DCE-MRI), which provides a high-quality image for soft tissues with 
better quality of blood flow around the lesion, which facilitates higher 
accuracy and earlier detection in breast cancer diagnosis. Despite the 
above, due to the nature of medical imaging technology, a common 
DCE-MRI image for breast cancer diagnosis (Figure 1A), contains a 
large amount of redundant information, so we need to extract only the 
lesion region of interest for further processing in order to achieve 
better performance. Image segmentation is widely used in medical 
imaging analysis, where pixels from specific regions are segmented 
from the background. With the prevalence of deep learning, models 

such as the Fully Convolutional Network (FCN) (9) and UNet (10) are 
applied in medical image segmentation and achieve great performance. 
It is also proven that neural networks are effective and efficient in 
breast tumor segmentation tasks (11). In our work, considering the 
fact that breast cancer lesions are close to the chest wall and vary in 
size and distribution, we  propose a two-step lesion segmentation 
method using nnUNet (12) as shown in Figure 1: (1) segmentation of 
the mammary gland region; (2) segmentation of the breast cancer 
lesion region within the mammary gland region. When training 
medical image segmentation models, transferability should be taken 
into consideration because DCE-MRI images collected from different 
centers may vary in resolution, scanner used, protocol, and image 
quality. Hence, we  apply a histogram matching method (13) to 
augment the training samples in order to improve the 
model transferability.

Usually, after acquiring the model representation of breast cancer 
lesions, we  can directly train a neural network to predict the 
probability of pCR after NAC. However, as pointed out by Ramos-
Vara (14), immunohistochemical detection can greatly help in the 
diagnosis of breast cancer, invasion and metastasis of tumors, and 
prognosis of breast cancer, so together with MRI data, we coordinate 
four common types of molecular typing data in breast cancer 
treatment to construct a multi-modal fusion model to predict whether 
axillary lymph nodes could achieve pCR. Our experiments show that 
the proposed multi-modal fusion model outperforms the predictive 
model with only MRI data.

In order to train and evaluate the proposed two-step lesion 
segmentation method and the multi-model fusion model, we collected 
361 breast cancer samples from two hospitals: 246 samples from 
Guangdong Provincial People’s Hospital using the Philips Achieva 1.5 
T MRI system, and 115 samples from Henan Renmin Hospital using 
the Discovery MR750 3.0 T MRI system. Each sample comes with 
DCE-MRI imaging and molecular typing data, and each DCE-MRI 
image is labeled and verified by radiologists with more than 5 years of 
breast cancer experience.

In this paper, we make the following three contributions: First, 
we propose a two-step lesion segmentation method to extract breast 
cancer lesion regions from DCE-MRI images. In the model training, 
considering the different sources of DCE-MRI images, we apply a 
simple histogram matching method to improve the model 

FIGURE 1

The proposed two-step breast cancer lesion segmentation method. (A) is a DCE-MRI image sample for breast cancer diagnosis, which contains 
irrelevant regions, such as the heart; (B) shows the segmented mammary gland region in red; (C) shows the breast cancer lesion region in red.
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transferability. Second, we propose a multi-modal (i.e., segmented 
DCE-MRI image and molecular typing data) fusion model to predict 
the probability of axillary lymph nodes achieving pCR after patients 
receive neoadjuvant therapy. Finally, we evaluate our model through 
extensive ablation studies and experiments on a collected breast 
cancer dataset, and we  show the promising performance of the 
proposed method.

The studies involving human participants were reviewed and 
approved by the Ethics Board of Guangdong Provincial People’s 
Hospital and the Ethics Board of Henan Renmin Hospital. Written 
informed consent to participate in this study was provided by 
the participants.

2 Related works

2.1 Convolutional neural network

Convolutional neural networks (CNN) have achieved great 
success in medical imaging analysis. CNN was first introduced to 
process medical images by Lo et  al. (15), and with the rapid 
development of CNN (16, 17), it has been considered one of the most 
effective methods to process medical images. ResNet (18), as one of 
the most classic CNNs, is widely adopted in all kinds of neural 
networks; with 152 layers of networks, it outperformed other models 
in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 
2015 by a large margin. Compared with AlexNet (16) and VGGNet 
(19), ResNet achieves smaller training errors and better testing 
accuracy, so in our proposed models, we  chose ResNet as the 
backbone network.

2.2 Medical image segmentation

With the rapid development and popularization of medical 
imaging devices and technologies, including MRI, CT, PET, etc., 
the amount of medical images produced by these devices is 
increasing; it is reported that medical images account for one-fifth 
of all images generated worldwide. Thus, it is urgent to process 
medical images effectively, and medical image segmentation is the 
first important step in image analysis. Among all medical imaging 
technologies, MRI is the most widely adopted one. With MRI, 
professionals can vary the image contrast to show different image 
intensities to reflect the difference between soft tissue, 
parenchyma, and fluid (20, 21).

With the assistance of CNN, various medical image segmentation 
methods have been developed. In 2015, FCN (9) was proposed to 
implement pixel-level classification to solve the semantic segmentation 
problem; it accepts images of arbitrary sizes. FCN was one of the first 
deep learning techniques that were applied to medical image 
processing, but the segmentation performance is not satisfactory. 
Based on FCN, Olaf et  al. introduced U-Net (10) for cell image 
segmentation; its surprising performance soon made it a standard 
backbone network. Later, 3D U-Net (22), V-Net (23), Res-UNet (24), 
and other variants of U-Net (25–30) were proposed. Aside from FCN 
and U-Net, Recurrent Neural Networks (RNNs) are also utilized for 
medical image segmentation (31, 32).

2.3 Pathologic complete response 
prediction

Over the last decade, many methods have been developed in 
academia to predict pCR, including radiomics, machine learning, 
and deep learning. In radiomics, pre-designed features are extracted 
to build a predictive model, but these pre-designed features are 
complex (33). Traditional machine learning methods such as SVM 
and AdaBoost also need well-designed features for prediction. In 
(34), 13,950 imaging features are extracted from CT and MRI data 
for machine learning. Compared with traditional radiomics and 
machine learning methods, the predictive model based on deep 
learning provides an end-to-end training and inferring method that 
can be directly applied to medical images (35). In our work, we use 
MRI images of breast cancer lesion regions, along with four types 
of molecular typing data commonly used in breast cancer treatment, 
to construct a multi-modal fusion model to predict whether or not 
the patient can achieve pCR.

3 Methods

In this section, we introduce the proposed method of processing 
MRI images of breast cancer with neural networks in order to predict 
whether axillary lymph node metastasis in breast cancer could achieve 
pCR after patients receive neoadjuvant therapy. We have divided this 
section into two parts: the first part gives details on how we extract the 
breast cancer lesion region from a common DCE-MRI breast cancer 
image; the second part introduces the multi-modal fusion model for 
pCR prediction.

3.1 Breast cancer lesion segmentation

As introduced in Section 1, and referring to Figure 1A, a common 
DCE-MRI image for breast cancer diagnosis contains a large amount 
of information that is irrelevant, so we needed to extract only the 
concerned lesion region for later processing in order to achieve better 
performance. Another notable reason for breast cancer lesion 
segmentation is that there is similar imaging intensity in the heart 
region in DCE-MRI images, as shown in Figure 2, so it is preferable 
to remove the heart region in order to reduce the probability of false 
positives. In the following, we elaborated on the proposed two-step 
lesion segmentation method to extract breast cancer lesion regions 
based on nnUNet and introduced a simple histogram matching 
method to augment the training samples in order to improve the 
model transferability between different centers.

3.1.1 Backbone network for image segmentation
As the DCE-MRI data collected for training is three-dimensional, 

we chose nnUNet (12) as the backbone network for the breast cancer 
lesion segmentation task. We specified the nnUNet as follows:

3.1.1.1 Pre-processing
Re-sampling and normalization were implemented at this stage. 

As the spatial resolution of each MRI image varied, which means one 
pixel of the image may represent a different size of physical space, the 
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MRI image needs to be re-sampled according to the median of the 
spatial resolution of all data. Z-score normalization was done 
independently for each patient’s imaging data.

Data augmentation was also implemented. Augmentation 
techniques include random rotation, random scaling, random elastic 
transformation, gamma correction, and inversion.

3.1.1.2 Loss function
During training, we utilized the Cross-entropy loss and the Dice 

loss as follows:

 L L Ltotal dice ce= +  (1)

where the Cross-entropy loss Lce is defined as follows:
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Dice loss was first introduced in (23) to solve the imbalance 
between positive and negative samples. Dice loss is different from 
Cross-entropy loss: it helps minimize segmentation error and obtain 
more stable segmentation performance (36). The Dice loss equation 
is as follows:
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In Eqs. (2) and (3), u is the model’s predictive probability, v is 
the ground truth one-hot code, K is the number of classes, and I is 
the representation vector of the image. Empirically, Cross-entropy 
loss makes the model focus on the global representation, i.e., each 
pixel of the image, while Dice loss pays more attention to the 

positive region, so Ltotal takes advantage of both global and 
local information.

3.1.1.3 Inference
Image segmentation inference was then performed on patches of 

MRI images. An image was divided into patches with an overlap of 
size/2 pixels, where size is the size of the stride. Due to the lack of 
neighbor information, the segmentation accuracy of the edges of each 
patch will be relatively lower, so when fusing the segmentation result 
for pixels along the edges, we decreased the weight of edge pixels while 
increasing the weight of pixels close to the center.

3.1.1.4 Post-processing
After obtaining a segmentation result, we  found the largest 

connected contour and, in the meantime, neglected other smaller 
ones. This post-processing step can effectively reduce the occurrence 
of false positives.

3.1.2 Two-step lesion segmentation
In order to reduce the probability of false positives, we utilized a 

two-step lesion segmentation method to extract the breast cancer 
lesion region. As shown in Figure 1, given a DCE-MRI sample for 
breast cancer diagnosis, we  first segmented the mammary gland 
region, based on which we  then segmented the breast cancer 
lesion region.

3.1.2.1 Mammary gland segmentation
The pre-processing described in Section 3.1.1 was applied to the 

original DCE-MRI samples, and the backbone network, i.e., nnUNet, 
was utilized to implement the first step “mammary gland 
segmentation” task.

3.1.2.2 Breast cancer lesion segmentation
After getting the result from the first segmentation step, 

we  continued to segment the breast cancer lesion region. The 
mammary gland region was pre-processed only by Z-score 
normalization and is fed to the second segmentation step. We used the 
same backbone network to implement the “breast cancer lesion 
segmentation” task.

The details of the training are explained in Section 4, and the 
performance of our proposed two-step lesion segmentation method 
is also shown in the following section.

3.1.3 Domain adaptation
As our dataset was collected from two different centers, there will 

inevitably be a model transfer issue when training on samples from 
one center and testing on another. This is a common issue in medical 
image analysis because different medical imaging devices with 
different imaging protocols, methods, and different operators produce 
MRI images that vary in resolution, quality, etc.; therefore, many 
methods have been proposed to mitigate this issue (13, 37, 38). With 
respect to the specific differences between DCE-MRI samples, 
we  designed a domain adaptation method, i.e., simple histogram 
matching (13), to improve the transferability of the model. Another 
advantage of histogram matching is that it only requires the gray-level 
distribution of the DCE-MRI images; thus, it does not reveal any 
personal information about the patient.

FIGURE 2

Two red rectangles show similar imaging intensity in the breast and 
heart regions.
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3.1.3.1 Histogram matching
At this point, we applied a simple histogram matching method 

(13) to augment training samples in order to improve transferability. 
More specifically, we  introduced the gray-level distribution to 
augment training samples, each of which was augmented by matching 
the gray-level histogram computed with samples from other centers. 
The histogram matching is implemented as follows:
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j
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0
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(4)

where L is the maximum gray-level value of the target histogram, 
M and N are the width and height of the image, and nj is the gray-level 
value of pixel j.

As for the segmentation task, we first implemented the mammary 
gland segmentation without histogram matching. We then computed 
a gray-level histogram for each sample in the test dataset (in our 
experiment, samples from Henan Renmin Hospital are used as the test 
dataset) and then applied histogram matching to each sample in the 
training dataset (in our experiment, samples from Guangdong 
Provincial People’s Hospital are used as the training dataset) with a 
randomly selected gray-level histogram from the test dataset. After the 
training dataset was augmented, it was fed to nnUNet for breast 
cancer lesion segmentation training.

3.2 Pathologic complete response 
prediction

Among all treatments for breast cancer, NAC is emerging as a 
new and effective method. As introduced in Section 1, utilizing 
imaging examination as a non-invasive method, together with four 
types of molecular typing data commonly used in breast cancer 
treatment, we  proposed a multi-modal fusion model to predict 
whether axillary lymph nodes could achieve pCR after patients 
receive NAC.

3.2.1 Multi-modal fusion
Although one can use the MRI data of the breast cancer lesion to 

directly predict the probability of pCR after neoadjuvant therapy, it 
has been proven that immunohistochemical detection can also help 
in breast cancer prognosis (14). Thus, we propose to utilize common 
types of molecular typing data extracted by immunohistochemical 
detection of breast cancer. More specifically, we chose the following 
four common types of molecular typing data in breast cancer 
treatment: Human Epidermal Growth Factor Receptor 2 (HER2), 
Estrogen Receptor (ER), Progesterone Receptor (PR), and Ki-67.

HER2 protein is negative in normal breast tissue, and the 
amplification of HER2 is highly related to the growth, proliferation, 
transfer, and invasion of tumor cells; thus, it can be treated as one of 
the prognostic indicators of clinical treatment monitoring. ER and PR 
are nuclear hormone receptors; the expression of ER/PR indicates that 
tumor cells retain the characteristics of hormone-dependent growth 
and is significant in the prognosis judgment of breast cancer. Ki-67 is 
a monoclonal antibody; high expression of Ki-67 indicates a 
poor prognosis.

In our work, we used the above four types of molecular typing 
data, together with a DCE-MRI image of breast cancer lesions, to train 
the multi-modal (i.e., text and image) fusion model to predict pCR.

3.2.2 Network structure
We used conventional ResNet (18) as the backbone network to 

construct the prediction model as a common practice; more 
specifically, ResNet34 was selected, and we  justify this choice in 
Section 4. The network structure is shown in Figure 3:

As shown in Figure 3, non-imaging features and MRI data 
were processed by two separate network branches. The molecular 

FIGURE 3

The network structure of our multi-model fusion model for pCR 
prediction.
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TABLE 1 Performance of the breast cancer lesion region segmentation 
task with and without domain adaptation.

Task Domain 
Adaptation

Dice IoU

Breast cancer lesion 

region segmentation

No 0.78 0.65

Yes 0.83 0.72

typing data was processed by five Fully Connected (FC) layers, 
while the MRI image was processed by five convolutional 
network layers. It should be noted that the output of each FC 
layer in the non-imaging clinical data branch is fused with the 
output of each CNN layer in the MRI data branch by 
multiplication. This structure balances the weight of 
non-imaging data and MRI data to compute the model 
representation and makes the model utilize both molecular 
typing data and a DCE-MRI image of a breast cancer lesion to 
predict pCR. The proposed network is trained by the 
conventional Cross-entropy loss function.

4 Experiments and analysis

4.1 Experiment setting

4.1.1 Dataset
In our work, we used DCE-MRI data for breast cancer lesion 

segmentation and pCR prediction. DCE-MRI can provide a high-
quality image for soft tissues with better quality of blood flow around 
the lesion region, which facilitates higher accuracy and earlier 
detection in breast cancer diagnosis. Therefore, DCE-MRI is the most 
widely adopted imaging method in breast cancer diagnosis 
and treatment.

In order to train and test the proposed method, we collected 361 
breast cancer samples from two hospitals: 246 samples from 
Guangdong Provincial People’s Hospital and 115 samples from 
Henan Renmin Hospital. Each DCE-MRI image was labeled and 
verified by professionals. A labeled DCE-MRI sample is shown in 
Figure 4. We also collected the four types of molecular typing data 
commonly used in breast cancer treatment: HER2, ER, PR, and 
Ki-67, for each of the 361 samples.

4.1.2 Network training setup
For breast cancer lesion segmentation, the network was trained by 

Adam optimizer (39) with a learning rate of 3e-4 for 1,000 epochs. The 
learning rate was decayed by 5 if the decrease in the average training 
loss over 30 epochs was less than 5e-3. The model convergence criteria 
are: the decrease in the average training loss over 60 epochs must 
be less than 5e-3, or the learning rate must be less than 1e-6. For pCR 
prediction, after acquiring the segmentation result, the breast cancer 
lesion images were resampled to a size of 128*128*128. The initial 
learning rate was set to 1e-4, and the network was trained for 
200 epochs.

4.2 Ablation studies

4.2.1 Effect of histogram matching
As introduced in Section 3.1.3, we  used a simple histogram 

matching method to augment the training dataset in order to improve 
the transferability of the model. Here, we conducted an ablation study 
to show the effect of this domain adaptation method. As shown in 
Figure 5, for an MRI image (a) from the training dataset (i.e., samples 
from Guangdong Provincial People’s Hospital), we randomly picked 
a target image (b) from Henan Renmin Hospital and applied gray-
level histogram matching to the original training image so as to obtain 
an augmented sample (c).

We show the results of the proposed segmentation model with 
and without domain adaptation in Table 1. It is apparent that after 
applying the proposed domain adaptation method, i.e., histogram 
matching, the segmentation IoU increased by 7%. We also note that 
the training curve oscillates more than it does without histogram 
matching, as shown in Figure  6. This is because the gray-level 
distribution of the target dataset is introduced into the 
training samples.

4.2.2 ResNet depth
Normally, a deeper network implies stronger modeling ability; 

however, this is not always true in medical image processing models 
because of the higher risk of overfitting. We conducted an ablation 
study to show how the depth of the ResNet affects the model’s 
performance. We trained the pCR prediction model with conventional 
ResNet18, ResNet34, and ResNet50, respectively, and the result is 
shown in Table 2. We can see that the performance does not change 
much between models with different ResNet depths. Based on this, 
we chose ResNet43 in the experiments that follow.

4.2.3 Effect of the surrounding mammary gland
The performance of the prediction model is directly affected by the 

correlation between the input data and the prediction target. As for pCR 

FIGURE 4

An example of the 361 labeled DCE-MRI samples in our dataset.

https://doi.org/10.3389/fmed.2023.1188207
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Liu et al. 10.3389/fmed.2023.1188207

Frontiers in Medicine 07 frontiersin.org

prediction tasks, as pointed out in (40), the mammary gland provides 
certain information when determining preoperative lymph node 
metastasis in breast cancer. Also, as pointed out by professionals, the MRI 
data of the mammary gland may contain abnormal information that may 
be related to patient prognosis. Thus, we conducted an ablation to test 
the influence of the surrounding mammary gland in predicting 
pCR. After acquiring the segmentation result of the breast cancer lesion, 

we  expanded the periphery by using an expansion algorithm with 
kernels of three sizes, i.e., 5 pixels, 10 pixels, and 15 pixels. An example is 
shown in Figure 7. We used a circular expansion kernel in order to 
maintain the original shape of the segmented lesion. Then the expanded 
DCE-MRI data of the lesion region was used to train the proposed pCR 
prediction model, and the result is shown in Table 3. It is quite obvious 
that the surrounding gland information does not help at all in pCR 
prediction, so we used the segmented lesion region directly for pCR 
prediction in the following experiments.

4.2.4 Effects of multi-modal fusion
We also conducted an ablation study to show the effect of multi-

modal fusion. We present the performance of pCR prediction with 
only DCE-MRI data of the segmented lesion and with both DCE-MRI 
data and four common types of molecular typing data (i.e., 

FIGURE 5

Example of gray-level histogram matching. (A) is a sample from Guangdong Provincial People’s Hospital; (B) is a randomly picked sample from Henan 
Renmin Hospital; and (C) is the result of applying histogram matching to (A).

FIGURE 6

Training curve of mammary gland segmentation.

TABLE 2 Result of pCR prediction with ResNet of different depths.

Task ResNet depth Accuracy AUC

pCR prediction ResNet18 0.70 0.68

ResNet34 0.72 0.69

ResNet50 0.71 0.69
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multi-modal fusion) in Table 4. It is noted that the multi-modal fusion 
model provides a 13% increase in accuracy, which proves that the 
proposed model is effective.

4.3 Experiment results

In this section, we  present the results of the two-step lesion 
segmentation and pCR prediction. It should be  noted that the 
experiments were conducted according to the method introduced in 
Section 3, and as explained in Section 4.2, the experiments were 
performed with domain adaptation, with ResNet34, without the 
surrounding mammary gland data of the lesion, and with multi-
modal fusion.

4.3.1 Two-step lesion segmentation

4.3.1.1 Mammary gland segmentation.
The training curve is shown in Figure  6 and examples of 

segmented mammary glands are shown in Figure 8.
The performance of the proposed method for mammary gland 

segmentation is shown in Table 5. We achieved 93% IoU in the first 
segmentation task.

4.3.1.2 Breast cancer lesion segmentation.
Results from the first segmentation step, for example, 

Figure 8B, were used as input for the second segmentation step. 

The training curve is shown in Figure 9, and the performance of 
the proposed method for breast cancer lesion segmentation is 
shown in Table 5.

4.3.2 Pathologic complete response prediction
We used a multi-modal fusion model to predict whether axillary 

lymph nodes could achieve pCR after patients receive neoadjuvant 
therapy. DCE-MRI data of the segmented breast cancer lesion region 
and four types of molecular typing data commonly used in breast 
cancer treatment (i.e., HER2, ER, PR, and Ki-67) were utilized as 
input to the proposed multi-modal fusion model. The performance 
of pCR prediction by the proposed model is shown in Table 4. The 
multi-modal fusion model achieved an accuracy of 85%, which is 
significantly high for pCR prediction of breast cancer with only 
non-invasive methods.

In addition, we performed McNemar’s test of the two pCR 
prediction methods, one with DCE-MRI data only and the other 
with multi-modal fusion. We  also performed a Chi-square 
goodness-of-fit test between each of the two methods and the 
ground truth. We randomly selected 200 samples to test each of 
the two methods, and the statistics of the pCR prediction results 
are shown in Tables 6, 7, respectively. The McNemar’s test showed 
that there exists a statistical difference between the two pCR 
prediction methods, while the Chi-square goodness-of-fit test 
revealed that the pCR prediction result by the multi-modal fusion 
method is more consistent with the ground truth distribution.

5 Conclusion

In this paper, we  presented a two-step lesion segmentation 
method to extract breast cancer lesion regions from DCE-MRI 
images, and in this process, we applied a simple histogram matching 
method to improve the transferability of the model. Then, 
we proposed a multi-modal (i.e., segmented DCE-MRI image and 
molecular typing data) fusion model to predict the probability of 

FIGURE 7

Example of expanding a segmented lesion region by 5, 10 and 15 pixels, respectively, from left to right.

TABLE 3 Result of pCR prediction with different expanding kernel sizes.

Task Kernel size (pixel) Accuracy AUC

pCR prediction - 0.72 0.69

5 0.42 0.60

10 0.57 0.77

15 0.42 0.76

TABLE 4 Result of pCR prediction with DCE-MRI data only and with 
multi-modal fusion.

Task Model Accuracy AUC

pCR prediction ResNet34 0.72 0.69

Multi-modal fusion 0.85 0.81

TABLE 5 Performance of the two-step lesion segmentation task.

Task Dice IoU HD95

Mammary gland segmentation 0.96 ± 0.01 0.93 ± 0.02 3.73 ± 2.02

Breast cancer lesion segmentation 0.83 0.72 -
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axillary lymph nodes achieving pCR after patients receive 
NAC. We collected 361 breast cancer samples from two hospitals to 
train and test the proposed segmentation method and the multi-
modal fusion model. We demonstrated that our method achieves 93 
and 72% IoU in mammary gland segmentation and breast cancer 
lesion segmentation tasks, respectively. We  also showed that our 
multi-modal fusion model is effective and reaches 85% accuracy in 
pCR prediction using only data collected in a non-invasive manner. 
Although the IoU of breast cancer lesion segmentation is not very 
high (72%), it was used in the multi-modal fusion model and reached 
85% accuracy in pCR prediction. This suggests that the presented 

method can be used for the prediction of treatment responses in 
breast cancer.

5.1 Limitations

The 361 breast cancer samples we collected for this study only 
include patients with solid tumors; therefore, this study focuses 
on lesion region segmentation of solid tumors and cannot 
be directly applied to other types of lesions, e.g., non-mass lesions 
or different breast parenchyma compositions. If the proposed 

FIGURE 8

Examples of segmented mammary gland. (A) shows the mammary gland region in red, (B) shows a segmented mammary gland.

FIGURE 9

Training curve of breast cancer lesion segmentation.
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method is to be used in other cases, it needs to be re-trained with 
enough specific data samples. Additionally, the proposed pCR 
prediction method requires a two-step process where we need to 
segment the breast cancer lesion from the DCE-MRI image, only 
then can we perform the final pCR prediction with the multi-
model fusion model.
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