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Background: We aimed to determine whether the plasma cystatin C is a causal 
risk factor for cardiovascular events, stroke, myocardial infarction (MI), and 
cardiovascular disease (CVD) mortality by conducting Mendelian randomization 
(MR) designs.

Methods: Our study included 277,057 individuals free of CVDs or cancer at baseline 
in the UK Biobank. The genetic scores of plasma cystatin C comprising 67 single-
nucleotide polymorphisms were calculated on the basis of data from a large 
genome-wide association study. By stratifying the genetic score, we conducted 
cox regression to assess the relationship between plasma cystatin C and CVDs. In 
this study, linear MR analysis was used to estimate the causal association between 
plasma cystatin C and CVDs.

Results: Observational analyses showed that plasma cystatin C concentrations 
were associated with the risk of CVDs [hazard ratios (HR) per standard deviation 
(SD) 1.09, 95% confidence interval (CI); 1.07–1.10] and CVD mortality (1.14, 1.11–
1.17). Among CVDs, plasma cystatin C were associated with stroke (1.10, 1.08–
1.11) and MI (1.08, 1.07–1.10). Linear MR analysis did not provide evidence of a 
causal association between plasma cystatin C and the risk of CVDs [odds ratio 
(OR) per SD 0.96, 95% CI;0.90–1.03], stroke (0.96, 0.93–1.01), MI (0.97, 0.91–1.03), 
and CVD mortality (0.98, 0.96–1.01), with consistent estimates from sensitivity 
analyses.

Conclusion: Observational findings indicated that higher plasma cystatin C is 
associated with a higher risk of CVDs; According to MR studies, there is no 
causal association between plasma cystatin C and the risk of CVDs and CVD 
mortality.
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1. Introduction

Cystatin C is a non-glycosylated, low-molecular-weight protein. It 
belongs to the cystatin superfamily of cysteine protease inhibitors and 
primarily controls the activity of extracellular proteases (1, 2). In clinical 
settings, cystatin C is often used as a surrogate for serum creatinine to 
assess renal function because blood cystatin C concentrations are not 
affected by age, sex, or smoking habits (3, 4).

Previous prospective studies have reported that serum cystatin C 
concentrations are associated with the risk of coronary heart disease 
(CHD), myocardial infarction (MI), heart failure, and secondary 
cardiovascular events (5–7). In addition, cystatin C is closely associated 
with cardiovascular disease (CVD) risk factors, such as hypertension, 
aging, and diabetes (8). A prospective cohort study showed that for every 
0.2 mg/L increase in the plasma cystatin C, the incidence of hypertension 
increased by 15% (9). In contrast, another study reported that plasma 
cystatin C concentrations were not associated with CVDs (10). In 
addition, a clinical study has found serum cystatin C is a reliable indicator 
of renal function in patients with systemic lupus erythematosus. However, 
it is not independently associated with cardiovascular risk factors or 
subclinical atherosclerosis (11).

At present, the causal relationship between Cystatin C 
concentration and CVDs was still unclear. The findings of traditional 
observational studies are prone to residual confounding effects and 
reverse causality. In addition, some factors in the multivariate analyses, 
such as thyroid function, remain uncorrected (12). Mendelian 
randomization (MR) studies are considered naturally occurring 
randomized clinical trials because parental alleles are randomly 
assigned to individuals (13). Therefore, the association between the 
genes and outcomes is not affected by confounding factors such as 
environmental and behavioral factors after birth. Hence, genetic 
variation has been used as an instrumental variable to estimate the 
causal association between plasma cystatin C concentrations 
and CVDs.

In this large-scale prospective study using UK Biobank genetic 
data, we first assessed the associations between plasma cystatin C 
concentrations and the risk of CVDs using Cox regression in 
observational analysis. Next, the two-stage least-squares method was 
used to examine genetic evidence for the associations between plasma 
cystatin C concentrations and the incidence of CVDs. Finally, using 
genetic variants associated with plasma cystatin C previously 
published in meta-analyses of genome-wide association studies, 
instrumental variable analysis was used to assess the causal association 
of plasma cystatin C with the risk of CVDs.

2. Materials and methods

2.1. Study cohort

The UK Biobank is a data repository from a prospective cohort 
study that was conducted at 22 assessment centers between 2006 and 
2010 (14, 15). It contains more than 500,000 aged 40–69 participants 
in the genetic, body and health data.1 In the UK Biobank study, health 

1 http://www.ukbiobank.ac.uk

information was collected through a touch screen questionnaire, 
interviews, and physical measurements. Blood samples were collected 
for genotyping and biomarker analysis. The study design and details 
of quality control have been published previously (16). The 
participants provided written informed consent, and ethical approval 
was obtained from the UK National Health Service’s National 
Research Ethics Service (ref 11/NW/0382).

In this study, participants with cancer and CVDs at baseline 
(n = 79,026) and those with missing values of plasma cystatin C 
concentration (n = 25,219) were excluded. For the genetic analysis, the 
genetic data from 277,057 unrelated individuals of European ancestry 
were retrieved from the UK Biobank and used in our analysis. 
Supplementary Figure S1 describes the inclusion and exclusion 
process for the study subjects.

2.2. Ascertainment of plasma cystatin C 
concentrations and outcomes

The UK Biobank has quantified the concentrations of various 
biochemical markers using the biological samples collected from all 
participants at baseline. The samples were collected from 
approximately 480,000 participants who were included via  
recruitment interviews, and approximately 18,000 samples were 
collected in repeated assessments. Plasma cystatin C concentrations 
(mg/L) were measured and the result is available on the UK Biobank 
website.2

The primary outcomes of our study were cardiovascular events 
(stroke, MI) and CVD mortality. The secondary outcomes included 
MI and stroke. Information on cardiovascular events and the time at 
which the events occurred is based on certified death records and 
cumulative medical records of hospital diagnoses. All CVD events 
were defined with 3-digit codes according to the International 
Classification of Diseases 10th Revision.3 EachCVD events was 
defined as follows: CVD mortality (I00–I99), stroke (I60–I64) and MI 
(I21–I23, I24.1, or I25.2).

2.3. Selection of SNPs and genetic risk 
score as instrumental variables

A previous study described the genotyping process and arrays 
used in the UK Biobank study (17). Sixty-seven single-nucleotide 
polymorphisms (SNPs) were selected, all of which were genome-wide 
significant variants (p < 5 × 10−8), discovered in a recent published 
genome-wide association analysis, for plasma cystatin C 
concentrations in the UK Biobank (18). Supplementary Table S1 
presents information about selected SNPs. Depending on the number 
of risk alleles contained, individual SNPs were coded as 0 (no risk 
allele), 1 (one risk allele), and 2 (two risk alleles). The genetic risk score 
(GRS) was determined by calculating the weighted average of 
the number of individual alleles that are positively associated with the 
cystatin C concentration and then multiplying the average by the 

2 https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/biomarker_issues.pdf

3 https://www.who.int/classifications/icd/en/
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number of available variants (19). The effect size coefficient of each 
SNP was selected from the published genome-wide association 
analysis. The effect size coefficient of each SNP indicates that each 
additional effect allele of this genetic locus corresponds to the cystatin 
C effect size at the element level.

2.4. Statistical analysis

Baseline characteristics were described as the number (percentage) 
of categorical variables, mean (standard deviation) for symmetrical 
continuous variables, and median (interquartile range) for 
asymmetrical continuous variables. We  used Cox proportional 
hazards models to estimate hazard ratios (HRs) for cardiovascular 
risk. The samples for plasma cystatin C concentration measurement 
were divided into five equal groups (<0.78 mg/L, 0.78–0.85 mg/L, 
0.85–0.92 mg/L, 0.92–1.00 mg/L, >1.00 mg/L), each separated by one 
standard deviation (SD). Analyses were conducted using the following 
three models: (1) adjusted for age, sex, Townsend Deprivation Index 
(continuous), physical activity, smoking status, drinking status, annual 
household income (<£18,000, £18,000–£52,000, £52,000–£100,000, 
>£100,000), and employment (yes or no); (2) additionally adjusted for 
body mass index (continuous), high-density lipoprotein (HDL) 
cholesterol (continuous), and total cholesterol; and (3) additionally 
adjusted for the presence of diabetes (yes or no), hypertension (yes or 
no), and chronic kidney disease (yes or no).

For genetic analysis, we used Cox regression models to assess the 
relationship between cystatin C concentrations and cardiovascular 
events, adjusted for age, sex, and top 10 genetic principal components 
(20). The participants were divided into three groups according to 
their GRS quartiles: upper quartile (Q3; the group with the highest 
GRS), lower quartile (Q1; the group with the lowest GRS), and 
interquartile (Q2–Q3; the group with an intermediate GRS). We also 
performed Cox regression to assess the HR of each cardiovascular 
event per unit increase in GRS. To effectively control for confounding 
factors, we  conducted 3 models and adjusted for traditional risk 
factors for CVDs as previously described (21, 22). Furthermore, the 
validity of genetic variations was assessed by examining the 
associations of potential confounders with the GRS, thus avoiding 
possible violations of the MR hypothesis (Supplementary Table S3).

For the linear MR analyses, the two-stage least-squares method 
was used to estimate the relationships between the genetically 
predicted cystatin C concentrations and cardiovascular risk. First, 
we performed linear regression to match the cystatin C concentration 
with the GRS, and then performed logistic regression models to assess 
the association between GRS and CVDs. Both steps were adjusted for 
age, sex, genotyping arrays, and the top 10 principal components.

In the sensitivity analysis, potentially invalid SNPs associated with 
confounding factors (e.g., BMI, cholesterol, creatinine concentrations) 
and/or indications of known pleiotropic effects based on selected 
genotype-to-phenotype catalogs (i.e., GWAS-Catalog and 
PhenoScanner) were excluded, and another set of instrumental 
variables (Supplementary Table S2) was generated. Inverse-variance 
weighting (IVW) (23), weighted median (24), and MR-Egger (25) 
were used to assess the association of cystatin C concentrations with 
CVDs to assess the robustness of our results. Then, the MR-Egger 
intercept and MR-pleiotropy residual sum and outlier (MR-PRESSO) 
global test were used to identify the potential horizontal pleiotropic 

effects of the SNPs (26). Cochran’s Q test was used to assess the 
heterogeneity between causal estimates from different genetic variants, 
which can help detect pleiotropy (27).

To analyze observational associations, MR analyses were 
performed using SAS version 9.4 (SAS Institute Inc., Cary, NC) and 
R4.1.1 (R Development Core Team, Vienna, Austria). Sensitivity 
analyses were performed using the R package, two-sample MR4 (28), 
and MR-PRESSO5 (26). All p values for the tests were bilateral, and p 
values <0.05 were considered as statistically significant.

2.5. Ethics approval

UK Biobank has received ethics approval from the National 
Health Service National Research Ethics Service (ref 11/NW/0382). 
A statement confirming that all methods were carried out in 
accordance with relevant guidelines and regulations.

3. Results

3.1. Baseline characteristics

The baseline characteristics of the UK Biobank individuals are 
presented in Supplementary Table S4. A total of 372,882 individuals 
[mean age (SD): 56.92 years (8.07); 45.05% of males] were included in 
the observational analysis and 277,057 individuals [mean age (SD): 
56.90 years (8.08); 44.59% of males] were included in the MR analysis. 
The mean plasma cystatin C concentration was 0.90 mg/L (SD 
0.16 mg/L).

Table 1 shows the baseline characteristics of the individual in the 
MR analysis according to the GRS quartiles. Participants with a higher 
GRS were more likely to have a higher body mass index, plasma 
cystatin C concentration, and creatinine concentration and lower 
HDL, LDL, and serum total cholesterol concentrations. They also had 
higher rates of hypertension and chronic kidney disease than those 
with a lower GRS.

3.2. Observational estimates of the 
association between plasma cystatin C and 
CVDs

During a mean follow-up duration of 9.94 years, 21,503 CVD 
events (8,890 strokes, 13,817 MIs, and 2,819 CVD mortalities) 
occurred. Higher cystatin C were related to a higher risk of CVDs. The 
HR for each SD of plasma cystatin C was 1.14 (95% CI = 1.13–1.15) 
(model 1). The HRs of plasma cystatin C in groups 2, 3, 4, and 5 
compared with group 1 (the lowest group) were 1.07 (0.98, 1.77), 1.13 
(1.04, 1.24), 1.28 (1.18, 1.39), and 1.74 (1.60, 1.88), respectively 
(Supplementary Table S5). In the multivariate model, HR per SD was 
1.09 (95% CI = 1.07–1.10; p for trend <0.001) in model 3 (Figure 1).

4 https://github.com/MRCIEU/TwoSampleMR

5 https://github.com/rondolab/MR-PRESSO
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In addition, higher plasma cystatin C concentrations were associated 
with a higher risk of stroke. Compared with group 1, the HRs of groups 
2, 3, 4, and 5 were 1.05 (0.92, 1.21), 1.07 (0.94, 1.22), 1.17 (1.00, 1.27), and 
1.50 (1.33, 1.70), respectively. The hazard ratio for each SD of plasma 
cystatin C was 1.10 (1.08, 1.11) (model 3). For each SD increase in plasma 
cystatin C, the hazard ratio for MI was 1.08 (1.07, 1.10) (Figure 1). For 
each SD increase in plasma cystatin C, the hazard ratio for CVD mortality 
was 1.14 (1.11, 1.17) (model 3).

A stratified analysis based on cystatin C–GRS were performed to 
assess whether plasma cystatin C is related to the risk of CVDs. There was 
a significant association between plasma cystatin C and cystatin C–GRS, 
which had an effect on the risk of total CVDs (p for interaction = 0.031) 
and MI (p for interaction = 0.022). The HR of the risk of CVDs associated 
with each SD of plasma cystatin C was 1.09 (1.06–1.13) in the lowest GRS 
group, 1.14 (1.11–1.19) in the medium GRS group, and 1.12 (1.08–1.16) 
in the highest GRS group (Figure 2).

3.3. Association between cystatin C–GRS 
of plasma cystatin C and CVDs

To assess whether a higher cystatin C–GRS is related to a 
lower HR for CVDs, we  investigated the association between 
cystatin C–GRS and CVDs using Cox proportional hazards 
models (Table  2). For CVDs, compared with the HR for the 
lowest quartile of cystatin C–GRS, participants with the highest 
quartile of cystatin C–GRS was 0.97 (0.92, 1.03; p = 0.31) in 
model 1. These associations did not change after further 
adjustment for other lifestyle behavioral, and biochemical factors 
in models 2 and 3. Our results showed that each SD increment of 
cystatin C–GRS was negatively associated with CVDs (HR 0.99; 
95% CI = 0. 96–1.01), stroke (HR 0.98; 95% CI = 0. 94–1.01), MI 
(HR 0.98; 95% CI = 0. 96–1.01), and CVD mortality (HR 0.96; 
95% CI = 0. 90–1.02) (model 3).

TABLE 1 Baseline characteristics of participants stratified by the quartiles of genetic risk score.

Quartiles categories of genetic risk score

Characteristics
Lowest GRS Intermediate GRS Highest GRS

p
(< 25%) (25 to 75%) (> 75%)

N 69,064 137,851 70,142

Age (years) 56.92 (8.10) 56.88 (8.09) 56.92 (8.12) 0.40

Sex, male (%) 44.63 44.51 44.69 0.65

BMI (kg/m2) 27.14 (4.61) 27.21 (4.67) 27.27 (4.69) <0.01

Townsend deprivation index −1.56 (2.93) −1.56 (2.93) −1.56 (2.93) 0.94

Current drinkers (%) 93.92 93.88 93.96 0.81

Current smokers (%) 9.35 9.42 9.17 0.12

Employment (%) 59.79 59.49 59.26 0.08

Physical activity(min/week) 0.59

  <250 55.70 55.58 55.85

  250–550 23.78 23.94 23.82

  >550 20.52 20.49 20.33

Income <0.01

  <18,000£ 20.18 20.36 20.68

  18,000£-52,000£ 51.99 51.74 51.47

  52,000£-100,000£ 21.96 21.78 21.78

  >100,000£ 5.88 6.11 6.06

HDL, mmol/L 1.46 (0.37) 1.46 (0.37) 1.45 (0.37) 0.04

LDL, mmol/L 3.59 (0.87) 3.58 (0.86) 3.56 (0.86) <0.01

Cholesterol mmol/L 5.75 (1.14) 5.73 (1.13) 5.70 (1.13) <0.01

Triglycerides, mmol/L 1.72 (1.01) 1.72 (1.01) 1.72 (0.99) 0.04

Glucose, mmol/L 5.08 (1.10) 5.08 (1.13) 5.08 (1.10) 0.52

Creatinine, umol/L 71.40 (16.99) 71.84 (15.78) 72.47 (17.06) <0.01

Cystatin C, mg/L 0.88 (0.16) 0.90 (0.16) 0.92 (0.17) <0.01

Diabetes (%) 4.08 4.11 4.18 0.62

Hypertension (%) 37.82 38.07 39.03 <0.01

CKD (%) 2.25 2.46 2.51 <0.01

CKD: chronic kidney disease. Values were expressed as mean ± standard deviation, or n (%). *p < 0.05.
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3.4. Linear MR analyses of plasma cystatin 
C with CVDs

Our linear MR analyses showed no causal role of genetically 
predicted plasma cystatin C concentrations in CVDs (odds ratio [OR]: 
0.96 per SD increment of plasma cystatin C; 95% CI = 0.90–1.03; 
p = 0.27), including stroke (OR: 0.96 per SD increment of cystatin C; 
95% CI = 0.93–1.01), MI (OR: 0.97 per SD increment of cystatin C; 
95% CI = 0.91–1.03), and CVD mortality (OR: 0.98 per SD increment 
of cystatin C; 95% CI = 0.96–1.01) (Figure 3). The results of linear MR 
were consistent with the findings concerning the association between 
cystatin C–GRS and CVDs.

3.5. Sensitivity analyses

A series of sensitivity analyses (IVW method, weighted median 
method, and Mendelian randomization-Egger method) were 
performed to assess the association between plasma cystatin C and 
CVDs (Supplementary Figures S2–S5). MR-PRESSO analyses were 

also conducted to identify potentially pleiotropic outliers. 
Supplementary Table S6 shows the MR estimates for the association 
between plasma cystatin C and CVDs. No causal relation was found 
between plasma cystatin C concentrations and CVDs (IVW 
method-CVDs: OR = 0.97, 95% CI: 0.84–1.12, p = 0.68; stroke: 
OR = 0.98, 95% CI: 0.78–1.22, p = 0.83; MI: OR = 0.95, 95% CI: 0.80–
1.13, p = 0.58; CVD mortality: OR = 0.70, 95% CI: 0.64–
1.36,p = 0.56). When the liberal set of 67 cystatin C-associated SNPs 
was used as instrumental variables, the results were consistent 
among the four MR methods. The MR-Egger method showed no 
evidence of directional pleiotropy regarding the association 
between cystatin C and CVDs (intercept = 0.0005, p = 0.91), stroke 
(intercept = 0.0054, p = 0.43), MI (intercept = −0.0014, p = 0.79), and 
CVD mortality (intercept = −0.0024, p = 0.99) 
(Supplementary Table S7). The results of the MR-PRESSO global 
test showed no potential horizontal pleiotropy (p > 0.05).

The results were similar even after further exclusion of SNPs 
related to confounders and potentially pleiotropic SNPs. Similar 
results were observed using a set of 15 plasma cystatin 
C-associated SNPs as instrumental variables (set 1) 
(Supplementary Table S6).

FIGURE 1

The association between plasma cystatin C and CVD events and CVD mortality in the UK Biobank study. Results were adjusted for age, sex, Townsend 
Deprivation Index (continuous), household income (<£18 000, £18 000-£52000, £52000-£100000, or >£100000), physical activity (<250 min/
week,250-550 min/week, >550 min/week), smoking status (never, former, current), drinking status (never, former, current), employment (no, yes), BMI 
(continuous), HDL cholesterol (continuous), LDL cholesterol (continuous), total cholesterol, diabetes (yes or no), hypertension (yes or no) and chronic 
kidney disease (yes or no). Hazard Ratios (HRs) at each category Q2-Q5 (compared with Q1) and per 1-standard deviation (SD) of each plasma cystatin 
C, estimated from Cox regression models. P value for trend was calculated as the trend per group.
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FIGURE 2

The association between plasma cystatin C with CVD events stratified by Cystatin C–GRS. Model were adjusted for age, sex, TDI (continuous), 
household income (<£18 000, £18 000-£52000, £52000-£100000, or >£100000), physical activity (<250 min/week, 250-550 min/week, >550 min/
week), smoking status(never, former, current), drinking status (never, former, current), employment (no, yes), BMI (continuous), HDL cholesterol 
(continuous), LDL cholesterol (continuous) and total cholesterol, diabetes (yes or no), hypertension (yes or no) and chronic kidney disease (yes or no).
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4. Discussion

4.1. Key finding

In this large-scale prospective cohort study, observational analysis 
found that each increase in plasma cystatin C concentration was 
associated with 9% higher risks of CVD events, 14% higher risks of 
CVD mortality, 10% higher risks of stroke, and 8% higher risks of 
MI. In participants with intermediate cystatin C-GRS, elevated plasma 
cystatin C concentrations were associated with an increased risk of 
cardiovascular disease and myocardial infarction. Nevertheless, MR 
estimates showed no significant correlations between plasma cystatin 
C concentrations and cardiovascular risk. However, recently published 
MR studies reported controversial results on the association between 
plasma cystatin C concentrations and CVDs. A 16-cohort MR study 
showed that decreased cystatin C concentrations were strongly 
associated with the rs91119 allele, which explained 2.8% of the 
difference in observational results. However, there was no evidence of 
a causal relationship between cystatin C concentrations and CVD 
events in the study (10). The results of our MR study including 277,057 
participants with no history of cardiovascular events and cancer did 
not indicate an effect of plasma cystatin C concentration on 
cardiovascular risk.

Many previous observational studies have shown that higher 
cystatin C levels were associated with a higher risk of CVD events and 
mortality. A community-based longitudinal study based on the 
Cardiovascular Health Study found that the HR for CVD mortality in 

the highest cystatin C group (≥1.29 mg/L) was 2.27 (1.73–1.97) 
compared with the lower group (≤0.99 mg/L), and the HR for MI was 
1.48 (1.08–2.02), and the HR for stroke was 1.47 (1.09–1.96). 
Multivariate modeling adjusted for confounding factors such as age, 
sex, race, alcohol consumption, BMI, and hypertension (6). 
Furthermore, meta-analysis showed that serum cystatin levels were 
significantly associated with the risk of all-cause mortality in the 
population and suggested that cystatin C levels could be  an 
independent risk factor for CHD (29).

The mechanism of action of cystatin C on CVDs has not been firmly 
established. When the balance of cystatin C concentrations is disrupted, 
vascular damage is caused. When coronary arteries become inflamed, 
inflammatory mediators stimulate vascular smooth muscle to secrete 
large amounts of cathepsin K and S. Cathepsin promotes the 
decomposition of collagen and elastic fibers, whereas cystatin C inhibits 
the activity of cathepsin. This affects the balance of cystatin C 
concentrations in the body. When cathepsin and cysteine are damaged, 
their protease activities are enhanced, resulting in vascular tissue damage 
and vascular wall remodeling (30). After that, cystatin C concentration 
increased compensatively. Cystatin C can also accelerate the development 
of atherosclerosis by regulating the activity of cysteine protein kinase to 
balance the production and degradation of the extracellular matrix. 
Furthermore, the degradation of the extracellular matrix directly 
aggravates the rupture of the fibrous cap in coronary atherosclerosis (31). 
Increases in cystatin C concentrations directly damage endothelial cells, 
thereby reducing nitric oxide production, altering coagulation factor 
function, promoting platelet adhesion and aggregation, and causing 

TABLE 2 Associations between genetic risk score and CVD events and CVD mortality in UK Biobank study.

Genetic risk score

Lowest GRS Intermediate GRS
p

Highest GRS
p

P for trend
p

HR (95%CI) HR (95%CI) HR (95%CI)

CVDs

model 1 1.0 (ref) 0.99 (0.94, 1.06) 0.90 0.97 (0.92, 1.03) 0.31 1.00 (0.97, 1.02) 0.78

model 2 1.0 (ref) 0.99 (0.93, 1.05) 0.95 0.90 (0.90, 1.01) 0.09 0.99 (0.97, 1.02) 0.32

model 3 1.0 (ref) 0.99 (0.93, 1.05) 0.73 0.95 (0.90, 1.01) 0.08 0.99 (0.96, 1.01) 0.28

Stroke

model 1 1.0 (ref) 1.05 (0.95, 1.15) 0.37 0.95 (0.86, 1.04) 0.24 0.99 (0.95, 1.02) 0.42

model 2 1.0 (ref) 1.04 (0.94, 1.15) 0.44 0.93 (0.85, 1.02) 0.12 0.98 (0.94, 1.01) 0.22

model 3 1.0 (ref) 1.04 (0.94, 1.15) 0.44 0.93 (0.85, 1.02) 0.10 0.98 (0.94, 1.01) 0.19

MI

model 1 1.0 (ref) 0.97 (0.90, 1.05) 0.42 0.96 (0.90, 1.03) 0.30 0.99 (0.97, 1.02) 0.66

model 2 1.0 (ref) 0.96 (0.90, 1.04) 0.34 0.94 (0.90, 1.01) 0.10 0.98 (0.96, 1.01) 0.29

model 3 1.0 (ref) 0.96 (0.89, 1.04) 0.32 0.94 (0.88, 1.01) 0.09 0.98 (0.96, 1.01) 0.27

CVD mortality

model 1 1.0 (ref) 0.99 (0.83, 1.17) 0.89 0.89 (0.76, 1.05) 0.16 0.96 (0.90, 1.02) 0.21

model 2 1.0 (ref) 0.98 (0.82, 1.17) 0.84 0.88 (0.75, 1.05) 0.13 0.96 (0.90, 1.02) 0.18

model 3 1.0 (ref) 0.99 (0.83, 1.17) 0.87 0.88 (0.75, 1.04) 0.13 0.96 (0.90, 1.02) 0.19

CVD: cardiovascular disease; Myocardial infarction: MI; GRS: genetic risk score; OR: odds ratio. Mode 1:adjusted for age, sex, Townsend Deprivation Index (continuous), household income 
(<£18,000, £18,000-£52,000,£52,000–£100,000, or > £100,000), physical activity (<250 min/week, 250–550 min/week, >550 min/week), smoking status (never, former, current), drinking status 
(never, former, current), employment (no, yes). Model 2: mode 1 + BMI (continuous), HDL cholesterol (continuous), LDL cholesterol (continuous) and total cholesterol. Model 3: model 
2 + diabetes (yes or no), hypertension (yes or no) and chronic kidney disease (yes or no).
*p < 0.05.
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thrombosis, thereby participating in the occurrence and development of 
atherosclerosis (32).

Our MR estimates showed no significant correlations between 
plasma cystatin C and CVDs. We propose several reasons for the 
inconsistency between our observational and Mendelian findings. 
First, cystatin C is statistically independent of cardiovascular risk 
factors, probably because higher cystatin C concentrations reflect the 
duration and severity of other established risk factors as well, and are 
associated with long-term exposure to cardiovascular risk (6). 
Epidemiological studies have demonstrated that cystatin C was 
independently associated with cardiovascular risk factors (e.g., age, 
female sex, body mass index, low concentrations of HDL cholesterol, 
and smoking) (9, 33). In addition, renal dysfunction is associated with 
cardiac problems, which is linked to CVDs, and cystatin C 
concentrations are considered markers of renal function. Second, the 
adverse effects of higher concentrations of cystatin C in patients with 
CVDs cannot be completely attributed to renal dysfunction. Large 
cohort studies have reported that higher concentrations of cystatin C 
and C-reactive protein are significantly associated with a higher risk 
of CVD events and premature death among the elderly population 
(34, 35). However, the significant association between cystatin C and 
C-reactive protein (a marker for inflammation) does not imply a 

causal relationship, as inflammation plays an important role in the 
early stages of kidney diseases (33). Third, it has been reported that 
Cystatin C affects vascular structure by inhibiting cathepsins to reduce 
matrix degradation (36). Elevated cystatin C concentrations may 
inhibit ongoing disease processes via compensatory increases in 
its production.

Recent studies have shown that Cystatin C is not only closely 
related to the development of CVDs, but also closely related to the 
prognosis of CVDs patients, and has a certain predictive ability. 
Correa et  al. (37) found that Cystatin C was associated with the 
prognosis of patients with AMI, suggesting that the higher the 
Cystatin C level, the worse the prognosis of patients with AMI after 
percutaneous coronary intervention. A cohort study found that every 
SD increase in plasma cystatin C was found to be  related to 22% 
higher risks of CVD mortality, 15% higher risks of all-cause mortality, 
and 27% higher risks of heart failure (38). Similarly, the dose-response 
relationship between cystatin C levels and the risk of CVD death 
showed that each 0.1 mg/L increase in cystatin C increased the risk of 
CVD death by 7.3% (39). These studies suggest that cystatin C may 
serve as an independent predictor of the risk of developing CVDs.

Our study employed a large sample size and followed a prospective 
design, which provided adequate outcome events and ensured the large 

FIGURE 3

Linear Mendelian randomization estimates for the associations of genetically predicted plasma cystatin C with CVD events and CVD mortality in the UK 
Biobank. Odds ratios were estimated by two-stage least squares regression method. Model1:adjusted for age, sex, Townsend Deprivation 
Index(continuous), household income (<£18 000, £18 000-£52000, £52000-£100000, or >£100000), physical activity (<250 min/week, 250-550 min/
week, >550 min/week), smoking status(never, former, current), drinking status (never, former, current), employment (no, yes). Model2: model1 + BMI 
(continuous), HDL cholesterol (continuous), LDL cholesterol (continuous) and total cholesterol. Model3: model2 + diabetes (yes or no), hypertension 
(yes or no) and chronic kidney disease (yes or no).
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number of covariates on sociodemographic confounders, biological 
indicators, and more genetic variants, and allowed rigorous adjustment 
for confounders. Compared with traditional observational studies, this 
study used MR design to assess the causal association between cystatin C 
and CVDs in a large prospective cohort. The MR study design can 
minimize potential biases caused by confounding factors and reverse 
causality (13). As far as we know, our design was the first genetic analysis 
of the correlations between plasma cystatin C concentrations and CVDs 
using linear MR analysis. We implemented several strategies to examine 
the robustness of our results. First, to minimize the effects of potential 
confounders or the indications of known pleiotropic effects, we generated 
two sets of instrumental variables for MR analysis. Second, we examined 
the relationship between GRS and potential confounders. Third, 
we conducted the MR-PRESSO global test, leave-one-out analysis, and 
Cochran’s Q test to assess heterogeneity and the potential horizontal 
pleiotropy of the genetic variants.

4.2. Strengths and limitations

Our study has some limitations. First, single-sample MR studies was 
likely influenced by weak instrument bias. To tackle this, we calculated the 
F-statistic. Second, our sample only included White British participants. 
This limits the extrapolation of the study results to other ethnicities, 
although it minimizes bias in the results obtained by population 
stratification. Third, although we  carefully controlled a number of 
potential confounders, including demographic factors, lifestyle habits, and 
kidney function, there remains a chance of residual confounding. Finally, 
our study included healthy individuals aged 40–70 years at baseline; 
similar studies conducted with patients in other age groups might 
be needed to verify our findings in different cohorts.

5. Conclusion

In summary, our large and prospective cohort MR study indicates 
that genetically predicted plasma cystatin C concentrations was not 
associated to the risk of CVDs and CVD mortality. This suggests that 
there was no any support for associations between plasma cystatin C 
and the CVD events and CVD mortality. In our adjusted multivariate 
observational analysis, higher concentrations of plasma cystatin had 
increased the risk of total CVD events. Thus, cystatin C is associated 
with cardiovascular events, but not causally. Our findings do not 
indicate that cystatin C is an independent risk factor for CVDs; they 
rather indicate that it is a “marker” for CVDs. Therefore, the detection 
of serum cystatin C concentrations is helpful for the early diagnosis of 
CHD, especially for the severity and prognosis of coronary artery 
disease. Further research on the relationship between cystatin C and 
CVDs may provide novel insights and prospects for studies into the 
mechanisms of occurrence and development, diagnosis, treatment, 
and prognosis evaluation of CHD.
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