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Objectives: This study aimed to explore the relationship between computed

tomography (CT)-based radiomic phenotypes and genomic profiles, including

expression of programmed cell death-ligand 1 (PD-L1) and the 10 major

genes, such as epidermal growth factor receptor (EGFR), tumor protein 53

(TP53), and Kirsten rat sarcoma viral oncogene (KRAS), in patients with lung

adenocarcinoma (LUAD).

Methods: In total, 288 consecutive patients with pathologically confirmed

LUAD were enrolled in this retrospective study. Radiomic features were

extracted from preoperative CT images, and targeted genomic data were

profiled through next-generation sequencing. PD-L1 expression was assessed

by immunohistochemistry staining (chi-square test or Fisher’s exact test for

categorical data and the Kruskal–Wallis test for continuous data). A total of

1,013 radiomic features were obtained from each patient’s CT images. Consensus

clustering was used to cluster patients on the basis of radiomic features.

Results: The 288 patients were classified according to consensus clustering

into four radiomic phenotypes: Cluster 1 (n = 11) involving mainly large solid

masses with a maximum diameter of 5.1 ± 2.0 cm; Clusters 2 and 3 involving

mainly part-solid and solid masses with maximum diameters of 2.1 ± 1.4 cm

and 2.1 ± 0.9 cm, respectively; and Cluster 4 involving mostly small ground-glass

opacity lesionswith amaximumdiameter of 1.0± 0.9 cm. Di�erences inmaximum

diameter, PD-L1 expression, and TP53, EGFR, BRAF, ROS1, and ERBB2 mutations

among the four clusters were statistically significant. Regarding targeted therapy

and immunotherapy, EGFR mutations were highest in Cluster 2 (73.1%); PD-L1

expression was highest in Cluster 1 (45.5%).

Conclusion: Our findings provide evidence that CT-based radiomic phenotypes

could non-invasively identify LUADs with di�erent molecular characteristics,

showing the potential to provide personalized treatment decision-making support

for LUAD patients.

KEYWORDS
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1. Introduction

Lung cancer is the most commonly malignant cancer

worldwide and the main cause of cancer-related death (1,

2). Non-small cell lung cancer (NSCLC) is the main type

of lung cancer, accounting for ∼80–90% of all lung cancers,

and lung adenocarcinoma (LUAD) has been identified as the

primary histologic subtype (3). When LUAD progresses to an

inoperable tumor in advanced stages, systemic chemotherapy is

the only option. Unfortunately, response rates for platinum-based

chemotherapy ranged only between 20% and 40% (4). Targeted

therapy for some molecular abnormalities and immunotherapy

eliciting T-cell immunoreactivity dramatically improve the survival

of some LUAD patients and alter management regimens (5,

6). However, only a small proportion of patients with special

molecular characteristics or tumor-immune microenvironments

(TIMEs) respond to these therapies (7, 8). Therefore, knowledge

of these metrics is needed for selecting patients who would

benefit from targeted therapy or immunotherapy. Nevertheless,

all of these metrics require an invasive approach to obtain

tissue specimens through expensive, time-consuming, and labor-

intensive laboratory and clinical testing, and because tumor

molecular profiles or the TIME can evolve during treatment, this

process may be repeated. In some clinical scenarios, obtaining

tissue specimens is difficult. On the other hand, there are sampling

errors for tissue-based biomarkers due to the heterogeneity of

LUAD, especially the specimens obtained by biopsy (9). Therefore,

it is necessary to find non-invasive surrogate biomarkers.

Radiomics, which extracts a large number of quantitative

features from medical imaging with high throughput to translate

digital images into a wealth of mineable data, is a promising

discipline that bridges imaging and precision medicine (10,

11). Previous studies have shown that computed tomography

FIGURE 1

Flowchart of the patient selection process.

(CT)-based radiomics can decode the molecular or immune

characteristics of LUADs (12–14). To the best of our knowledge,

only one study has probed the relationship between radiomics

and genomic profiles of LUADs (15). The purpose of this study

was to develop CT-based radiomic phenotypes using consensus

clustering to predict the molecular characteristics and TIME

of LUADs to facilitate patient selection for targeted therapies

and immunotherapies.

2. Materials and methods

2.1. Patient population

This study was approved by the Institutional Review Board,

which waived the informed consent requirement due to its

retrospective nature. From January 2018 to December 2021, a

total of 378 consecutive patients with surgically pathologically

confirmed LUAD were enrolled. The inclusion criteria were as

follows: (1) successful retrieval of CT images from the picture

archiving and communication system (PACS); (2) CT examinations

performed within 3 months before surgery; and (3) diagnosis of

LUADwith complete surgical resection (R0) and preoperative next-

generation sequencing (NGS) data. The exclusion criteria included

the following: (1) inadequate quality of image segmentation (n

= 5); (2) CT scans without thin slices (n = 2); (3) received

any anti-cancer treatment (n = 28); and (4) tissue samples were

unavailable for immunohistochemistry (IHC) (n= 55). Finally, 288

patients (123 males, 165 females; median age, 58 years; interquartile

range [IQR], 48–67 years) were eligible for this study (Figure 1).

Demographic and clinical data included age, sex, family history,

smoking status, carcinoembryonic antigen (CEA), carbohydrate

antigen 125 (CA125), carbohydrate antigen 125 (CA199), clinical

stage, and tumor mutational burden (TMB).
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FIGURE 2

Flowchart showing the radiomic image analysis process.

FIGURE 3

Based on the area change under the conditional density function curve, we observed that clustering separation was optimal at a k-value of 4. This

value corresponded to a sharp decrease in the area change under the receiver operating characteristic curve, which suggested that after this k-value,

further improvements in separability were negligible.

2.2. Immunohistochemistry

Formalin-fixed paraffin-embedded (FFPE) samples from

LUADs were sliced at a thickness of 3–4µm, and IHC was used to

detect the expression of programmed cell death ligand 1 (PD-L1)

in the FFPE samples. The PD-L1 test kit used 22C3 pharmDx

(Dako Company). When using this antibody, only staining of the

tumor cell membrane was considered, whereas positive staining

of the cytoplasm was ignored. Some or all of the tumor cells

expressing any linear or granular staining on the cell membrane
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TABLE 1 Patient characteristics.

Variable All patients
(N = 288)

Cluster 1
(N = 11)

Cluster 2
(N = 130)

Cluster 3
(N = 87)

Cluster 4
(N = 60)

p-value2

Age (years) <0.001

Median (IQR) 58 (48, 67) 67 (63, 69) 61 (50, 70) 59 (51, 67) 50 (40, 56)

Gender N (%) 0.002

Male 123 (42.7) 10 (90.9) 55 (42.3) 40 (46) 18 (30)

Female 165 (57.3) 1 (9.1) 75 (57.7) 47 (54) 42 (70)

Family history 0.6

Presence 41 (14.2) 0 (0) 21 (16.2) 13 (14.9) 7 (11.7)

Absence 247 (85.8) 11 (100) 109 (83.8) 74 (85.1) 53 (88.3)

Smoking status <0.001

Never 50 (17.4) 2 (18.2) 28 (21.5) 9 (10.3) 11 (18.3)

Current 185 (64.2) 7 (63.6) 80 (61.5) 63 (72.4) 35 (58.4)

Former 53 (18.4) 2 (18.2) 22 (17) 15 (17.3) 14 (23.3)

CEA (µg/L) <0.001

≥5 42 (14.6) 5 (45.5) 20 (15.4) 17 (19.6) 0 (0)

<5 246 (85.4) 6 (54.5) 110 (84.6) 70 (80.4) 60 (100)

CA125 (U/ml) 0.3

≥35 20 (6.9) 0 (0) 11 (8.5) 3 (3.4) 6 (10)

<35 268 (93.1) 11 (100) 119 (91.5) 84 (96.6) 54 (90)

CA19-9 (U/ml) 0.2

≥37 22 (7.6) 2 (18.2) 10 (7.7) 8 (9.2) 2 (3.3)

<37 266 (92.4) 9 (81.8) 120 (92.3) 79 (90.8) 58 (96.7)

Clinical stage <0.001

I–II 251 (87.2) 4 (36.4) 110 (84.6) 79 (90.8) 58 (96.7)

III–IV 37 (12.8) 7 (63.6) 20 (15.4) 8 (9.2) 2 (3.3)

TMB (mut/Mb) 3.0± 3.7 9.1± 4.8 2.9± 3.2 3.3± 4.4 1.4± 1.6 0.002

IQR, interquartile range; CEA, carcinoembryonic antigen; CA125, carbohydrate antigen 125; CA19-9, carbohydrate antigen 19-9; TMB, tumor mutational burden.

were counted as positive. The tumor proportion score (TPS) is

defined as the percentage of tumor cells stained with the PD-L1

membrane at any intensity. PD-L1 expression was dichotomized

according to the TPS level. The widespread consensus is that TPS

<1% is negative for expression but that TPS ≥1% is positive for

expression, with the latter being appropriate for treatment with

PD-L1 antibodies (16).

2.3. Targeted NGS and data processing

NGS was performed as previously described (17, 18). Tumor

DNA and corresponding patient-matched blood DNA were

extracted. TMB was defined as the total number of non-

synonymous single-nucleotide or insertion/deletion mutations

divided by the length in Mb of the coding region sequenced

by each panel (0.98, 1.06, and 1.22Mb in the 341-, 410-, and

468-gene panels, respectively) (19). The fraction of the genome

altered (FGA) was defined as the fraction of log2 copy number

variation (gain or loss) >0.2 divided by the size of the genome

for which the copy number was profiled (20). A total of 520 genes

closely related to cancer mechanisms and targeted therapies were

detected, covering the full exonic regions of 310 genes and 210

hotspot mutation regions (exons, introns, or promoter regions) of

310 genes.

2.4. Non-contrast CT image acquisition

CT examinations were performed using a 128-detector CT

scanner (Philips Brilliance iCT, Philips Medical Systems, Best, the

Netherlands). The CT parameters were as follows: collimation

of 0.625mm × 128; tube voltage, 120 kV; and tube current,

automatically adjusted. All CT images were reconstructed with

a slice thickness of 1.0mm and a gap of 0.5mm using a

lung kernel.
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TABLE 2 CT morphological features of patients in the clusters.

Variable Overall
(N = 288)

Cluster 1
(N = 11)

Cluster 2
(N = 130)

Cluster 3
(N = 87)

Cluster 4
(N = 60)

p-value2

CT location 0.856

Left upper lobe 85 (29.5) 5 (45.5) 42 (32.3) 24 (27.6) 15 (25)

Left lower lobe 50 (17.3) 2 (18.2) 21 (16.2) 14 (16.1) 12 (20)

Right upper lobe 77 (26.7) 4 (36.3) 31 (23.8) 24 (27.6) 18 (30)

Right middle lobe 29 (10.1) 0 (0) 13 (10) 9 (10.3) 7 (11.7)

Right lower lobe 47 (16.4) 0 (0) 23 (17.7) 16 (18.4) 8 (13.3)

Maximum diameter (cm)∗ 2.3± 1.4 5.1± 2.0 2.1± 1.4 2.1± 0.9 1.0± 0.9 <0.001

Type of nodules <0.001

Ground glass 102 (35.4) 0 (0) 42 (32.4) 15 (17.2) 45 (75)

Part-solid 86 (29.9) 1 (9.1) 44 (33.8) 30 (34.5) 11 (18.3)

Solid 100 (34.7) 10 (90.9) 44 (33.8) 42 (48.3) 4 (6.7)

Tumor necrosis (–) 268 (92.7) 6 (55.5) 120 (92.3) 82 (94.2) 59 (98.3) <0.001

Tumor necrosis (+) 21 (7.3) 5 (45.5) 10 (7.7) 5 (5.8) 1 (1.7)

Vacuole sign (–) 225 (78.2) 11 (100) 105 (80.8) 54 (62) 55 (91.6) <0.001

Vacuole sign (+) 63 (21.8) 0 (0) 25 (19.2) 33 (38) 5 (8.4)

Cavity sign (–) 271 (94) 10 (90.9) 121 (93.1) 81 (93.1) 59 (98.3) 0.468

Cavity sign (+) 17 (6) 1 (9.1) 9 (6.9) 6 (6.9) 1 (1.7)

Thickened pleura (–) 176 (61.2) 4 (36.4) 77 (59.2) 44 (50.5) 51 (85) <0.001

Thickened pleura (+) 112 (38.8) 7 (63.6) 53 (40.8) 43 (49.5) 9 (15)

Pleural traction sign (–) 125 (43.5) 3 (27.3) 46 (35.4) 28 (32.1) 48 (80) <0.001

Pleural traction sign (+) 163 (56.5) 8 (72.7) 84 (64.6) 59 (67.9) 12 (20)

Pleural effusion (–) 279 (96.9) 9 (81.8) 124 (95.4) 86 (98.9) 60 (100) 0.514

Pleural effusion (+) 9 (3.1) 2 (18.2) 6 (4.6) 1 (1.1) 0 (0)

Lymph node enlargement (–) 259 (89.9) 3 (27.3) 116 (89.2) 81 (93.1) 59 (98.3) <0.001

Lymph node enlargement (+) 29 (10.1) 8 (72.7) 14 (10.8) 6 (6.9) 1 (1.7)

Vascular cluster sign (–) 109 (37.8) 5 (45.5) 49 (37.7) 24 (27.6) 31 (51.6) 0.028

Vascular Cluster Sign (+) 179 (62.2) 6 (54.5) 81 (62.3) 63 (72.4) 29 (48.4)

Lobulation (–) 86 (29.9) 0 (0) 41 (31.5) 5 (5.8) 40 (66.6) <0.001

Lobulation (+) 202 (70.1) 11 (100) 89 (68.5) 82 (94.2) 20 (33.4)

Spiculation (–) 123 (42.8) 4 (36.4) 52 (40) 22 (25.3) 45 (75) <0.001

Spiculation (+) 165 (57.2) 7 (63.6) 78 (60) 65 (74.7) 15 (25)

Calcification (–) 287 (99.7) 11 (100) 130 (100) 86 (98.9) 60 (100) 0.5

Calcification (+) 1 (0.3) 0 (0) 0 (0) 1 (1.1) 0 (0)

Air bronchograms (–) 227 (78.9) 8 (72.7) 98 (75.4) 64 (73.5) 57 (95) 0.002

Air bronchograms (+) 61 (21.1) 3 (27.3) 32 (24.6) 23 (26.5) 3 (5)
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FIGURE 4

Distribution of CT morphological features in the four clusters.

2.5. Assessment of non-contrast CT
morphological features

Two radiologists with 5 and 12 years of experience in thoracic

radiology reviewed the CT images and estimated the types of

nodules [solid, part-solid, and ground-glass nodules (GGOs)] in

consensus on our PACS. They were all blinded to the identity and

clinical data of each subject. A consensus was reached prior to the

assessment of CT morphological features. A total of 15 CT imaging

features were evaluated, including CT location, tumor size, type

of nodules, necrosis, vacuole sign, cavity sign, thickened pleura,

pleural traction sign, pleural effusion, lymph node enlargement,

vascular cluster sign, lobulation, spiculation, calcification, and

air bronchograms.

The CT location was divided into the left upper lobe, lower

lobe, right upper lobe, middle lobe, and lower lobe. Nodule types

were categorized as GGO (GGO = 100%), part-solid (0% < GGO

<100%), and solid (GGO = 0%) according to the proportion of

ground glass. GGO was defined as a hazy increase in the lung

window setting with the preservation of bronchial and vascular

markings (21). The tumor size was assessed by the maximum

diameter of the nodules. The vacuole sign was measured by a

tumor diameter <5mm with a hypointense radiolucent shadow,

and the cavity sign was defined as a thick-walled cavity with a

cavity wall larger than 3mm. The two features of pleural invasion

were pleural thickening and traction. Enlarged lymph nodes were

defined as lymph nodes in the mediastinum with a short axis

>10mm. Lobulation was defined as the shallow wavy contour of

a tumor’s surface, with the exception of the portion adjacent to

the pleura (22). Spiculation was defined as sharp linear projections

in the targeted tumor lesion. Calcification on CT images was

defined as the presence of high-density material in the tumor. Air

bronchogram signs on CT images were defined as small foci or

branches of air attenuation within the solid part of the tumor (23).

2.6. Radiomic feature extraction and
consensus clustering

Digital Imaging and Communications in Medicine (DICOM)

images were downloaded from PACS and transferred to a personal

computer (PC) installed with ITK-SNAP version 3.6.0-beta (http://

www.itksnap.org/). The two radiologists were blinded to all clinical

and gene information and used ITK-SNAP to manually delineate

LUAD lesions slice by slice, obtaining regions of interest (ROI) of

the whole tumor in lung window settings. Intraclass correlation

coefficients (ICCs) were used to exclude features with low reliability

(ICCs < 0.75), and averages of the included feature values of the

radiologists’ segmentation were used for further analysis. The open-

source software reconstructs the three-dimensional volumes of

interest (VOIs) of whole tumors automatically. Radiomic features

were extracted from the VOIs using the software Pyradiomics
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TABLE 3 Tumor pathologic characteristics and gene expression.

Variable All patients
(N = 288)

Cluster 1
(N = 11)

Cluster 2
(N = 130)

Cluster 3
(N = 87)

Cluster 4
(N = 60)

p-value2

Pathologic nodal status 0.002

Positive 27 (9.4) 4 (36.4) 12 (9.2) 9 (10.3) 2 (3.3)

Negative 261 (90.6) 7 (63.6) 118 (90.8) 78 (89.7) 58 (96.7)

Visceral pleural invasion 0.041

Positive 37 (12.8) 2 (18.2) 18 (13.8) 15 (17.2) 2 (3.3)

Negative 251 (87.2) 9 (81.8) 112 (86.2) 72 (82.8) 58 (96.7)

Lymphovascular invasion <0.001

Positive 33 (11.5) 4 (36.4) 16 (12.3) 13 (14.9) 0 (0)

Negative 255 (88.5) 7 (66.6) 114 (87.7) 74 (85.1) 60 (100)

Pathological nerve invasion 0.2

Positive 5 (1.7) 1 (9.1) 3 (2.3) 1 (1.1) 0 (0)

Negative 283 (98.3) 10 (90.9) 127 (97.7) 86 (98.9) 60 (100)

PD-L1 expression 0.003

TPS ≥ 1% 67 (23.2) 5(45.5) 33(25.4) 25(28.7) 4(6.67)

Actionable mutations

EGFR 184 (63.9) 3 (27.3) 95 (73.1) 59 (67.8) 27 (45) <0.001

TP53 66 (22.9) 7 (63.6) 29 (22.3) 26 (29.9) 4 (6.7) <0.001

ERBB2 27 (9.4) 0 (0) 7 (5.4) 2 (2.3) 18 (30) <0.001

KRAS 19 (6.6) 2 (18.2) 8 (6.1) 8 (9.2) 1 (1.7) 0.10

BRAF 11 (3.8) 0 (0) 5 (3.8) 0 (0) 6 (10) 0.017

RET 8 (2.8) 0 (0) 3 (2.3) 2 (2.3) 3 (5.0) 0.7

ALK 7 (2.4) 0 (0) 4 (3.1) 2 (2.3) 1 (1.7) 0.88

MET 7 (2.4) 2 (18.2) 2 (1.5) 2 (2.3) 1 (1.7) 0.052

FGFR2 2 (0.7) 0 (0) 1 (0.7) 1 (1.1) 0 (0) 0.857

ROS1 2 (0.7) 1 (9.1) 0 (0) 1 (1.1) 0 (0) 0.040

TPS, tumor proportion score; PD-L1, programmed cell death-ligand 1.

3.0 Python package, which has recently been shown to align

with the image biomarker Standardization Initiative. A total of

1,013 quantitative features were obtained from each patient’s CT

scan, consisting of 18 first-order statistical features, 14 shape

features, 24 gray-level co-occurrence matrix (GLCM) features,

16 gray-level run-length matrix (GLRLM) features, 16 gray-level

size zone matrix (GLSZM) features, 14 gray-level dependence

matrix (GLDM) features, and 5 neighborhood gray-tone difference

matrix (NGTDM) features. In addition, several image filters were

applied to the original image to obtain corresponding derived

images, including Wavelet, Square, Squareroot, and Laplacian of

Gaussian (LoG).

In this study, we utilized a consensus clustering

approach to discover intrinsic radiomic subtypes of LUAD

(Figure 2). Consensus clustering was performed using the

“ConsensusClusterPlus” R package, which accomplished

unsupervised clustering analysis to identify LUAD subgroups

from 1,013 radiomic features without human intervention.

During the clustering process, 80% of the samples were sampled

1,000 times by adopting the resampling iterations. The distance

correlation between samples was calculated using the Euclidean

distance, with the clustering algorithm using k-means for reliable

subgroup classification (Figure 3). The optimal k-value, which

corresponded to the most well-separated and stable cluster, was

determined by a sharp decrease in the area change under the

receiver operating characteristic curve. Further improvements in

separability beyond this k-value were deemed insignificant. LUADs

were effectively grouped into appropriate subgroups based on

this k-value.

2.7. Statistical analyses

Statistical analysis was performed in R version 4.2.2 (R

Foundation for Statistical Computing) and SPSS version 23.0. A

P-value of <0.05 indicated statistical significance. We varied the
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FIGURE 5

Several gene expression profiles in the four clusters.

number of clusters from 2 to 8 and selected the optimal number of

clusters in the training cohort for unsupervised clustering. Clinical

metrics, imaging characteristics, and genomic profiles of the final

clusters were compared using the chi-square test or Fisher’s exact

test for categorical data and the Kruskal–Wallis test for continuous

data. Continuous data are expressed as the mean ± SD or median

(lower and upper quartiles), and categorical data are expressed as

frequencies and percentages.

3. Results

3.1. Patient characteristics

Patient characteristics are listed in Table 1. Of the 288

eligible patients, the median age was 58 years (IQR, 48–67

years), 123 (42.7%) were men, and 165 (57.3%) were women.

Most patients did not have a positive family history of lung

cancer. The majority of patients were current (n = 185 [64.2%])

smokers. The mean TMB value was 3.0 ± 3.7 mutations per

megabase (range: 0–31.9). In addition, most of the patients

(87.2%) were in the early clinical stage (I–II). Differences in

age, sex, and smoking status between the four clusters were

statistically significant, and the CEA, clinical stage, and TMB

among the four clusters were also statistically significant (P

< 0.05).

3.2. CT findings of the LUADs

The CT findings of LUADs are listed in Table 2. There were

no statistically significant differences in CT location, cavity sign,

pleural effusion, or calcification characteristics among the four

clusters (P > 0.05) (Figure 4).

3.3. Pathologic characteristics and gene
profiles

Pathologic characteristics and gene profiles are listed in Table 3.

There were significant differences in pathologic nodal status,

pleural invasion, and vascular invasion (P < 0.05), but no

significant difference was found in nerve invasion (P = 0.2).

PD-L1 expression outcome was available for 288 patients, of whom

67 (23.2%) were positive for expression (TPS ≥ 1%). Epidermal

growth factor receptor (EGFR) (n = 184 [63.9%]) and tumor

protein 53 (TP53) (n = 66 [22.9%]) mutations were the most

frequent actionable genomic alterations in our cohort (Figure 5).

3.4. Consensus clustering associations

Consensus clustering analysis based on radiomic features

showed the most significant relative change under the conditional
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FIGURE 6

Clinical pathologic and genomic data for all LUADs. Cluster characteristics were compared using the chi-square test or Fisher’s exact test for

categorical data and the Kruskal–Wallis test for continuous data. LVI = lymphovascular invasion, VPI = visceral pleural invasion.

density function curve at a k-value of 4. Clinicopathology, the

genetic profiles, and CT findings according to the cluster are listed

in Tables 1–3. Cluster 1 (n = 11) mainly comprised large solid

masses with a maximum diameter of 5.1 ± 2.0 cm; these cases

are likely to involve tumor necrosis, thickened pleura, pleural

traction, and lymph node enlargement. Almost all nodules in

Cluster 1 were accompanied by lobulation. Clusters 2 and 3

were dominated by part-solid and solid masses with maximum

diam eters of 2.1 ± 1.4 cm and 2.1 ± 0.9 cm, respectively; the

tumors were often associated with vacuole signs, vascular cluster

signs, and spiculation on CT images. Cluster 4 was mostly small

ground-glass opacity lesions, with a maximum diameter of 1.0 ±

0.9 cm (P < 0.001). The majority of patients in Cluster 1 were

in clinical stages III–IV; in Clusters 2–4, patients were mostly

in early clinical stages. Differences in TMB, PD-L1 expression,

and mutations in EGFR, TP53, ERBB2, BRAF, and ROS1 among

the four clusters were statistically significant. Regarding targeted

therapies and immunotherapies, mutations in EGFR were highest

in Cluster 2 (73.1%, 95/130), followed by Cluster 3 (67.8%, 59/87).

PD-L1-positive expression was highest in Cluster 1 (45.5%, 5/11),

followed by Cluster 3 (28.7%, 25/87) (Figure 6). The highest TMB

was in Cluster 1 (9.1± 4.8 mut/Mb, range: 1.99 to 14.96) (Figure 7).

Representative cases are shown in Figure 8.

4. Discussion

In the last decade, major breakthroughs regarding the

treatment of LUADs have shifted from the empirical application

of cytotoxic therapy to personalized treatments based on genetic

alterations and TIME. For these treatment strategies, knowledge

of targeted genomics and TIME status is needed for patient

selection. As both genomic sequencing and IHC require tissue

specimens to be obtained through invasive processes, there is a

need to find non-invasive surrogate biomarkers to facilitate the

clinical translation of personalized medicine for patients with

LUAD. In this study, we established imaging phenotypes of

LUADs through CT-based radiomic consensus clustering with a

comparison of clinicopathological metrics and targeted genomic

data to guide patient selection. LUADs were clustered into four

clusters according to CT-based radiomic features.When all patients

were analyzed, Cluster 1 mainly consisted of large solid masses
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FIGURE 7

Violin plot of TMB among four clusters.

FIGURE 8

CT images of lesions for radiomic cluster analysis. (A) Cluster 1. Solid nodule in the right upper lobe (arrow) measuring maximum diameter 4.3 cm,

predominantly solid histologic subtype, with TP53 positive, and the TMB was 13.96 mut/Mb. (B) Cluster 2. Part-solid nodule in the left lower lobe

(arrow) measuring maximum diameter 3.0 cm, glandular vesicle-dominant histologic subtype, EGFR positive, and the TMB was 1.99 mut/Mb. (C)

Cluster 3. Part-solid nodule in the right upper lobe (arrow) measuring maximum diameter 2.2 cm; solid and micropapillary histologic subtype;

ALK-positive, and the TMB was 4.99 mut/Mb. (D) Cluster 4. Ground-glass nodule in the left upper lobe (arrow) measuring maximum diameter 1.3 cm;

ERBB2 and PD-L1 positive; and the TMB was 5.98 mut/Mb.

associated with advanced clinical staging (III–IV, 63.6%) with a

high frequency of PD-L1 expression and TP53 mutation. CT

features were more likely to be accompanied by tumor necrosis,

thickened pleura, pleural traction, and lymph node enlargement.

Demography shows that patients in Cluster 1 were mainly men

who smoke. Clusters 2 and 3 were dominated by part-solid and

solid masses associated with the EGFR mutation. These cases

were likely to be associated with the vacuole sign, vascular cluster

sign, and spiculation on CT images. Cluster 4 mostly consisted of

GGOs. Therefore, patients in Cluster 1 might be more responsive

to Immune checkpoint inhibitor (ICI) treatment, whereas tyrosine

kinase inhibitors may be recommended for patients in Clusters 2

and 3. Although TMB did not correlate with PD-L1 expression

in NSCLC, its elevation showed the likelihood of benefit from

immunotherapy (19). Therefore, TMB has the potential to serve

as a biomarker to predict response to ICI therapy in NSCLC

(19, 24–26). A recent clinical trial identified that a TMB of at least

10 mut/Mb was an effective cutoff for predicting the efficacy of

immunotherapy, irrespective of the tumor PD-L1 expression level

(27). In this study, we observed that the difference in TMB among

CT-based radiomic phenotypes was statistically significant. The

highest TMB was in Cluster 1 (9.1 ± 4.8 mut/Mb, range: 1.99 to

14.96). This further supports the conclusion that Cluster 1 patients

might be more suitable for immunotherapy.

Taking advantage of computer science and artificial

intelligence, radiomics has made great progress in oncology
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to improve diagnosis, stage, prognosis, and treatment response

prediction (10, 28, 29). Previous studies have shown that CT-

based radiomics can predict EGFR mutation, microenvironment,

and treatment response of targeted and immunotherapies in

LUAD (13, 30–32). These studies highlight special molecular

characteristics to develop an algorithm for a single surrogate

biomarker. In clinical scenarios, comprehensive molecular

characteristics are required for personalized treatment decision-

making. Integration of multiple molecular characteristics might

improve the predictive capacity of treatment response. Recently,

Perez-Johnston et al. implemented unsupervised learning to build

an image phenotype of LUADs based on CT radiomics and showed

an association between imaging phenotype and genomics (15).

Similarly, we identified four phenotypes using CT-based radiomic

features of LUADs that correlated with genomic profiles and

PD-L1 expression. In the study of Perez-Johnston et al., EGFR

and STK11 mutations were statistically significant among clusters.

EGFR mutation was highest in a cluster consisting of mainly

sub-solid masses with solid components <10%. We also identified

that the difference in EGFR mutation prevalence was statistically

significant among our clusters. Cluster 2 had the highest number

of EGFR mutations (73.1%), followed by Cluster 3 (67.8%). We

also noted that the TP53 mutation was highest in Cluster 1,

which was mainly comprised of solid masses. These findings

were consistent with a previous study that reported that the TP53

mutation increased with the growth of the solid component (33).

Assoun et al. found that TP53 mutations reflected TMB and were

associated with immunotherapy benefits in advanced NSCLC (34).

Furthermore, we found that PD-L1 expression was significantly

different among clusters, with the highest expression in Cluster

1. Zu et al. analyzed TIME-related indicators by conducting a

series of TIME studies. They identified emerging key biomarkers

of TIME, providing new biomarkers to guide precision therapy

(35–38). Therefore, the results of this study may provide guidance

for targeted therapies and immunotherapies that integrate genomic

profiles and the TIME of LUADs. To the best of our knowledge,

this is the first comprehensive study to date to explore the

association of radiomic phenotypes with the genomic profile and

immune microenvironment of LUADs. Theoretically, targeted

therapy might induce rapid tumor death, leading to the release of

neoantigens, which in turn affect immune pathways and improve

the efficacy of immunotherapy (39, 40). Thus, our study provides

the possibility of immuno-targeted combination therapy, which

has strong scientific merit. In addition, our study can provide

generalizable guidance across various treatment settings.

Simultaneously, we also observed that mutations in BRAF,

ROS1, MET, and ERBB2 were statistically significant. Although

there are currently no targeted therapies for tumors with

these mutations, multiple clinical trials are underway to

evaluate the efficacy of targeting these genes in cancers,

and this finding might provide guidance for future targeted

medicine research.

There were several limitations in this study. First, this was

a retrospective study performed at a single institution, and the

small sample size might limit the generalizability of the findings.

Cluster 1 had a small sample size of only 11 cases. Therefore,

a multicenter study including more patients and prospective

validation is warranted to improve the model’s robustness. Second,

the reproducibility of our findings and their clinical implications

may be challenging in a more diverse clinical context, as our study

only included clinical lung cancer patients who underwent tumor

resection. The clinical utility of radiomics needs to be further

established through rigorous clinical validation studies. Third,

only a few patients received targeted therapy or immunotherapy.

The association between the imaging phenotypes and treatment

response was not probed. Finally, ROI drawing was manual rather

than semi-automatic or automatic, which might be operator-

dependent.

In conclusion, CT-based radiomic phenotypes were able to

identify LUADs with different molecular characteristics non-

invasively, showing the potential to provide treatment decision-

making support for clinicians about patients with LUAD.

Radiogenomics is still at an early stage of research, and future efforts

are needed to optimize its methods and standardize its processes.

In future clinical environments, integrating radiogenomics into

existing workflows may add value to conventional imaging to

facilitate personalized medicine in patients with LUAD.
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