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Background: In December 2022, there was a large Omicron epidemic in 
Hangzhou, China. Many people were diagnosed with Omicron pneumonia with 
variable symptom severity and outcome. Computed tomography (CT) imaging 
has been proven to be an important tool for COVID-19 pneumonia screening and 
quantification. We hypothesized that CT-based machine learning algorithms can 
predict disease severity and outcome in Omicron pneumonia, and we compared 
its performance with the pneumonia severity index (PSI)-related clinical and 
biological features.

Methods: Our study included 238 patients with the Omicron variant who have 
been admitted to our hospital in China from 15 December 2022 to 16 January 
2023 (the first wave after the dynamic zero-COVID strategy stopped). All patients 
had a positive real-time polymerase chain reaction (PCR) or lateral flow antigen 
test for SARS-CoV-2 after vaccination and no previous SARS-CoV-2 infections. 
We recorded patient baseline information pertaining to demographics, comorbid 
conditions, vital signs, and available laboratory data. All CT images were processed 
with a commercial artificial intelligence (AI) algorithm to obtain the volume and 
percentage of consolidation and infiltration related to Omicron pneumonia. The 
support vector machine (SVM) model was used to predict the disease severity and 
outcome.

Results: The receiver operating characteristic (ROC) area under the curve 
(AUC) of the machine learning classifier using PSI-related features was 0.85 
(accuracy = 87.40%, p < 0.001) for predicting severity while that using CT-based 
features was only 0.70 (accuracy = 76.47%, p = 0.014). If combined, the AUC was 
not increased, showing 0.84 (accuracy = 84.03%, p < 0.001). Trained on outcome 
prediction, the classifier reached the AUC of 0.85 using PSI-related features 
(accuracy = 85.29%, p < 0.001), which was higher than using CT-based features 
(AUC = 0.67, accuracy = 75.21%, p < 0.001). If combined, the integrated model 
showed a slightly higher AUC of 0.86 (accuracy = 86.13%, p < 0.001). Oxygen 
saturation, IL-6, and CT infiltration showed great importance in both predicting 
severity and outcome.

Conclusion: Our study provided a comprehensive analysis and comparison 
between baseline chest CT and clinical assessment in disease severity and 
outcome prediction in Omicron pneumonia. The predictive model accurately 
predicts the severity and outcome of Omicron infection. Oxygen saturation, IL-6, 
and infiltration in chest CT were found to be important biomarkers. This approach 
has the potential to provide frontline physicians with an objective tool to manage 
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Omicron patients more effectively in time-sensitive, stressful, and potentially 
resource-constrained environments.

KEYWORDS

artificial intelligence, COVID-19, machine learning, omicron pneumonia, outcome, 
severity

1. Introduction

The coronavirus disease 2019 (COVID-19) is an ongoing 
worldwide pandemic. In December 2022, there was a large Omicron 
epidemic in Hangzhou, China. Despite signs of possibly lower clinical 
severity than Delta (1), the substantial hospitalizations of Omicron 
pneumonia had strained the healthcare system in China (2). Notably, 
the Omicron variant gathered a high number of mutations (3); 
individuals exhibit significant variability in the severity of presentation 
and can be  re-infected (4, 5). Thus, our understanding of disease 
manifestation and progression remains unclear. Accurate stratification 
of the disease severity and outcome is highly desired to effectively 
handle the pandemic and remains a clinical research priority.

Chest CT is a routine scanning technique for pneumonia, and 
it plays an important role in COVID-19 infection diagnostics and 
management (6), especially in the early phase of the pandemic (7). 
Therefore, CT findings along with clinical and biological 
biomarkers have been proposed for the prediction of the staging 
and outcome of COVID-19 pneumonia (8–11). However, data on 
CT findings of COVID-19 pneumonia originate mainly from early 
2020, before the Omicron variants appeared (12). In addition, 
recent studies have revealed that Omicron, compared with typical 
Delta, had different CT changes not typical for pneumonia (13–
15). As such, the potential of CTs in the Omicron pandemic has 
not yet been fully realized. Moreover, although some predictors of 
critical illnesses were shared among these studies, there is 
currently no consensus as to which clinical variables are most 
predictive of severity or the need for escalated care. In short, a 
robust prediction model for the Omicron pneumonia severity and 
outcome remains lacking.

In this study, we investigated an automatic method (Figure 1) of 
the Omicron pneumonia quantification that extracts image features 
directly from the CTs and fuses them with known clinical and 
biological markers. The goal of this study was 2-fold: First, 
we  hypothesized that quantitative image features can be  used to 
predict the severity and clinical outcome of the Omicron pneumonia 
patients. Second, we hypothesized that the diagnostic power of the 
presented algorithm using image features is equal to the Pneumonia 
Severity Index (PSI), serving as the most widely utilized diagnostic 
model for predicting the prognosis (16). We aim to build predictive 
models for identifying the severity and outcome of Omicron 
pneumonia patients at an early stage. Feature importance of both 
clinical and imaging variables was analyzed to understand the 
association factors for different disease severity and outcomes. Our 
goal is to provide early warnings for patients with severe conditions 
and/or poor outcomes so that doctors could have time to come up 
with appropriate monitoring and intervention procedures to prevent 
a worse situation.

2. Materials and methods

2.1. Patients

Our study included 238 immunocompetent adults with Omicron 
pneumonia who have been admitted to our hospital in Hangzhou, 
China, from 15 December 2022 to 16 January 2023. The inclusion 
criterion was a positive real-time polymerase chain reaction (PCR) or 
lateral flow antigen test for SARS-CoV-2 after vaccination and no 
previous SARS-CoV-2 infections. All patients underwent initial 
laboratory tests and chest CTs. Patients with artifacts and low-quality 
CTs (incompletely imaged lungs) were excluded.

Omicron pneumonia was clinically classified into non-severe and 
severe diseases (dyspnea, respiratory frequency over 30/min, oxygen 
saturation less than 93%, respiratory failure, septic shock, and/or 
multi-organ dysfunction/failure) (17, 18). The demographic, CT, and 
clinical characteristics of the patients are presented in Table  1. A 
binary short clinical outcome was defined as recovered (decreased) 
and non-recovered (in-hospital death, intubated, and intensive care 
unit-ICU admission) (19). A total of 238 patients were included, out 
of which 181 (76.05%) patients had non-severe pneumonia and 57 
(23.95%) patients had severe pneumonia, including 146 hospitalization 
status (61.34%), 57 ICU admissions (23.95%), 34 intubated (14.29%), 
and 10 death (4.20%) cases. Altogether, our cohort contained a wide 
range of clinical presentations of Omicron infection with 
different outcomes.

We reviewed patients’ electronic medical records to obtain 
information pertaining to their demographics (age, gender), comorbid 
conditions (such as neoplastic diseases, liver diseases, cardiovascular 
diseases, chronic heart disease, and renal diseases) (16), baseline vital 
signs (body temperature, pulse, respiratory rate, and systolic pressure), 
and baseline laboratory data (including white blood cell count-WBC, 
C-reactive protein-CRP, blood urea nitrogen-BUN, glucose, sodium, 
hematocrit, interleukin-6-IL-6, artery pondus hydrogenii-PH, partial 
pressure of arterial oxygen, and oxygen saturation). We calculated the 
comorbidity as the score = 5*(0/1, no = 0, yes = 1) as previous studies 
did (20). Details are presented for further consideration in Table 2. 
This retrospective study was approved by the ethics committee of the 
Second Affiliated Hospital of Zhejiang University, School of Medicine.

2.2. CT image acquisitions

The non-enhanced CT scans were performed using standard 
clinical parameters with axial 1.5 mm section thickness. All datasets 
were inspected for quality and excluded in case of incompletely 
imaged lungs or severe motion artifacts. In detail, the images were 
acquired on the following scanners: 40 slice scanner (SOMATOM 
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Definition AS) with 120 kV, 65–110 mAs, 1.5 mm slice reconstruction; 
64 slice scanner (Philips Brilliance 64) with 120 kV, 160 mAs, 1.5 mm 
slice reconstruction; and 40 slice scanner (United Imaging uCT 530) 
with 120 kV, 40–130 mAs, and 1.5 mm slice reconstruction.

2.3. CT image evaluations

DICOM images of all chest CTs were imported into a commercial 
pneumonia AI algorithm (Beijing Deepwise & League of PhD 
Technology Co.Ltd). The algorithm provides the volume and 
percentage of consolidation and infiltration area with Omicron-
related findings. The processing time per CT was 30–60s. The AI deep 
learning system: Pytorch 1.1.0, Python 2.7. Operating system: Ubuntu 
16.04, Linux. Hardware: Nividia 1080Ti.

The AI algorithm (Supplementary Figure S2) is a deep learning-
based model which was built on top of deep convolutional neural 
networks and proved the performance by previous studies of 
COVID-19 (21–23). Three major modules were designed to ensure 
the final accuracy of this system, i.e., pneumonia lesion detection, 

pneumonia lesion segmentation, and lung lobe segmentation. First, 
an MVP-Net (24) inspired method was used to detect bounding boxes 
of pneumonia findings. Channel-wise attention mechanism and 
multiple inputs (different window centers and window widths) were 
applied to explore the spatial context of pneumonia, in order to 
promise the detected sensitivity and multiple symptom classifiers were 
trained to discriminate consolidation, infiltration, nodules, and so 
forth. Pneumonia lesions (Figure  1), i.e., voxels that contained 
pneumonia, were extracted by 3D U-Net (25). Finally, an anatomical 
prior embedded network was trained to partition the lung into five 
pulmonary lobes (26).

2.4. Features

The PSI-related features contain age, gender, comorbidity, 
baseline vital signs (body temperature, pulse, respiratory rate, and 
systolic pressure), and baseline laboratory data (including blood 
urea nitrogen-BUN, glucose, sodium, hematocrit, artery pondus 
hydrogenii-PH, partial pressure of arterial oxygen, and oxygen 

FIGURE 1

Examples of lesion segmentation by the AI system. Left (A), (C), (E): original images; right (B), (D), (F): pulmonary lobes (colored lines) and opacities 
segmentation (blue area).
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saturation) (16). CT-based features contain consolidation volume, 
consolidation percentage, infiltration volume, infiltration 
percentage, total lesion volume, total lesion percentage, and pleural 
effusion (21–23). Integration features contain baseline laboratory 
data (including WBC, CRP, and IL-6), all CT-based features, and 
PSI-related features.

2.5. Support vector machine classification

After extracting the desired information from the raw data, a 
classifier is designed and developed to categorize the severity and 
outcome of Omicron pneumonia. We  applied the support vector 
machine (SVM) classification (linear kernel was used), a superior 

TABLE 1 Baseline demographic, clinical, and radiological characteristics of adults with radiographic evidence of omicron pneumonia.

Baseline characteristics All (n = 238) Non severe 
pneumonia (n = 181)

Severe pneumonia 
(n = 57)

p value

Clinical parameters

Age-years (Mean ± SD) 71.84 ± 14.11 69.47 ± 14.32 79.37 ± 10.38 <0.001

Gender (Male/Female) 153/85 113/68 40/17 0.287

Duration from illness onset to hospital presentation-days

Median 7 7 7 0.640

Interquartile range 4–8.75 5–8 4–10

Any underlying condition-no. (%)

Neoplastic disease 31 (13.03) 22 (12.15) 9 (15.79) 0.477

Liver disease 29 (12.18) 25 (13.81) 4 (7.02) 0.171

Chronic heart disease 28 (11.76) 21 (11.60) 7 (12.28) 0.890

Cerebrovascular disease 137 (57.56) 100 (55.25) 37 (62.91) 0.198

Renal disease 37 (15.55) 22 (12.15) 15 (26.32) 0.010

Initial presenting symptoms-no. (%)

Fever 158 (66.39) 119 (65.74) 39 (68.42) 0.709

Cough 157 (65.97) 119 (65.74) 38 (66.67) 0.898

Chest tightness/pain 76 (31.93) 56 (30.94) 20 (35.09) 0.558

Sputum 72 (30.25) 53 (29.28) 19 (33.33) 0.561

Shortness of breath 53 (22.27) 38 (20.99) 15 (26.32) 0.400

Fatigue/weakness 27 (11.34) 18 (9.94) 9 (15.79) 0.225

Anorexia 17 (7.14) 13 (7.18) 4 (7.02) 0.966

Myalgia 13 (5.46) 7 (3.87) 6 (10.52) 0.054

Sore throat 12 (5.04) 8 (4.42) 4 (7.02) 0.434

Altered mental status 7 (2.94) 3 (1.66) 4 (7.02) 0.037

Time from illness onset to CT-days

Median 7 7 7 0.776

Interquartile range 5–10 5–10 4–10

CT findings-no. (%)

Consolidation 234 (98.32) 177 (97.79) 57 (100) 0.822

Alveolar or interstitial infiltration 167 (70.17) 132 (72.93) 35 (61.40) 0.097

Pleural effusion 89 (37.39) 54 (29.83) 35 (61.40) <0.001

Pneumonia severity index

Median 94 87 112 <0.001

Interquartile range 39.5 35 26

Risk class-no. (%)

1–3 107 (44.96) 97 (53.59) 10 (17.54) <0.001

4 105 (44.12) 69 (38.12) 36 (63.16)

5 26 (10.92) 15 (8.29) 11 (19.30)

SD: standard deviation, no.: number, comparison of baseline demographic, clinical, and radiological characteristics between the Omicron non-severe pneumonia and severe pneumonia. PSI 
risk class (no. of points): 1, 2 (≤70), 3 (71–90), 4 (91–130) and 5 (>130) (16).
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method for binary classification, based on these imaging or/and 
clinical features in Matlab (Mathworks Matlab ver9.2 R2017a, 
operating system: Microsoft Windows 10.0). The classification 
problem under consideration discriminates among two mutually 
exclusive classes (severe or non-severe) (good outcome or poor 
outcome). Nested 10-fold cross-validation was used in the analysis of 
the model. A stratified k-fold method was used to divide the data into 
10 outer folders, and each outer folder was further subdivided into five 
inner folders to select the optimal hyperparameter for better training 
(a grid-search method was used). The predictive performance of each 
model was examined using accuracy, sensitivity, specificity, and the 
area under the receiver operating characteristic curve (AUC). 
We  evaluated how well an individual feature contributed to the 
diagnosis and prognosis prediction, and then, all candidate features 
were ranked based on their relative importance values. The equation 
for the relative importance of features is as follows:

 
w =

=
∑
i

m
i i iy x

1

λ

Statistical significance was evaluated at p = 0.05 (permutation test 
for 1,000 times). We used the SVM algorithms implemented by the 
Libsvm team (Chih-Chung Chang, Chih-Jen Lin. LIBSVM, a library 
for support vector machines. 2001). The SVM classifier is available at 
http://www.csie.ntu.edu.tw/~cjlin/libsvm. Moreover, we provide the 
packages used for SVM in Supplementary material S1. A conceptual 
overview of the proposed machine learning approach is presented in 
Figure 2.

2.6. Statistical analyses

Independent t-test and chi-square test were used to analyze the 
quantitative and categorical variables, respectively. IBM SPSS version 
19.0 was used to perform all statistical analyses. A two-tailed value of 
p of less than 0.05 was considered to be  statistically significant 
(corrected for multiple comparisons with Bonferroni).

3. Results

3.1. Patients

Our study included CT images of 238 patients with Omicron 
pneumonia. Fever is the most commonly reported finding in 66.39% 
of our patients (65.74% non-severe vs. 68.42% severe), but fever alone 
does not distinguish the severity. Altered mental status had been 
emerged as an initial symptom in some of our cases (1.66% non-severe 
vs. 7.02% severe), which was associated with severe pneumonia 
(p = 0.037). Chest CT findings include consolidation, infiltration, or/
and pleural effusions.

A total of 181 (76.05%) patients had non-severe pneumonia and 
57 (23.95%) patients had severe pneumonia. Patients with severe 
Omicron pneumonia had a significantly higher age (p < 0.001), higher 
blood urea nitrogen (p = 0.049), higher CRP (p = 0.006), lower 
hematocrit (p = 0.014), lower partial pressure of arterial oxygen 
(p < 0.001), lower oxygen saturation (p < 0.001), higher CT 
consolidation volume (p = 0.003), higher consolidation percentage 
(p < 0.001), higher infiltration percentage (p = 0.031), higher total 

TABLE 2 Summary of assessed vital signs and lab variables for predicting the need for severity and outcome in omicron pneumonia patients.

Baseline characteristics All (n = 238) Non severe 
pneumonia (n = 181)

Severe pneumonia 
(n = 57)

p value

Vital signs (Mean ± SD)

Pulse (beats/min) 84.57 ± 13.91 85.01 ± 13.96 83.18 ± 13.78 0.386

Respiratory rate (breaths/min) 18.46 ± 1.60 18.36 ± 1.48 18.75 ± 1.91 0.108

Systolic BP (mmHg) 134.76 ± 18.95 134.03 ± 18.13 137.05 ± 21.36 0.338

Temperature (°C) 37.23 ± 0.76 37.22 ± 0.76 37.28 ± 0.76 0.598

Laboratory data (Mean ± SD)

BUN (mmol/L) 7.92 ± 5.81 7.51 ± 6.04 9.24 ± 4.81 0.049

Sodium (mmol/L) 138.05 ± 4.99 138.03 ± 4.60 138.10 ± 6.14 0.935

Glucose (mmol/L) 7.68 ± 3.12 7.45 ± 2.92 8.41 ± 3.63 0.071

Hematocrit (%) 36.60 ± 5.30 37.08 ± 4.94 35.10 ± 6.11 0.014

Artery PH 7.41 ± 0.05 7.41 ± 0.04 7.39 ± 0.08 0.118

Partial pressure of arterial oxygen 

(mmHg)

90.05 ± 25.26 94.43 ± 22.45 76.14 ± 28.08 <0.001

Oxygen saturation (%) 96.04 ± 4.31 97.32 ± 1.42 92.01 ± 7.09 <0.001

CRP (mg/L) 50.33 ± 50.80 45.31 ± 47.92 66.28 ± 56.58 0.006

Total WBC (109/L) 6.35 ± 5.54 6.38 ± 5.34 6.27 ± 6.17 0.895

IL-6 (pg/mL) 66.44 ± 347 26.98 ± 82.20 191.76 ± 685.21 0.075

SD, standard deviation; BUN, blood urea nitrogen; PH, pondus hydrogenii; CRP, C-reactive protein; WBC, white blood cell count; IL, interleukin.
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lesion volume (p = 0.001), higher total lesion percentage (p < 0.001), 
and more cases with pleural effusion (p < 0.001).

In total, 178 patients (74.79%) had a good outcome and 60 
patients (25.21%) had a poor outcome. Patients with poor outcomes 
had a significantly higher age (p = 0.009), higher blood glucose 
(p < 0.001), higher CRP (p = 0.002), lower oxygen saturation 
(p = 0.018), and more cases with pleural effusion (p = 0.001). The 
assessed baseline variables including CT features for prediction of 
severity and outcome are presented in Tables 3, 4.

3.2. Imaging-based severity prediction

We conducted predictive modeling of Omicron pneumonia 
diagnosis using the described data. We evaluated and compared the 
performance of the Imaging-based model, PSI-based model, and 
integration model. The PSI-based model reached a ROC AUC of 0.85 
(accuracy = 87.40%, sensitivity = 94.48%, specificity = 71.93%, 
p < 0.001), which was higher than the purely imaging-based classifier 
with ROC AUC of 0.70 (accuracy = 76.47%, sensitivity = 56.91%, 
specificity = 71.93%, p = 0.014). If combined, the integrated model 
showed an equivalent ROC AUC of 0.84 (accuracy = 84.03%, 
sensitivity = 78.45%, specificity = 82.46%, p < 0.001). The predictive 
performance of each of the three models and the five most important 
features are presented in Figure 3. For the prediction of severity, the 
PSI-related features and integrated features had excellent performance. 
Oxygen saturation, IL-6, and CT infiltration percentage were very 
important biomarkers. Metrics for the different models studied are 
presented in Table 5.

3.3. Imaging-based outcome prediction

Next, we used this SVM model to stratify the outcomes of patients. 
The imaging-based model reached a ROC AUC of 0.67 
(accuracy = 75.21%, sensitivity = 75.03%, specificity = 63.33%, 
p < 0.001), which was lower than the PSI-based classifier with ROC 

AUC of 0.85 (accuracy = 85.29%, sensitivity = 94.48%, 
specificity = 71.93%, p < 0.001). If combined, the integrated model 
showed a slightly higher ROC AUC of 0.86 (accuracy = 86.13%, 
sensitivity = 89.89%, specificity = 75.00%, p < 0.001). The predictive 
performance of each of the three models and the five most important 
features are presented in Figure 4. The results found that the three 
classifiers efficiently predicted good and poor outcomes. IL-6, oxygen 
saturation, and CT infiltration percentage were very important 
biomarkers. Metrics for the different models studied are presented in 
Table 5.

4. Discussion

In this study, we used an SVM machine learning model to predict 
the severity and outcome of Omicron pneumonia in the first-month 
breakout after the dynamic zero-COVID strategy was stopped in 
Hangzhou, China. The features we chose were inspected across the 
recent COVID-19 literature, finding that most of them have been 
reported as potential markers of diagnosis and prognosis (27). 
PSI-related clinical and demographic data were more adequate to 
differentiate between severe and non-severe diseases. Furthermore, 
PSI-based model and the integrated model showed a relatively efficient 
performance to predict the outcome, which had better performance 
than the CT-based model. In baseline evaluation, Omicron pneumonia 
patients with high levels of IL-6, low levels of oxygen saturation, and 
greater CT lung infiltration should be monitored closely to minimize 
the risk of progression to severe conditions/poor outcomes. The 
results of this study suggest that the value of early CT imaging for 
predicting the Omicron disease severity and outcome was limited. 
Similar to other COVID-19 infections, the Omicron patient’s overall 
clinical condition should be considered more carefully when deciding 
whether to offer a chest CT scan (28).

In our cohort, most of the cases were infected via domestic 
transmission. Fever is the most commonly reported finding in our 
patients, but the absence of fever is inadequate for screening or 
treatment decisions. Neither cough, chest tightness, dyspnea nor other 

FIGURE 2

A conceptual overview of the proposed machine learning approach for Omicron pneumonia severity and outcome prediction showing the major 
processing steps: CT-based image acquisition and segmentation, feature extraction, and statistical learning (SVM). ROC, receiver operating 
characteristic; AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity.
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symptoms. PSI is the most commonly used comprehensive index to 
assess the severity and prognosis of community-acquired pneumonia 

patients (16). A higher PSI score indicates a worse condition and a 
greater risk of poor outcomes. Studies have shown that PSI was a 
useful tool to discriminate between survivors and non-survivors of 
COVID-19 pneumonia (29, 30). In our results, the PSI-based model 
showed an excellent performance to classify the severity of patients 

TABLE 4 Summary of assessed variables for prediction of good versus 
poor outcomes from omicron pneumonia in patients.

Good 
outcome 
(n = 178)

Poor 
outcome 
(n = 60)

p value

Age-years 

(Mean ± SD)

70.46 ± 14.53 75.93 ± 11.98 0.009

Gender  

(Male/Female)

112/66 41/19 0.449

Comorbidity 1.17 ± 0.91 1.15 ± 0.97 0.862

Pulse (beats/min) 83.43 ± 12.93 87.95 ± 16.12 0.052

Respiratory rate 

(breaths/min)

18.44 ± 1.61 18.52 ± 1.57 0.743

Systolic BP 

(mmHg)

134.44 ± 17.41 135.68 ± 23.07 0.704

Temperature (°C) 37.23 ± 0.78 37.23 ± 0.71 0.992

BUN (mmol/L) 7.79 ± 5.98 8.32 ± 5.29 0.539

Sodium (mmol/L) 138.11 ± 4.70 137.85 ± 5.82 0.727

Glucose (mmol/L) 7.15 ± 2.61 9.23 ± 3.93 <0.001

Hematocrit (%) 36.90 ± 4.97 35.72 ± 6.14 0.138

Artery PH 7.41 ± 0.04 7.40 ± 0.07 0.495

Partial pressure of 

arterial oxygen 

(mmHg)

90.65 ± 22.15 88.28 ± 32.99 0.606

Oxygen saturation 

(%)

96.43 ± 4.27 94.90 ± 4.24 0.018

CRP (mg/L) 44.43 ± 47.78 67.83 ± 55.69 0.002

Total WBC (109/L) 6.35 ± 6.08 6.36 ± 3.51 0.984

IL-6 (pg/mL) 22.90 ± 64.74 195.62 ± 671.52 0.051

AI CT-based features

Consolidation 

volume (cm3)

361.06 ± 448.37 453.28 ± 449.61 0.170

Consolidation 

percentage (%)

13.51 ± 14.81 17.13 ± 14.26 0.101

Infiltration volume 

(cm3)

63.50 ± 263.56 45.61 ± 207.36 0.633

Infiltration 

percentage (%)

2.22 ± 7.43 1.96 ± 6.81 0.813

Total lesion 

volume (cm3)

424.53 ± 524.50 498.89 ± 509.24 0.340

Total lesion 

percentage (%)

15.71 ± 15.86 19.07 ± 15.24 0.153

Pleural effusion 

(Y/N)

56/122 33/27 0.001

SD, standard deviation; BUN, blood urea nitrogen; PH, pondus hydrogenii; CRP, C-reactive 
protein; WBC, white blood cell count; IL, interleukin. Percentage: lesion volume/total lung 
volume, Y/N: present or absent.

TABLE 3 Summary of assessed variables for prediction of non-severe 
versus severe omicron pneumonia in patients.

Non severe 
pneumonia 

(n = 181)

Severe 
pneumonia 

(n = 57)

p value

Age-years 

(Mean ± SD)

69.47 ± 14.32 79.37 ± 10.38 <0.001

Gender  

(Male/Female)

113/68 40/17 0.287

Comorbidity 1.18 ± 0.91 1.14 ± 0.99 0.796

Pulse (beats/min) 85.01 ± 13.96 83.18 ± 13.78 0.386

Respiratory rate 

(breaths/min)

18.36 ± 1.48 18.75 ± 1.91 0.108

Systolic BP 

(mmHg)

134.03 ± 18.13 137.05 ± 21.36 0.338

Temperature (°C) 37.22 ± 0.76 37.28 ± 0.76 0.598

BUN (mmol/L) 7.51 ± 6.04 9.24 ± 4.81 0.049

Sodium 

(mmol/L)

138.03 ± 4.60 138.10 ± 6.14 0.935

Glucose 

(mmol/L)

7.45 ± 2.92 8.41 ± 3.63 0.071

Hematocrit (%) 37.08 ± 4.94 35.10 ± 6.11 0.014

Artery PH 7.41 ± 0.04 7.39 ± 0.08 0.118

Partial pressure 

of arterial oxygen 

(mmHg)

94.43 ± 22.45 76.14 ± 28.08 <0.001

Oxygen 

saturation (%)

97.32 ± 1.42 92.01 ± 7.09 <0.001

CRP (mg/L) 45.31 ± 47.92 66.28 ± 56.58 0.006

Total WBC 

(109/L)

6.38 ± 5.34 6.27 ± 6.17 0.895

IL-6 (pg/mL) 26.98 ± 82.20 191.76 ± 685.21 0.075

AI CT-based features

Consolidation 

volume (cm3)

328.87 ± 414.73 560.30 ± 510.78 0.003

Consolidation 

percentage (%)

12.55 ± 13.58 20.36 ± 16.67 <0.001

Infiltration 

volume (cm3)

41.04 ± 211.83 115.99 ± 341.36 0.122

Infiltration 

percentage (%)

1.30 ± 4.81 4.85 ± 11.80 0.031

Total lesion 

volume (cm3)

369.89 ± 455.74 676.30 ± 637.88 0.001

Total lesion 

percentage (%)

13.83 ± 14.06 25.19 ± 17.70 <0.001

Pleural effusion 

(Y/N)

54/127 35/22 <0.001

SD, standard deviation; BUN, blood urea nitrogen; PH, pondus hydrogenii; CRP, C-reactive 
protein; WBC, white blood cell count; IL, interleukin. Percentage: lesion volume/total lung 
volume, Y/N: present or absent.
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with Omicron pneumonia. PSI-based features, especially oxygen 
saturation, hematocrit, and partial pressure of arterial oxygen were the 
three most important factors affecting the severity. During the clinical 
observation, individuals with oxygen saturation levels of less than 93% 
and respiratory rate of more than 30 per minute should be considered 
severe COVID-19 conditions (17, 18). Lower oxygen saturation and 
respiratory distress can progress to critical illness with hypoxic 
respiratory failure requiring prolonged ventilatory support. 
Researchers further observed basal oxygen saturation and partial 
pressure of arterial oxygen could predict unfavorable evolution in 
pneumonia (31–34). Similarly, Low levels of hematocrit during 
admission have been associated with poor prognosis and severe 
disease (35). Hematocrit is a marker that is strongly correlated with 

blood hyperviscosity, thrombotic complications, and higher mortality 
in COVID-19 patients (36). This evidence supports our results that 
oxygen saturation, hematocrit, and partial pressure of arterial oxygen 
could be  examined as a diagnostic tool in screening for severe 
Omicron pneumonia.

In our Omicron pneumonia cases, ground-glass opacities 
(infiltration, 167/238 cases, 70.17%), consolidation (234/238 cases, 
98.32%) with ill-defined margins, and air bronchograms, with or 
without pleural effusions (89/238 cases, 37.39%) were present. As per 
published studies, the percentages of the occurrence of these 
manifestations vary widely (6). Most of our patients had multiple 
lesions. However, “White lung” was not found even in severe patients. 
This may be due to the relatively short time interval between symptom 

FIGURE 3

The model performances in the prediction of severity of Omicron pneumonia and the five most important features in the three severity prediction 
tasks. The first row presented ROC curves for predicting the severity of models based on different data types. (A) indicated that PSI-based models for 
predicting severity achieved the highest AUC (0.8549). (B) imaging-based model. (C) integration model. (D–F) showed the five most important features 
and their relative importance.

TABLE 5 Metrics for the different models studied.

Mean ± SD AUC Accuracy Sensitivity Specificity

Severity prediction

PSI based model 0.85 ± 0.10 0.87 ± 0.05 0.94 ± 0.10 0.72 ± 0.14

Imaging based model 0.70 ± 0.17 0.76 ± 0.07 0.57 ± 0.15 0.72 ± 0.20

Integrated model 0.84 ± 0.14 0.84 ± 0.06 0.78 ± 0.14 0.82 ± 0.16

Outcome prediction

PSI based model 0.87 ± 0.10 0.85 ± 0.05 0.95 ± 0.10 0.72 ± 0.14

Imaging based model 0.67 ± 0.17 0.76 ± 0.07 0.73 ± 0.15 0.63 ± 0.20

Integrated model 0.84 ± 0.14 0.84 ± 0.06 0.78 ± 0.14 0.82 ± 0.16

SD, standard deviation.
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onset and the CT scan (median 7 days, IQR 4–10 days) (6). The CT 
lesions frequently presented in the bilateral, peripheral, and posterior 
distribution. These findings were non-specific and overlapped with 
other infections, thus, the diagnostic specificity of chest CT imaging 
for COVID-19 is limited (37, 38).

In line with this, from our machine learning models, the CT 
imaging-based model had only acceptable discriminatory power in 
predicting disease severity and outcome. Recently, advancements have 
been made in using AI in the diagnostic imaging field of COVID-19 
pneumonia (39–41). Hou et al. developed and compared different 
machine learning algorithms to predict the likelihood of ICU 
admission and mortality in COVID-19 patients. Similar to our results, 
they found that SpO2 was the top predictor of mortality and ICU 
admission (42). Gao et  al. built a mortality prediction model for 
COVID-19 using clinical information in EHRs on admission. The 
top-weighted features were D-dimer, SpO2, and respiratory rate (43). 
Although some of the predictors of outcome were shared among these 
and our studies, there is currently no consensus as to which clinical 
variables are most predictive of poor outcomes. These differences in 
findings could be due to different outcome measures, patient cohorts, 
different hospital environments, and analysis methods employed, 
among other factors. Recently, the prediction and detection of the 
Omicron variant brought new issues for researchers. However, for 
predicting Omicron disease severity and outcome, limited results have 
been published (Table 6). Gupta et al. (44) combined an Extended 
Convolutional Neural Network (ECNN) and an Extended Recurrent 
Neural Network (ERNN) to accurately predict Omicron virus-infected 

cases automatically using chest CT-scan images. Xu et  al. (47) 
developed an ML model to predict the probability of 7-day and 14-day 
recovery from the Omicron infection. The results remain inconsistent 
and controversial, with some reporting a good correlation of CT 
abnormalities with these clinical outcomes while others did not. Our 
study confirmed the negative prognostic role played in Omicron 
pneumonia patients by some of the chest CT and clinical features. 
However, our study of Omicron pneumonia differed from previous 
studies in several ways. We employed the SVM model, in contrast to 
the majority of previous studies, which used logistic regression. Our 
models identified imaging and clinical predictors that accurately 
predicted both severity and outcome. We also compared PSI-based 
and imaging-based model performances. Our study included 
Omicron pneumonia patients and is among the few studies that 
described a patient cohort in Hangzhou, China.

Furthermore, in the integrated models, CT imaging features were 
important factors for predicting disease severity and outcome of 
Omicron pneumonia (Figures 3F, 4F). These findings were consistent 
with previous studies. For instance, González et al. (51) found that the 
lung damage on chest CT scans in severe COVID-19 patients 
increased significantly, indicating their length of invasive mechanical 
ventilation during the ICU stays. Chassagnon et al. (8) revealed that 
imaging biomarkers could predict outcome of the COVID-19 patients 
using automatic deep learning. According to these findings, a more 
severe lung injury revealed by CT is associated with more severe 
conditions and poorer outcomes in COVID-19 patients. Researchers 
suggest that associations between CT lung injury and inflammatory 

FIGURE 4

The model performances in the prediction of the outcome of Omicron pneumonia and the five most important features in the three outcome 
prediction tasks. The first row presented ROC curves for predicting the outcome of models based on different data types. (A) PSI-based model. 
(B) imaging-based model. (C) indicated that integration models for predicting the outcome achieved the highest AUC (0.8642). (D–F) showed the five 
most important features and their relative importance.
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burden might help to justify this problem (52). Another explanation 
may be that, in the previous studies, there is an inverse relationship 
between CT lung injury and oxygen saturation (hypoxia) (31), which 
has notable prognostic implications. Yazdi et al. (53) identified that 
baseline laboratory tests, such as CRP, WBC, and oxygen saturation, 
can predict the CT severity of lung involvement. Although further 
validation is needed, we propose that these markers are individually 
associated, but not only specific to COVID-19; however, when these 
markers are combined, they allow describing some of the processes 
altered in COVID-19 such as an unregulated immune response, an 
inflammation burden, and tissue hypoxia.

However, although initial evidence is promising, clinical studies of 
the usefulness of CT imaging in routine screening and management of 
patients with COVID-19 are still awaited (54). Reviewers found that 
chest CT had a clinical utility that was limited, particularly for patients 
who show no symptoms and patients who are screened early in disease 
progression (55). CT scan was not indicated in a patient who had mild 
clinical features unless they are at risk for COVID-19 disease progression 
(56). The limited role of CT in our study may be due to the following 
reasons: First, our biased patient cohorts only consist of patients with 
CT-confirmed Omicron pneumonia. Data on CT findings of COVID-19 
pneumonia originate mainly from early 2020 before the Omicron 
variants appeared (12). Recent studies have revealed that Omicron, 
compared with typical Delta, had different CT abnormalities (13–15). 
Omicron CT features were non-specific and overlapped with other 
infections, so the diagnostic value of chest CT imaging is limited (38). 
Second, we only include baseline CT images for assessment. Therapeutic 
strategies for patients were not considered in this study. We speculate that 
multiple images during treatment instead of a single image could indicate 
further progression of the disease. Our study is not generalizable to a 
wider population of individuals infected with SARS-CoV-2.

The multi-organ injury was common in our Omicron 
pneumonia patients (Table 1). Researchers found that the history of 
comorbidities was significantly different between the non-survivor 
and survivor groups in COVID-19 patients (57). They have shown 
a higher proportion of patients with comorbidities in the 

non-survivor group (57, 58) and those with more severe diseases 
(59). Ji et al. (20) found that COVID-19 patients with comorbidities 
were more likely to progress to severe disease than those without 
comorbidities. Shen et al. (60) found that mortality was significantly 
associated with comorbidities (e.g., hypertension, COPD, coronary 
artery disease, heart failure, and chronic kidney disease) in 
COVID-19 patients (p < 0.05). Some studies found that comorbidity 
at presentation was an independent high-risk factor for COVID-19 
progression and mortality (20, 61). We  tried binary logistic 
regression analysis for prediction, and we found that comorbidity 
was associated with disease severity [OR (95% CI) =2.778 
(1.367 ~ 5.645), p = 0.005] and outcome [OR (95% CI) =2.628 
(1.338 ~ 5.161), p = 0.005], which meant that patients with 
comorbidities were more likely to progress to severe disease and 
poor outcome than those without. However, comorbidity did not 
rank high in our cohort relative to other variables (Figures 2, 3), 
likely because of the small sample sizes or that the clinical variables 
were indeed more predictive. Notably, previous studies did not 
directly compare comorbidities and other clinical variables, and 
thus it is not known or not well established whether comorbidities 
are more predictive of severity and outcome relative to other clinical 
variables. Further studies are warranted.

Several limitations deserve comment. First, the sample size was 
limited due to restrictions during the first-month epidemic wave. Some 
patients, especially in the outpatient clinic, had incomplete baseline 
clinical and laboratory data. Second, our study was a retrospective 
prediction of patients with known outcomes. We minimized bias by 
ensuring that the investigators processing the laboratory tests or baseline 
CTs automated AI algorithm were not aware of the patient outcomes 
before completing the data collection and image analyses. An expansion 
of sample size in a prospective study design would certainly contribute 
to further improving the generalizability of our results. Third, we only 
use one classifier algorithm. As there is no one-fits-all machine learning 
algorithm, different classifiers result in different performances. Future 
studies should focus on evaluating different algorithms and comparing 
their performance. The final limitation was the missing long-term data 

TABLE 6 Comparing prediction performance from various studies that used non-invasive measures.

Paper Models Patient cohort Predicted disease Performance evaluation

Gao et al. (43) LR, SVM, GBDT, NN COVID-19, Wuhan, China Mortality risk AUC = 0.9621, 0.9760, 0.9246

Hou et al. (42) RF, Xgboost, SVM, NN COVID-19, New York Mortality, ICU admission AUC = 0.89, 0.79

Gupta et al. (44) ECNN, ERNN Omicron, Kaggle and UCI 

dataset

Omicron infection AUC = 0.9880

Kim et al. (45) Multivariable logistic 

regression

Delta and Omicron, South 

Korean

Clinical course Correlation p = 0.02

Bao et al. (46) Multivariate regression Omicron, Shanghai, China Mortality Correlation p < 0.05

Xu et al. (47) DT, SVM, RF, AdaBoost, 

SMOTEENN

Omicron, Shanghai, China Duration of recovery AUC = 0.8975, 0.9353

Jayachandran et al. (48) The Kaplan–Meier method Omicron, Kerala, India Mortality Correlation p < 0.05

Ebell et al. (49) Logistic regression Omicron outpatient, 

Allentown, PA

Hospitalization risk AUC = 0.85–0.87

Zhu et al. (50) Multivariate regression, ROC 

curve analyses

Omicron, Nanjing, China Pneumonia AUC = 0.701

LR, logistic regression; SVM, support vector machine; GBDT, gradient boosted decision tree; NN, neural network; RF, random forest; ECNN, extended convolutional neural network; ERNN, 
extended recurrent neural network; ROC, receiver operating characteristic; DT, decision tree.
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(e.g., the outcome at 90 days) as it might offer additional information but 
was not available for this study.

5. Conclusion

Our study provided a comprehensive analysis and comparison 
between baseline chest CT and clinical assessment in disease severity 
and outcome prediction in Omicron pneumonia. The predictive 
model accurately predicts the severity and outcome of Omicron 
infection. Oxygen saturation, IL-6, and infiltration in chest CT were 
found to be important biomarkers. This approach has the potential to 
provide frontline physicians with an objective tool to manage Omicron 
patients more effectively in time-sensitive, stressful, and potentially 
resource-constrained environments.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and 
approved by the ethics committee of the Second Affiliated Hospital of 
Zhejiang University, School of Medicine. Written informed consent 
for participation was not required for this study in accordance with 
the national legislation and the institutional requirements.

Author contributions

JX designed the study and wrote the first draft of the manuscript. 
JX and ZC analyzed the imaging data. CM, MZ, and XX assisted with 
the study design and interpretation of findings. All authors have 
contributed to and approved the final manuscript.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmed.2023.1192376/
full#supplementary-material

References
 1. Maslo C, Friedland R, Toubkin M, Laubscher A, Akaloo T, Kama B. Characteristics 

and outcomes of hospitalized patients in South Africa during the COVID-19 omicron 
wave compared with previous waves. JAMA. (2022) 327:583–4. doi: 10.1001/
jama.2021.24868

 2. Cai J, Deng X, Yang J, Sun K, Liu H, Chen Z, et al. Modeling transmission of SARS-
CoV-2 omicron in China. Nat Med. (2022) 28:1468–75. doi: 10.1038/s41591-022-01855-7

 3. Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, et al. 
SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. (2021) 
19:409–24. doi: 10.1038/s41579-021-00573-0

 4. Pulliam JRC, van Schalkwyk C, Govender N, von Gottberg A, Cohen C, Groome 
MJ, et al. Increased risk of SARS-CoV-2 reinfection associated with emergence of 
omicron in South Africa. Science. (2022) 376:eabn4947. doi: 10.1126/science.abn4947

 5. Zhang X, Wu S, Wu B, Yang Q, Chen A, Li Y, et al. SARS-CoV-2 omicron strain 
exhibits potent capabilities for immune evasion and viral entrance. Signal Transduct 
Target Ther. (2021) 6:430. doi: 10.1038/s41392-021-00852-5

 6. Alsharif W, Qurashi A. Effectiveness of COVID-19 diagnosis and management 
tools: a review. Radiography. (2021) 27:682–7. doi: 10.1016/j.radi.2020.09.010

 7. Inui S, Gonoi W, Kurokawa R, Nakai Y, Watanabe Y, Sakurai K, et al. The role of 
chest imaging in the diagnosis, management, and monitoring of coronavirus disease 
2019 (COVID-19) insights. Imaging. (2021) 12:155. doi: 10.1186/s13244-021-01096-1

 8. Chassagnon G, Vakalopoulou M, Battistella E, Christodoulidis S, Hoang-Thi TN, 
Dangeard S, et al. AI-driven quantification, staging and outcome prediction of 
COVID-19 pneumonia. Med Image Anal. (2021) 67:101860. doi: 10.1016/j.
media.2020.101860

 9. Li K, Fang Y, Li W, Pan C, Qin P, Zhong Y, et al. CT image visual quantitative 
evaluation and clinical classification of coronavirus disease (COVID-19). Eur Radiol. 
(2020) 30:4407–16. doi: 10.1007/s00330-020-06817-6

 10. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated 
with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 
(2020) 18:844–7. doi: 10.1111/jth.14768

 11. Yuan M, Yin W, Tao Z, Tan W, Hu Y. Association of radiologic findings with 
mortality of patients infected with 2019 novel coronavirus in Wuhan, China. PLoS One. 
(2020) 15:e0230548. doi: 10.1371/journal.pone.0230548

 12. Simpson S, Kay FU, Abbara S, Bhalla S, Chung JH, Chung M, et al. Radiological 
Society of North America expert consensus document on reporting chest CT findings 
related to COVID-19: endorsed by the Society of Thoracic Radiology, the American 
College of Radiology, and RSNA. Radiol Cardiothorac Imaging. (2020) 2:e200152. doi: 
10.1148/ryct.2020200152

 13. Askani E, Mueller-Peltzer K, Madrid J, Knoke M, Hasic D, Bamberg F, et al. 
Computed tomographic imaging features of COVID-19 pneumonia caused by the Delta 
(B.1.617.2) and omicron (B.1.1.529) variant in a German nested cohort pilot study 
group. Tomography. (2022) 8:2435–49. doi: 10.3390/tomography8050202

 14. Tsakok MT, Watson RA, Saujani SJ, Kong M, Xie C, Peschl H, et al. Chest CT and 
hospital outcomes in patients with omicron compared with Delta variant SARS-CoV-2 
infection. Radiology. (2022) 306:261–9. doi: 10.1148/radiol.220533

 15. Yoon SH, Lee JH, Kim BN. Chest CT findings in hospitalized patients with SARS-
CoV-2: Delta versus omicron variants. Radiology. (2022) 306:252–60. doi: 10.1148/
radiol.220676

 16. Aujesky D, Fine MJ. The pneumonia severity index: a decade after the initial 
derivation and validation. Clin Infect Dis. (2008) 47:S133–9. doi: 10.1086/591394

 17. Raoult D, Zumla A, Locatelli F, Ippolito G, Kroemer G. Coronavirus infections: 
epidemiological, clinical and immunological features and hypotheses. Cell Stress. (2020) 
4:66–75. doi: 10.15698/cst2020.04.216

 18. Umakanthan S, Sahu P, Ranade AV, Bukelo MM, Rao JS, Abrahao-Machado LF, 
et al. Origin, transmission, diagnosis and management of coronavirus disease 2019 
(COVID-19). Postgrad Med J. (2020) 96:753–8. doi: 10.1136/postgradmedj- 
2020-138234

 19. CDC. Severe outcomes among patients with coronavirus disease 2019 
(COVID-19) - United States, February 12-march 16, 2020. Morb Mortal Wkly Rep. 
(2020) 69:343–6. doi: 10.15585/mmwr.mm6912e2

https://doi.org/10.3389/fmed.2023.1192376
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fmed.2023.1192376/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmed.2023.1192376/full#supplementary-material
https://doi.org/10.1001/jama.2021.24868
https://doi.org/10.1001/jama.2021.24868
https://doi.org/10.1038/s41591-022-01855-7
https://doi.org/10.1038/s41579-021-00573-0
https://doi.org/10.1126/science.abn4947
https://doi.org/10.1038/s41392-021-00852-5
https://doi.org/10.1016/j.radi.2020.09.010
https://doi.org/10.1186/s13244-021-01096-1
https://doi.org/10.1016/j.media.2020.101860
https://doi.org/10.1016/j.media.2020.101860
https://doi.org/10.1007/s00330-020-06817-6
https://doi.org/10.1111/jth.14768
https://doi.org/10.1371/journal.pone.0230548
https://doi.org/10.1148/ryct.2020200152
https://doi.org/10.3390/tomography8050202
https://doi.org/10.1148/radiol.220533
https://doi.org/10.1148/radiol.220676
https://doi.org/10.1148/radiol.220676
https://doi.org/10.1086/591394
https://doi.org/10.15698/cst2020.04.216
https://doi.org/10.1136/postgradmedj-2020-138234
https://doi.org/10.1136/postgradmedj-2020-138234
https://doi.org/10.15585/mmwr.mm6912e2


Xu et al. 10.3389/fmed.2023.1192376

Frontiers in Medicine 12 frontiersin.org

 20. Ji M, Yuan L, Shen W, Lv J, Li Y, Chen J, et al. A predictive model for disease 
progression in non-severely ill patients with coronavirus disease 2019. Eur Respir J. 
(2020) 56:2001234. doi: 10.1183/13993003.01234

 21. Ni Q, Sun ZY, Qi L, Chen W, Yang Y, Wang L, et al. A deep learning approach to 
characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images. Eur 
Radiol. (2020) 30:6517–27. doi: 10.1007/s00330-020-07044-9

 22. Wang YC, Luo H, Liu S, Huang S, Zhou Z, Yu Q, et al. Dynamic evolution of 
COVID-19 on chest computed tomography: experience from Jiangsu Province of China. 
Eur Radiol. (2020) 30:6194–203. doi: 10.1007/s00330-020-06976-6

 23. Yu Q, Wang Y, Huang S, Liu S, Zhou Z, Zhang S, et al. Multicenter cohort study 
demonstrates more consolidation in upper lungs on initial CT increases the risk of 
adverse clinical outcome in COVID-19 patients. Theranostics. (2020) 10:5641–8. doi: 
10.7150/thno.46465

 24. Li ZH, Zhang S, Zhang J, Huang KQ, Wang YZ, Yu YZ. MVP-net: multi-view FPN 
with position-aware attention for deep universal lesion detection. arXiv. (2019). doi: 
10.48550/arXiv.1909.04247

 25. Ronneberger O., Fischer P., Brox T. (2015). U-net: convolutional networks for 
biomedical image segmentation. In International Conference on Medical Image 
Computing and Computer-Assisted Intervention. 234–241.

 26. Wang X. Q., Zhang Q. Y., Zhou Z., Yu Y. Z., Wang Y. Z. (2020). Evaluating multi-
class segmentation errors with anatomical prior. IEEE International Symposium on 
Biomedical Imaging.

 27. Bazargan M, Elahi R, Esmaeilzadeh A. OMICRON: virology, immunopathogenesis, 
and laboratory diagnosis. J Gene Med. (2022) 24:e3435. doi: 10.1002/jgm.3435

 28. Fatima N, Khokhar SA, Farooq Ur Rehman RM. Chest CT-scan findings in COVID-19 
patients: the relationship between the duration of symptoms and correlation with the oxygen 
saturation level. J Pak Med Assoc. (2023) 73:60–3. doi: 10.47391/JPMA.5586

 29. Preti C, Biza R, Novelli L, Ghirardi A, Conti C, Galimberti C, et al. Usefulness of 
CURB-65, pneumonia severity index and MuLBSTA in predicting COVID-19 mortality. 
Monaldi Arch Chest Dis. (2022) 92:2054. doi: 10.4081/monaldi.2022.2054

 30. Satici C, Demirkol MA, Sargin Altunok E, Gursoy B, Alkan M, Kamat S, et al. 
Performance of pneumonia severity index and CURB-65 in predicting 30-day mortality in 
patients with COVID-19. Int J Infect Dis. (2020) 98:84–9. doi: 10.1016/j.ijid.2020.06.038

 31. Aalinezhad M, Alikhani F, Akbari P, Rezaei MH, Soleimani S, Hakamifard A. 
Relationship between CT severity score and capillary blood oxygen saturation in 
patients with COVID-19 infection. Indian J Crit Care Med. (2021) 25:279–83. doi: 
10.5005/jp-journals-10071-23752

 32. Effah CY, Miao R, Drokow EK, Agboyibor C, Qiao R, Wu Y, et al. Machine 
learning-assisted prediction of pneumonia based on non-invasive measures. Front Public 
Health. (2022) 10:938801. doi: 10.3389/fpubh.2022.938801

 33. Nuevo-Ortega P, Reina-Artacho C, Dominguez-Moreno F, Becerra-Muñoz VM, 
Ruiz-Del-Fresno L, Estecha-Foncea MA, et al. Prognosis of COVID-19 pneumonia can 
be early predicted combining age-adjusted Charlson comorbidity index, CRB score and 
baseline oxygen saturation. Sci Rep. (2022) 12:2367. doi: 10.1038/s41598-022-06199-3

 34. Qadir FI, Kakamad FH, Abdullah IY, Abdulla BA, Mohammed SH, Salih RQ, et al. 
The relationship between CT severity infections and oxygen saturation in patients 
infected with COVID-19, a cohort study. Ann Med Surg (Lond). (2022) 76:103439. doi: 
10.1016/j.amsu.2022.103439

 35. Ouyang SM, Zhu HQ, Xie YN, Zou ZS, Zuo HM, Rao YW, et al. Temporal changes 
in laboratory markers of survivors and non-survivors of adult inpatients with 
COVID-19. BMC Infect Dis. (2020) 20:952. doi: 10.1186/s12879-020-05678-0

 36. Shaik A, Chen Q, Mar P, Kim H, Mejia P, Pacheco H, et al. Blood hyperviscosity 
in acute and recent COVID-19 infection. Clin Hemorheol Microcirc. (2022) 82:149–55. 
doi: 10.3233/CH-221429

 37. Raptis CA, Hammer MM, Short RG, Shah A, Bhalla S, Bierhals AJ, et al. Chest CT 
and coronavirus disease (COVID-19): a critical review of the literature to date. AJR Am J 
Roentgenol. (2020) 215:839–42. doi: 10.2214/AJR.20.23202

 38. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, 
transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a 
review. JAMA. (2020) 324:782–93. doi: 10.1001/jama.2020.12839

 39. Jin C, Chen W, Cao Y, Xu Z, Tan Z, Zhang X, et al. Development and evaluation 
of an artificial intelligence system for COVID-19 diagnosis. Nat Commun. (2020) 
11:5088. doi: 10.1038/s41467-020-18685-1

 40. Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B, et al. Using artificial intelligence to 
detect COVID-19 and community-acquired pneumonia based on pulmonary CT: 
evaluation of the diagnostic accuracy. Radiology. (2020) 296:E65–71. doi: 10.1148/
radiol.2020200905

 41. Shan F, Gao Y, Wang J, Shi W, Shi N, Han M, et al. Abnormal lung quantification 
in chest CT images of COVID-19 patients with deep learning and its application to 
severity prediction. Med Phys. (2021) 48:1633–45. doi: 10.1002/mp.14609

 42. Hou W, Zhao Z, Chen A, Li H, Duong TQ. Machining learning predicts the need 
for escalated care and mortality in COVID-19 patients from clinical variables. Int J Med 
Sci. (2021) 18:1739–45. doi: 10.7150/ijms.51235

 43. Gao Y, Cai GY, Fang W, Li HY, Wang SY, Chen L, et al. Machine learning based 
early warning system enables accurate mortality risk prediction for COVID-19. Nat 
Commun. (2020) 11:5033. doi: 10.1038/s41467-020-18684-2

 44. Gupta AK, Srinivasulu A, Hiran KK, Sreenivasulu G, Rajeyyagari S, Subramanyam 
M. Prediction of omicron virus using combined extended convolutional and recurrent 
neural networks technique on CT-scan images. Interdiscip Perspect Infect Dis. (2022) 
2022:1525615–1. doi: 10.1155/2022/1525615

 45. Kim MH, Nam Y, Son NH, Heo N, Kim B, Kang E, et al. Antibody level predicts 
the clinical course of breakthrough infection of COVID-19 caused by Delta and omicron 
variants: a prospective cross-sectional study. Open Forum Infect Dis. (2022) 9:262. doi: 
10.1093/ofid/ofac262

 46. Bao WJ, Fu SK, Zhang H, Zhao JL, Jin HM, Yang XH. Clinical characteristics and 
short-term mortality of 102 hospitalized hemodialysis patients infected with SARS-
CoV-2 omicron BA.2.2.1 variant in Shanghai, China. New Microbes New Infect. (2022) 
49-50:101058. doi: 10.1016/j.nmni.2022.101058

 47. Xu Y, Ye W, Song Q, Shen L, Liu Y, Guo Y, et al. Using machine learning models to 
predict the duration of the recovery of COVID-19 patients hospitalized in Fangcang 
shelter hospital during the omicron BA. 2.2 pandemic. Front Med (Lausanne). (2022) 
9:1001801. doi: 10.3389/fmed.2022.1001801

 48. Jayachandran AK, Nelson V, Shajahan ME. Chest CT severity score as a predictor 
of mortality and short-term prognosis in COVID-19. J Family Med Prim Care. (2022) 
11:4363–7. doi: 10.4103/jfmpc.jfmpc_209_22

 49. Ebell MH, Hamadani R, Kieber-Emmons A. Development and validation of simple 
risk scores to predict hospitalization in outpatients with COVID-19 including the 
omicron variant. J Am  Board Fam Med. (2022) 35:1058–64. doi: 10.3122/
jabfm.2022.220056R1

 50. Zhu K, Ma S, Chen H, Xie J, Huang D, Fu C, et al. Value of laboratory indicators 
in predicting pneumonia in symptomatic COVID-19 patients infected with the SARS-
CoV-2 omicron variant. Infect Drug Resist. (2023) 16:1159–70. doi: 10.2147/IDR.
S397231

 51. González J, Benítez ID, Carmona P, Santisteve S, Monge A, Moncusí-Moix A, 
et al. Pulmonary function and radiologic features in survivors of critical 
COVID-19: a 3-month prospective cohort. Chest. (2021) 160:187–98. doi: 
10.1016/j.chest.2021.02.062

 52. Besutti G, Giorgi Rossi P, Ottone M, Spaggiari L, Canovi S, Monelli F, et al. 
Inflammatory burden and persistent CT lung abnormalities in COVID-19 patients. Sci 
Rep. (2022) 12:4270. doi: 10.1038/s41598-022-08026-1

 53. Yazdi NA, Ghadery AH, Seyed Alinaghi S, Jafari F, Jafari S, Hasannezad M, et al. 
Predictors of the chest CT score in COVID-19 patients: a cross-sectional study. Virol J. 
(2021) 18:225. doi: 10.1186/s12985-021-01699-6

 54. Kanne JP, Bai H, Bernheim A, Chung M, Haramati LB, Kallmes DF, et al. 
COVID-19 imaging: what we know now and what remains unknown. Radiology. (2021) 
299:E262–79. doi: 10.1148/radiol.2021204522

 55. Waller JV, Kaur P, Tucker A, Lin KK, Diaz MJ, Henry TS, et al. Diagnostic tools for 
coronavirus disease (COVID-19): comparing CT and RT-PCR viral nucleic acid testing. 
AJR Am J Roentgenol. (2020) 215:834–8. doi: 10.2214/AJR.20.23418

 56. Rubin GD, Ryerson CJ, Haramati LB, Sverzellati N, Kanne JP, Raoof S, et al. The 
role of chest imaging in patient management during the COVID-19 pandemic: a 
multinational consensus statement from the Fleischner society. Chest. (2020) 
158:106–16. doi: 10.1016/j.chest.2020.04.003

 57. Chen A, Zhao Z, Hou W, Singer AJ, Li H, Duong TQ. Time-to-death longitudinal 
characterization of clinical variables and longitudinal prediction of mortality in 
COVID-19 patients: a two-center study. Front Med (Lausanne). (2021) 8:661940. doi: 
10.3389/fmed.2021.661940

 58. Ende VJ, Singh G, Babatsikos I, Hou W, Li H, Thode HC, et al. Survival of 
COVID-19 patients with respiratory failure is related to temporal changes in gas 
exchange and mechanical ventilation. J Intensive Care Med. (2021) 36:1209–16. doi: 
10.1177/08850666211033836

 59. Liang W, Guan W, Chen R, Wang W, Li J, Xu K, et al. Cancer patients in SARS-
CoV-2 infection: a nationwide analysis in China. Lancet Oncol. (2020) 21:335–7. doi: 
10.1016/S1470-2045(20)30096-6

 60. Shen B, Hou W, Jiang Z, Li H, Singer AJ, Hoshmand-Kochi M, et al. 
Longitudinal chest X-ray scores and their relations with clinical variables and 
outcomes in COVID-19 patients. Diagnostics (Basel). (2023) 13:1107. doi: 10.3390/
diagnostics13061107

 61. Lu JQ, Musheyev B, Peng Q, Duong TQ. Neural network analysis of clinical 
variables predicts escalated care in COVID-19 patients: a retrospective study. PeerJ. 
(2021) 9:e11205. doi: 10.7717/peerj.11205

https://doi.org/10.3389/fmed.2023.1192376
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.1183/13993003.01234
https://doi.org/10.1007/s00330-020-07044-9
https://doi.org/10.1007/s00330-020-06976-6
https://doi.org/10.7150/thno.46465
https://doi.org/10.48550/arXiv.1909.04247
https://doi.org/10.1002/jgm.3435
https://doi.org/10.47391/JPMA.5586
https://doi.org/10.4081/monaldi.2022.2054
https://doi.org/10.1016/j.ijid.2020.06.038
https://doi.org/10.5005/jp-journals-10071-23752
https://doi.org/10.3389/fpubh.2022.938801
https://doi.org/10.1038/s41598-022-06199-3
https://doi.org/10.1016/j.amsu.2022.103439
https://doi.org/10.1186/s12879-020-05678-0
https://doi.org/10.3233/CH-221429
https://doi.org/10.2214/AJR.20.23202
https://doi.org/10.1001/jama.2020.12839
https://doi.org/10.1038/s41467-020-18685-1
https://doi.org/10.1148/radiol.2020200905
https://doi.org/10.1148/radiol.2020200905
https://doi.org/10.1002/mp.14609
https://doi.org/10.7150/ijms.51235
https://doi.org/10.1038/s41467-020-18684-2
https://doi.org/10.1155/2022/1525615
https://doi.org/10.1093/ofid/ofac262
https://doi.org/10.1016/j.nmni.2022.101058
https://doi.org/10.3389/fmed.2022.1001801
https://doi.org/10.4103/jfmpc.jfmpc_209_22
https://doi.org/10.3122/jabfm.2022.220056R1
https://doi.org/10.3122/jabfm.2022.220056R1
https://doi.org/10.2147/IDR.S397231
https://doi.org/10.2147/IDR.S397231
https://doi.org/10.1016/j.chest.2021.02.062
https://doi.org/10.1038/s41598-022-08026-1
https://doi.org/10.1186/s12985-021-01699-6
https://doi.org/10.1148/radiol.2021204522
https://doi.org/10.2214/AJR.20.23418
https://doi.org/10.1016/j.chest.2020.04.003
https://doi.org/10.3389/fmed.2021.661940
https://doi.org/10.1177/08850666211033836
https://doi.org/10.1016/S1470-2045(20)30096-6
https://doi.org/10.3390/diagnostics13061107
https://doi.org/10.3390/diagnostics13061107
https://doi.org/10.7717/peerj.11205

	Predicting omicron pneumonia severity and outcome: a single-center study in Hangzhou, China
	1. Introduction
	2. Materials and methods
	2.1. Patients
	2.2. CT image acquisitions
	2.3. CT image evaluations
	2.4. Features
	2.5. Support vector machine classification
	2.6. Statistical analyses

	3. Results
	3.1. Patients
	3.2. Imaging-based severity prediction
	3.3. Imaging-based outcome prediction

	4. Discussion
	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Conflict of interest
	Publisher’s note
	Supplementary material

	References

