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Background: Bladder cancer (BLCA) is a prevalent malignancy affecting the urinary 
system and is associated with significant morbidity and mortality worldwide. 
Dysregulation of tumor metabolic pathways is closely linked to the initiation and 
proliferation of BLCA. Tumor cells exhibit distinct metabolic activities compared 
to normal cells, and the purine metabolism pathway, responsible for providing 
essential components for DNA and RNA synthesis, is believed to play a crucial 
role. However, the precise involvement of Purine Metabolism Genes (PMGs) in the 
defense mechanism against BLCA remains elusive.

Methods: The integration of BLCA samples from the TCGA and GEO datasets 
facilitated the quantitative evaluation of PMGs, offering potential insights into 
their predictive capabilities. Leveraging the wealth of information encompassing 
mRNAsi, gene mutations, CNV, TMB, and clinical features within these datasets 
further enriched the analysis, augmenting its robustness and reliability. Through 
the utilization of Lasso regression, a prediction model was developed, enabling 
accurate prognostic assessments within the context of BLCA. Additionally, 
co-expression analysis shed light on the complex relationship between gene 
expression patterns and PMGs, unraveling their functional relevance and potential 
implications in BLCA.

Results: PMGs exhibited increased expression levels in the high-risk cohort of 
BLCA patients, even in the absence of other clinical indicators, suggesting their 
potential as prognostic markers. GSEA revealed enrichment of immunological 
and tumor-related pathways specifically in the high-risk group. Furthermore, 
notable differences were observed in immune function and m6a gene expression 
between the low- and high-risk groups. Several genes, including CLDN6, CES1, 
SOST, SPRR2A, MYBPH, CGB5, and KRT1, were found to potentially participate in 
the oncogenic processes underlying BLCA. Additionally, CRTAC1 was identified 
as potential tumor suppressor genes. Significant discrepancies in immunological 
function and m6a gene expression were observed between the two risk groups, 
further highlighting the distinct molecular characteristics associated with different 
prognostic outcomes. Notably, strong correlations were observed among the 
prognostic model, CNVs, SNPs, and drug sensitivity profiles.

Conclusion: PMGs have been implicated in the etiology and progression of 
bladder cancer (BLCA). Prognostic models corresponding to this malignancy aid 
in the accurate prediction of patient outcomes. Notably, exploring the potential 
therapeutic targets within the tumor microenvironment (TME) such as PMGs and 
immune cell infiltration holds promise for effective BLCA management, albeit 
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necessitating further research. Moreover, the identification of a gene signature 
associated with purine Metabolism presents a credible and alternative approach 
for predicting BLCA, signifying a burgeoning avenue for targeted therapeutic 
investigations in the field of BLCA.
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1. Introduction

Bladder cancer (BLCA) represents a prevalent malignancy with a 
substantial global burden in terms of both morbidity and mortality 
(1). Annually, more than 500,000 new cases of BLCA are reported 
worldwide, accompanied by approximately 200,000 deaths attributed 
to this disease (2). BLCA can be categorized into two main subtypes: 
muscle-invasive BLCA and non-muscle-invasive BLCA. While the 
non-muscle-invasive variant exhibits a favorable 5-year survival rate 
of 90%, a significant proportion (15–20%) of these patients undergo 
disease progression, leading to a marked decline in survival rate to a 
minimum of 60% (3). The primary treatment modalities for BLCA 
comprise surgical intervention and adjuvant chemotherapy (4). 
Nonetheless, the prognosis for patients remains bleak due to the 
occurrence of postoperative relapse, even following complete resection 
of the tumor with curative intent (5). Chemotherapy is predominantly 
employed for the management of muscle invasive or advanced 
BLCA. Nevertheless, the emergence of drug resistance in patients 
following chemotherapy renders them susceptible to tumor 
recurrence, disease progression, and ultimately, death (6). Therefore, 
the identification of therapeutic targets for BLCA and the molecular 
characterization of diagnostic biomarkers hold paramount importance 
for both fundamental and clinical investigations pertaining to 
this malignancy.

Nutrient absorption and metabolism are indispensable processes 
for all living organisms. Among the myriad of metabolites, purines 
hold immense significance as they serve as essential building blocks 
for DNA and RNA, making them vital for sustaining life (7). Moreover, 
purines are integral components of various biomolecules, including 
ATP, GTP, cAMP, NADH, and coenzyme A. These molecules play 
pivotal roles in diverse cellular processes such as energy production, 
cellular signaling pathways, redox metabolism, and fatty acid synthesis. 
Additionally, purines are implicated in immunological responses and 
mediate host-pathogen interactions, including tumor-host interactions 
(8). In mammalian cells, purine metabolism is primarily governed by 
two major pathways: the de novo synthesis pathway and the salvage 
pathway (9). While the salvage pathway, involving the recycling of 
degraded purine bases, caters to the majority of cellular purine 
requirements, rapidly proliferating cells and tumor cells exhibit 
heightened demands for purines, often met through upregulation of 
the de novo synthesis pathway. Notably, purines play a pivotal role in 
tumor cell replication, thus paving the way for the development of 
purine antimetabolites as the first-generation anticancer drugs, 
currently employed in the treatment of acute lymphocytic leukemia, 
acute myeloid leukemia, and chronic myeloid leukemia (10). These 
purine antimetabolites exert their therapeutic effect by inhibiting DNA 
synthesis and impeding cellular proliferation. Recently, the discovery 

of purinosomes, distinct organelles involved in purine metabolism, has 
shed light on their formation, tightly linked to the cell cycle (11). These 
intriguing findings propose a novel therapeutic strategy targeting 
purinosome assembly and purine metabolism, holding promise for 
innovative approaches in cancer therapy.

Tumor microenvironments (TME) encompass a complex milieu 
characterized by a constellation of unfavorable conditions, including 
hypoxia, heightened oxidative stress, acidic pH, and nutrient scarcity, 
which arise due to the uncontrolled proliferation of tumor cells 
coupled with inadequate angiogenesis (12). In response to these 
hostile TME factors, cancer cells undergo metabolic reprogramming, 
thereby acquiring distinct metabolic traits that confer them with a 
survival advantage and facilitate sustained growth, even under 
conditions of attenuated carcinogenic signaling. The reprogramming 
of energy metabolism is a hallmark feature of cancer, playing a pivotal 
role in driving cellular proliferation and division (13). Unlike their 
normal counterparts, cancer cells exhibit altered utilization patterns 
of glucose, lipids, and purines. Intriguingly, emerging evidence 
suggests that purine metabolism exerts a notable influence on 
oncogenesis and the metastatic cascade in cancer.

High-throughput data analysis, aided by advanced bioinformatic 
tools, has become a widely adopted approach to comprehensively 
unravel the functional networks of genes in diverse disease models. This 
strategy has proven invaluable in offering crucial insights into the 
molecular mechanisms underlying various pathological conditions (14). 
Within the realm of BLCA, bioinformatics studies have also emerged as 
a prominent field of investigation. These studies leverage the power of 
computational analyses to gain a deeper understanding of BLCA at the 
molecular level (15–17). With a plethora of ongoing bioinformatics 
investigations, the intricate complexities of BLCA are being unraveled, 
thereby providing valuable clues for potential therapeutic interventions. 
The precise etiology and mechanisms underlying the aberrant gene 
expression and perturbed purine metabolism in BLCA remain shrouded 
in mystery. Unraveling the intricate relationship between purine 
metabolism and the synthesis of BLCA holds great potential in 
identifying promising biomarkers and therapeutic strategies. In this 
context, we present a coherent framework to investigate the intricate 
interplay between purine metabolism and BLCA pathogenesis 
(Figure 1). Through this comprehensive study, we aim to decipher the 
complex molecular landscape of BLCA, opening up new avenues for 
innovative treatment modalities and personalized medicine approaches.

2. Materials and methods

The research methodology employed in this study was developed 
based on the approach described by Zixuan Wu et al. in 2022 (18).
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2.1. Datasets and PMGs

A total of 412 BLCA tissues and 19 normal tissues were included 
in this study, sourced from the esteemed repository, The Cancer 
Genome Atlas (TCGA) (19), as of February 26, 2023. To augment our 
understanding of BLCA at the molecular level, we further accessed 
microarray data on mRNA expression from publicly available 
resources, including the Gene Expression Omnibus (GEO) database. 
Specifically, we utilized datasets GSE13507, GSE48075, and GSE48276, 
alongside the corresponding platforms GPL6102, GPL6947, and 
GPL14951. The GEO database proved instrumental in maintaining 
the expression patterns of an additional 402 BLCA cases, as outlined 
in Supplementary Table S1A. Subsequently, a curated set of 175 PMGs 
was obtained from the Molecular Signatures Database (MSigDB), as 
presented in Supplementary Table S1B.

2.2. Identification of DEGs associated with 
purine metabolism and examination of 
mutation rates in DEGs

To obtain accurate mRNA data, transcription data were 
processed and organized using Perl scripting. The IDs were then 
converted into corresponding gene names. By comparing the data 
between the BLCA sample group and the normal sample group, 
significant changes in the expression of PMGs were observed. Genes 

with a FDR below 0.05 and a |log2FC| greater than or equal to 1 were 
considered DEGs. The relevance of these DEGs was 
further investigated.

The variant frequencies of the DEGs were evaluated using the 
Cbioportal platform. Correlation analysis between the expression of 
DEGs in the prognostic model and CNV was conducted using the 
Spearman method (p < 0.05) and visualized using the Corrplot R 
package. Furthermore, the correlation between the expression of 
DEGs in the prognostic model and drug sensitivity was assessed using 
the Pearman method (p < 0.05) based on the corresponding data 
from CellMiner.

2.3. Tumor categorization using the DEGs

To categorize tumors based on the identified DEGs, we conducted 
cluster analysis using the Limma and ConsensusClusterPlus packages. 
This analysis resulted in the classification of prognosis-related PMGs 
into two distinct clusters: cluster 1 and cluster 2. To assess the 
relationship between PMGs and patient survival, we  employed 
Survminer, which allowed us to investigate PMGs survivorship and 
evaluate their predictive value in terms of patient outcomes.

Furthermore, the Limma package was employed to identify 
specific gene alterations among different subtypes and tissue types. 
This analysis facilitated the identification of genes that exhibited 
significant changes in expression levels, providing valuable insights 

FIGURE 1

Framework.
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into the molecular distinctions between various tumor subtypes and 
tissue types.

2.4. The establishment of a predictive 
signature for PMGs

In order to develop a prognostic model for PMGs, we employed 
the glmnet and survival packages. The predictive signature for PMGs 
was constructed using Lasso-penalized Cox regression and 
Univariate Cox regression analysis. The risk score for each bladder 
cancer (BLCA) patient was determined based on the formula: 
(Coefficient DEGs1 × expression of DEGs1) + (Coefficient 
DEGs2 × expression of DEGs2) + … + (Coefficient DEGsn × 
expression DEGsn). This risk score was then used to stratify patients 
into two subgroups: low-risk (< median number) and high-risk (≥ 
median number).

Lasso regression was performed to identify the low-risk and high-
risk groups, and the results were visualized through appropriate plots. 
Subsequently, the confidence interval and risk ratio were calculated, 
and a forest diagram was generated using the pheatmap package. 
Survival curves were plotted to analyze the differences between the 
high-risk and low-risk groups.

To assess the accuracy of the prognostic model in predicting 
survival outcomes in BLCA, the timeROC package was utilized to 
generate a receiver-operating characteristics (ROC) curve for 
comparison. The risk score was evaluated in relation to the chance 
curve and examined for its association with PMGs’ risk and survival 
status. Additionally, an independent prognostic study was conducted 
to confirm the model’s reliability across different clinical factors. The 
relationship between clinical characteristics and the risk prediction 
model, as well as the relationship between the two PMGs in patients, 
were analyzed. The analysis of risk and clinical relationships was 
comprehensively performed.

Moreover, Principal Component Analysis (PCA) and 
T-distributed Neighbor Embedding (T-SNE) were employed using the 
Rtsne and ggplot2 packages to investigate the potential of the 
prognostic model to accurately categorize patients into two risk 
groups. By integrating the predictive signals, a representation was 
developed to predict the 1-, 3-, and 5-year overall survival (OS) of 
BLCA patients.

2.5. Functional enrichment of PMGs with 
differential expression

To gain insights into the biological functions and pathways 
associated with the differentially expressed PMGs, we performed GO 
and KEGG analyses. Using R, we  explored the BP, MF, and CC 
regulated by the differentially expressed PMGs.

2.6. The predicted nomogram and GSEA 
enrichment analysis

To identify relevant functions and pathway alterations across a 
range of samples, we employed GSEA. The accompanying scores and 
diagrams were used to assess the dynamic activities and pathways 

within the various risk subcategories. Each sample was labeled as 
either ‘H’ or ‘L’ based on the analysis results.

2.7. Comparison of immune activity levels 
in different subgroups

We utilized ssGSEA to evaluate the enriching values of immune 
cells and activities in different subgroups. Additionally, we examined 
the relationship between PMGs, immune checkpoints, and mRNA 
chemical modifications (such as m6A, m1A, M7G, and m5C). 
Furthermore, regulators of m6A, m1A, M7G, and m5C were identified 
to further investigate their connection with immune activity levels 
(20) (Supplementary Table S2).

3. Results

3.1. Differentially expressed PMGs

A comprehensive analysis was conducted to explore the relationship 
between purine metabolism and bladder cancer. Through differential 
gene expression analysis, a total of 112 genes were identified as being 
associated with purine metabolism, comprising 80 upregulated genes and 
32 downregulated genes (Supplementary Table S2; Figure 2A). To assess 
the potential interactions among these PMGs, a PPI network was 
constructed (Figure 2B). Notably, by applying a more stringent interaction 
threshold of 0.7, several hub genes were identified, including GMPS, 
ENTPD1, APRT, ENTPD8, ADSL, GUK1, and ITPA 
(Supplementary Table S3). It is worth mentioning that these hub genes 
encompassed all the differentially expressed genes observed in both 
normal and cancerous bladder tissues, thereby highlighting their potential 
as prognostic markers for BLCA. The correlation network of all PMGs is 
visually presented in Figure 2C.

Given the clinical significance of these PMGs, further 
investigations were conducted to explore the genetic aberrations 
within these genes. Specifically, the focus was on identifying the types 
of mutations that occurred. The analysis revealed that the most 
prevalent types of mutations were truncating variants and missense 
variants (Figure 2D). Among the analyzed genes, a total of 16 genes 
exhibited a mutation rate exceeding 5%, with POLR2K and ADCY2 
being the most frequently altered genes, occurring in 15% of the cases. 
These findings shed light on the genetic landscape of bladder cancer, 
emphasizing the importance of studying the genetic anomalies within 
these PMGs due to their clinical implications.

3.2. Alterations of purine metabolism 
regulatory genes are associated with 
clinicopathological and molecular 
characteristics

We conducted an investigation into the association between 
alterations in regulatory genes involved in PyM and the 
clinicopathological parameters of patients. By performing correlation 
analyses between the expression levels of DEGs in the prognostic 
model and SNPs, we identified four SNP-driven DEGs, namely TP53, 
ELF3, KMT2C, and SPTAN1 (Figure 3A). Notably, the expression of 
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TP53 was significantly higher in the group with single mutations 
compared to the group without mutations, indicating that SNPs in 
BLCA may lead to dysregulation of crucial genes (p < 0.05) (Figure 3B). 
To visually represent the gene mutation status, a waterfall plot was 
utilized. The average mutation frequency of DEGs within the 
prognostic model ranged from 12% to 50% (Figures 3C,D), suggesting 
a potential relationship between BLCA mutations and the 
dysregulation of key genes. Additionally, we examined the correlation 
between the expression levels of DEGs in the prognostic model and 
CNVs, revealing several CNV-driven DEGs (Figure 3E).

Furthermore, our medication prediction model highlighted certain 
genes that exhibited substantial differences (Supplementary Figure S1). 
Additionally, an analysis of the relationship between the expression 
levels of DEGs in the prognostic model and drug sensitivity revealed 
strong associations between multiple genes and drug sensitivity. 
Notably, KRT1 demonstrated a significant relationship with Nelarabine, 
Fluphenazine, Dexamethasone Decadron, Hydroxyurea, and 
Fludarabine, indicating potential medication pathways 
(Supplementary Figure S2). These findings provide valuable insights 
into the potential implications of DEGs and their association with drug 

sensitivity, thereby suggesting promising avenues for medication 
strategies in the context of BLCA.

3.3. Tumor categorization based on 
differentially expressed genes

To investigate the relationship between the expression of 
PMGs and BLCA, a consensus clustering analysis was performed 
on the entire cohort of 414 BLCA patients from the TCGA dataset. 
By setting the clustering variable (k) to 2, we  observed the 
strongest intragroup correlation and the weakest intergroup 
correlation, indicating that the 414 BLCA patients could 
be categorized into two distinct groups based on the expression 
patterns of their PMGs (Figure 4A). The heatmap visualization 
provides a comprehensive display of gene expression profiles along 
with corresponding clinical features (Figure  4B; 
Supplementary Table S4). Furthermore, a survival analysis was 
conducted to explore the prognostic potential of PMG subtypes, 
revealing that patients belonging to cluster 2 exhibited a 

FIGURE 2

Expressions of the 112 PMGs and their interactions. (A) A PPI network illustrating the interactions of PMG. (B) The Purine Metabolism gene correlation 
network. (C) Mutations in PMGs. 16 genes over a 5% mutation rate, with POLR2K and ADCY2 being the most often modified (15%). (D) The correlation 
network of the genes participating in autophagy (red line: positive correlation; blue line: negative correlation. The depth of the colors reflects the 
strength of the relevance).
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significantly higher survival rate compared to those in cluster 1 
(p = 0.011) (Figure 4C).

These findings highlight the significance of PMGs in tumor 
categorization and underscore their potential as prognostic markers 

for BLCA patients. The identified subtypes based on PMG expression 
patterns provide valuable insights into the heterogeneity of BLCA and 
may contribute to personalized therapeutic approaches and improved 
patient outcomes.

FIGURE 3

CNV, SNP and mutation analysis. (A) Correlation analysis in prognostic signatures and SNP. (B) The survival analysis of TP53. (C,D) The mutation 
distribution of genes in prognostic signatures. (E) CNV analysis.

FIGURE 4

Tumor categorization based on DEGs associated with purine metabolism. (A) The consensus clustering matrix (k  =  2) was used to divide 414 BLCA 
patients into two groups. Heatmap (B). The heatmap and clinicopathologic features of the two clusters identified by these DEGs (T, Grade, and Stage 
indicate the degree of tumor differentiation). p values were showed as:*p  <  0.05; **p  <  0.01; ***p  <  0.001. (C) Kaplan–Meier OS curves for the two 
clusters.
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3.4. Development of a prognostic gene 
model in the TCGA cohort

Through an extensive univariate Cox analysis, we identified nine 
significant PMGs that emerged as independent prognostic indicators 
for BLCA (Figure 5A). These PMGs, namely CLDN6, CES1, SOST, 
SPRR2A, CRTAC1, DSG3, MYBPH, CGB5, and KRT1, held 
considerable promise in predicting the prognosis of BLCA patients. 
To construct a robust gene signature, we  employed the LASSO 
regression analysis and Cox regression analysis, determining the 
optimal value for gene selection (Figures 5B,C). The resulting gene 
signature was associated with the risk scores of individual patients, 
revealing an inverse correlation with BLCA survival. Notably, the 
majority of the newly discovered PMGs exhibited a negative 
correlation with the risk model, necessitating further investigations 
into their functional roles (Figure 5D).

We found that the presence of high-risk PMG signatures was 
significantly associated with a lower likelihood of survival (p < 0.001, 
Figure  5E). The AUC values for the unique PMG signature in 

predicting the 1-, 3-, and 5-year survival rates were 0.631, 0.664, and 
0.735, respectively, indicating its predictive capacity (Figure 5F). Based 
on PCA and t-SNE results, patients were successfully stratified into 
two distinct groups, further validating the robustness of the gene 
signature (Figures 5G,H).

To enhance the clinical applicability of our findings, we developed 
a hybrid nomogram that integrated both clinicopathological 
characteristics from the TCGA dataset and the prognostic signature 
based on the selected PMGs. This nomogram demonstrated stability 
and accuracy, highlighting its potential as a valuable tool for guiding 
the therapy of BLCA patients (Figures 5I,J).

3.5. External validation of the risk signature

To validate the robustness and generalizability of our risk 
signature, we utilized an independent cohort from the GEO consisting 
of 402 BLCA patients. Consistent with the findings from the TCGA 
dataset, we observed an inverse relationship between the risk score 

FIGURE 5

The development of a risk signature in the TCGA cohort. (A) A Univariate Cox regression analysis of OS for each purine metabolism-related gene, with 
p  <  0.05 for 9 genes. (B) Regression of the 9 OS-related genes using LASSO. (C) Cross-validation is used in the LASSO regression to fine-tune 
parameter selection. (D) The patient’s chance of survival. (E) Kaplan–Meier curves for patients in the high- and low-risk groups’ OS. (F) The AUC for 
predicting the 1-, 3-, and 5-year survival rates of BLCA. (G) A PCA plot based on the risk score for BLCAs. (H) A t-SNE plot based on the risk score for 
BLCAs. (I,J) Nomogram.
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and BLCA survival in the validation group. Similarly, the majority of 
the newly identified PMGs in this study displayed a negative 
correlation with the risk model (Figure 6A).

Furthermore, the presence of high-risk PMG signatures was 
significantly associated with a diminished chance of survival 
(p = 0.020), as demonstrated by Kaplan–Meier analysis (Figure 6B). 
The AUC values for the unique PMG signature in predicting the 1-, 
3-, and 5-year survival rates were 0.660, 0.670, and 0.618, 
respectively (Figure 6C). It is worth noting that the relatively lower 
AUC values could be attributed to the high mortality rate observed 
within five years in the majority of BLCA patients. Nonetheless, the 
results of PCA and t-SNE indicated that patients with varying risk 
levels were effectively stratified into two distinct groups 
(Figures 6D,E).

These external validation results further consolidate the 
prognostic value and clinical relevance of our risk signature. The 
negative association between the risk score and BLCA survival was 
consistently observed in the GEO cohort. The AUC values indicate 
the predictive capacity of the PMG signature in the validation 
group, albeit considering the challenging nature of long-term 
survival prediction in BLCA. The successful stratification of patients 
into distinct risk groups based on the PCA and t-SNE results 
confirms the robustness and utility of our risk signature across 
different datasets.

3.6. Independent prognostic value of the 
risk model

Cox regression analysis was performed to evaluate the 
independent prognostic value of the PMGs signature in both the 
TCGA and GEO cohorts. In the TCGA cohort, the PMGs signature 
exhibited a strong independent predictive value for the OS of BLCA 
patients (HR: 3.940, 95% CI: 2.328–6.668) (Figures 7A,B). Similarly, 
in the GEO cohort, the N stage emerged as a predominantly 
independent prognostic factor (HR: 3.490, 95% CI: 1.535–7.933) 
(Figures  7C,D). Furthermore, a heatmap displaying the clinical 
features of the TCGA cohort was generated, providing a 
comprehensive overview of the various parameters assessed 
(Figure 7E; Supplementary Tables S5, S6).

These results underscore the robustness and independent 
prognostic value of the PMGs signature in predicting the OS of 
BLCA patients. The PMGs signature consistently demonstrated its 
significance across both the TCGA and GEO cohorts. The 
identification of the N stage as an independent prognostic factor 
further highlights the multifactorial nature of BLCA prognosis. 
The heatmap visualization provides a comprehensive 
representation of the clinical characteristics, emphasizing the 
complexity of BLCA and the potential implications of the 
identified prognostic factors.

FIGURE 6

The risk model was validated in the GEO cohort. (A) Each patient’s chance of survival. (B) Kaplan–Meier curves for patients in the high- and low-risk 
groups’ overall survival. (C) The AUC for predicting the 1-, 3-, and 5-year survival rates of BLCA. (D) A PCA plot based on the risk score for BLCA. (E) A 
t-SNE plot based on the risk score for BLCA.
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3.7. Enrichment analysis of PMGs

To gain deeper insights into the biological processes associated with 
the identified genes, we conducted a comprehensive GO enrichment 
analysis. This analysis revealed 378 core target genes that were 
significantly enriched in various functional categories, including BP, 
MF, and CC. In terms of MF, the enriched GO terms mainly involved 
guanyl nucleotide binding (GO:0019001), guanyl ribonucleotide 
binding (GO:0032561), and nucleoside binding (GO:0001882). These 
findings suggest the involvement of these genes in important molecular 
interactions and nucleotide-related processes. At the CC level, the 
enriched GO terms included the transferase complex, transferring 
phosphorus-containing groups (GO:0061695), nuclear chromosome 
(GO:0000228), and protein-DNA complex (GO:0032993). These results 
imply the presence of these genes in specific cellular compartments and 
their potential roles in processes related to protein-DNA interactions 
and chromosomal organization. Regarding BP, the enriched GO terms 
encompassed dephosphorylation (GO:0016311), RNA splicing 
(GO:0008380), and anatomical structure homeostasis (GO:0060249). 
These findings suggest the potential involvement of the identified genes 
in regulating phosphorylation events, RNA processing, and maintaining 
the homeostasis of anatomical structures.

To further explore the functional pathways associated with the 
identified genes, we  performed KEGG enrichment analysis. The 
overexpressed genes were predominantly involved in Huntington’s 
disease (hsa05016), the cAMP signaling pathway (hsa04024), and the 
cGMP-PKG signaling pathway (hsa04022). These findings provide 
valuable insights into the potential molecular mechanisms underlying 
bladder cancer and highlight specific pathways that may 
be dysregulated in the disease (Figure 8).

3.8. Analyses of gene set enrichment

The GSEA revealed that the prognostic signatures of most PMGs 
were associated with various immunological and tumor-related 

pathways. These pathways included allograft rejection, 
glycosaminoglycan biosynthesis chondroitin sulfate, ecm receptor 
interaction, and graft versus host disease. Each cluster exhibited the 
top 6 enriched functions or pathways (Figure 9; Table 1). Among 
them, the “nod-like receptor signaling pathway” showed the highest 
enrichment (Supplementary Tables S9A,B).

3.9. Comparison of immune activity levels 
in different subgroups

To investigate the immune landscape in different risk subgroups, 
we compared the enrichment scores of 16 immune cell types and the 
activity of 13 immune-related functions between the low-risk and 
high-risk groups in both the TCGA and GEO cohorts using single-
sample gene set enrichment analysis (ssGSEA). In the low-risk group, 
we observed significantly higher infiltration levels of various immune 
cell types, including activated dendritic cells (aDCs), CD8+ T cells, 
dendritic cells (DCs), macrophages, neutrophils, plasmacytoid 
dendritic cells (pDCs), T helper cells, T follicular helper cells (Tfh), T 
helper 1 cells (Th1), tumor-infiltrating lymphocytes (TILs), and 
regulatory T cells (Treg) (Figure 10A). These findings suggest a more 
favorable immune microenvironment in the low-risk subgroup, 
characterized by enhanced antitumor immune responses and immune 
cell infiltration.

Conversely, the high-risk group exhibited higher levels of immune-
related activities associated with immune suppression and immune 
evasion, including APC co-inhibition, APC co-stimulation, chemokine 
receptor signaling (CCR), immune checkpoint signaling, cytolytic 
activity, and major histocompatibility complex class I  (HLA) 
expression (Figure  10B). These results indicate a more 
immunosuppressive and immune evasive phenotype in the high-risk 
subgroup. Consistent conclusions were observed in the independent 
GEO cohort, further validating the differences in immune activity 
levels between risk subgroups (Figures  10C,D). Considering the 
importance of immune checkpoint inhibitors in cancer 

FIGURE 7

Cox regression analysis, both univariate and multivariate. (A) TCGA cohort multivariate analysis. (B) TCGA cohort univariate analysis. (C) GEO cohort 
multivariate analysis. (D) GEO cohort univariate analysis. (E) Heatmap (green: low expression; red: high expression) illustrating the relationships 
between clinicopathologic characteristics and risk groups (*p  <  0.05; **p  <  0.01; ***p  <  0.001).
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immunotherapy, we explored the differential expression of immune 
checkpoint genes between the low-risk and high-risk groups. We found 
significant alterations in the expression of immune checkpoint genes, 
including TNFSF14, CD80, PDCD1LG2, CD200, BTLA, TNFRSF9, 
TNFRSF18, and others (Figure 10E). These findings suggest potential 
differences in immune checkpoint regulation and responsiveness to 
immunotherapeutic interventions between the two subgroups.

To further validate the infiltration of these immune cell types, 
we utilized the CIBERSORT algorithm to assess their abundance in 
bladder cancer. Consistent with our previous findings, we observed 
significant differences in the immunoinfiltration levels of specific 
immune cell types, such as macrophages M0, macrophages M2, 
monocytes, and neutrophils, between the low-risk and high-risk 
subgroups (Figure 11). These results provide additional evidence for 
the distinct immune profiles associated with different risk categories 
in bladder cancer.

Overall, our findings highlight the contrasting immune landscapes 
in low-risk and high-risk subgroups, with the low-risk group 
exhibiting increased infiltration of effector immune cells and the high-
risk group showing signs of immune suppression and immune 
evasion. These findings have important implications for the 
development of immunotherapeutic strategies and highlight the 
potential of immune-based interventions in bladder cancer treatment.

3.10. mRNA chemical modifications

In terms of m6a modifications, significant differences in the 
expression of PMGs were observed between the two risk groups. FTO, 
ALKBH5, and WTAP showed higher significance in the high-risk 
group, while YTHDC2, METTL3, YTHDC1, and YTHDF2 exhibited 
higher significance in the low-risk group (Figure 12A). Regarding 
m1A modifications, ALKBH3 displayed significantly higher expression 
in the high-risk group compared to the low-risk group (Figure 12B). 
For M7G modifications, several genes including IFIT5, EIF4E2, 
CYFIP1, AGO2, GEMIN5, NCBP1, and NUDT11 showed significantly 
higher expression in the high-risk group (Figure 12C). In the case of 
m5C modifications, TRDMT1, DNMT1, YBX1, and ALYREF exhibited 
significantly higher expression in the high-risk group (Figure 12D).

4. Discussion

BLCA is a prevalent malignant tumor affecting the urinary system 
(21). In China, BLCA is the most common genitourinary malignancy, 
ranking second only to prostate cancer in the United States (22). The 
incidence of BLCA tends to increase with age, with the highest 
prevalence observed among individuals aged between 50 and 70 years 

FIGURE 8

For PMGs, GO, and KEGG analyses were performed. (A) The GO circle illustrates the scatter map of the selected gene’s logFC. (B) The KEGG circle 
illustrates the scatter map of the logFC of the indicated gene. The greater the Z-score value, the greater the expression of the enriched pathway.
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(23). Radical surgery represents the cornerstone of treatment for 
BLCA. However, due to the aggressive nature of the disease, 
postoperative complications such as anastomotic fistula, intestinal 

fistula, urinary tract infection, and urethral stricture frequently arise, 
leading to unfavorable prognoses and reduced survival rates (24). In 
recent years, various risk markers have been identified for different 

FIGURE 9

PMGs gene set enrichment studies. The top six enriched functions or pathways of each cluster were provided to illustrate the distinction between 
related activities or pathways in various samples. FDR q-value and FWER value of p were both <0.05.
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types of malignancies. Nonetheless, the application of these markers 
in clinical practice has remained largely theoretical, as rigorous 
evaluations and extensive replication studies are often lacking (25). 
Therefore, it is crucial to uncover reliable prognostic indicators for 
BLCA that can effectively identify individuals at high risk of disease 
progression. By doing so, appropriate interventions and treatment 
strategies can be implemented to improve patient outcomes.

Purine, a heterocyclic bicyclic aromatic molecule, plays a crucial 
role in various metabolic processes and cell signaling. One notable 
product of purine metabolism is uric acid, which tends to accumulate 
in the peripheral circulation when there is an increase in purine 
metabolism. During the process of tumor initiation and progression, 
several abnormalities in purine nucleotide metabolism occur. 
Numerous enzymes involved in purine nucleotide synthesis and 
degradation have been linked to tumor cell proliferation and resistance 
to treatment. Additionally, an imbalance in the antioxidant and 
pro-inflammatory properties of uric acid can contribute to the 
initiation and promotion of tumor formation. Abnormalities in purine 
nucleotide metabolism can disrupt gene and protein expression and 
affect cell behavior, including malignant transformation, invasion, and 
metastasis, by influencing signal transduction pathways. The specific 
features of nucleotide metabolism may vary among different tumor 
types. Several studies have shown a correlation between elevated 
blood uric acid levels and the occurrence of colorectal, liver, kidney, 
and other cancers. BLCA research has highlighted the importance of 
increased anaerobic metabolic pathways in cancer stem-like cells for 
tumor development, progression, and resistance to treatment. 
Although previous studies have mainly focused on the impact of 
individual regulators of purine metabolism in BLCA, the collective 
contributions of multiple genes involved in purine metabolism remain 
unclear (26). Investigating distinct patterns of purine metabolism 
during BLCA progression may provide insights into its underlying 
mechanisms and guide the development of targeted 
therapeutic approaches.

In this study, we  identified 112 DEGs associated with purine 
metabolism in BLCA. These DEGs were categorized into two distinct 
groups. Previous research has demonstrated a strong association 
between prognostic PMGs and BLCA outcomes. Notably, eight 
prognostic PMGs showed differential expression in high-risk 
individuals, with certain PMGs exhibiting overexpression in the high-
risk population (p < 0.05). To further investigate the role of PMGs in 
BLCA, we conducted survival analysis to evaluate their prognostic 
value. Patients with low-risk PMGs exhibited a higher probability of 
survival. Additionally, we observed significant expression of CLDN6, 

CES1, SOST, SPRR2A, MYBPH, CGB5, and KRT1 in the high-risk 
group, suggesting their potential involvement as cancer-promoting 
genes in BLCA development. While these findings shed light on future 
research directions, further investigation is warranted to establish 
significant evidence regarding their influence on the expression of 
specific transcription factors involved in iron toxicity control, such as 
Fin56, NRF2, and SFRS9 (27–29). Furthermore, we  observed 
significant expression of CRTAC1 in the low-risk group, indicating its 
potential role as a tumor suppressor gene in BLCA. These findings 
provide valuable insights for future studies aimed at unraveling the 
molecular mechanisms underlying BLCA progression and identifying 
potential therapeutic targets.

We identified these genes as being associated with BLCA and 
Purine Metabolism by reviewing the literature. MYBPH is a 
transcriptional target of TTF-1, a master regulator of lung 
development that plays a role as a lineage-survival oncogene in lung 
adenocarcinoma development (30). In an in vitro co-culture model of 
PC3 prostate cancer cells and osteoblasts, Aimy Sebastian revealed 
that reduced SOST expression in the tumor microenvironment might 
promote bone metastasis in prostate cancer via up-regulation of 
MALAT1 (31). Estrogen receptor β inhibits breast cancer cells 
migration and invasion through CLDN6-mediated autophagy (32). 
Melatonin inhibits lipid accumulation to repress prostate cancer 
progression by mediating the epigenetic modification of CES1 (33). 
Serum Small Proline-Rich Protein 2A (SPRR2A) Is a Noninvasive 
Biomarker in Gastric Cancer (34). Since these 8 PMGs were linked to 
the development of BLCA, these investigations support the validity 
and plausibility of our findings. The GSE13507, GSE48075, and 
GSE48276 Kaplan–Meier curves’ OS and ROC analyses suggested that 
a purine metabolism-related signature might be a valid prognostic 
predictor. Nonetheless, there has been a paucity of studies on the gene 
alterations associated with purine metabolism. As a result, more 
research is needed to uncover the mechanism of PMGs changes and 
to identify and confirm the existing findings.

In our study, we investigated the impact of purine metabolism on 
BLCA. Through KEGG analysis, we found that Purine Metabolism 
Deficiency, which is exacerbated by hypertension, can be effectively 
suppressed by Naringin, a bi-flavonoid, in a rat model (35). This 
suppression is mediated through the NOS/cAMP/PKA and DARPP-
32, BDNF/TrkB pathways. Additionally, we discovered that MoImd4, 
a regulator in Magnaporthe oryzae, influences proliferation and 
pathogenicity by facilitating crosstalk between MoPdeH-cAMP 
signaling and purine metabolism. Our findings highlight the 
significant role of purine metabolism in BLCA (36). Notably, the 

TABLE 1 The top six enriched functions or pathways.

Name ES NES NOM p-val FDR q-val

Allograft rejection 0.761138 1.7877699 0.021276595 0.03481406

Glycosaminoglycan biosynthesis 

chondroitin sulfate
0.7352404 2.0292728 0 0.006975394

Ecm receptor interaction 0.7297853 2.2827163 0 0

Graft versus host disease 0.71909297 1.6616324 0.054 0.061480176

Renin angiotensin system 0.684217 1.8742491 0.004219409 0.02193081

Complement and coagulation cascades 0.67470324 2.1027026 0.002040816 0.002401257
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nod-like receptor signaling pathway emerged as the most highly 
enriched pathway in GSEA. Recent studies have revealed that certain 
botanicals and natural products have the ability to modulate NOD-like 

receptor signaling. NOD-like receptors (NLRs) are critical regulators 
involved in carcinogenesis, angiogenesis, cancer cell stemness, and 
chemoresistance, particularly in response to inflammation (37, 38). 

FIGURE 10

The ssGSEA scores are compared. (A,B) Comparison of the enrichment scores of 16 kinds of immune cells and 13 immune-related pathways in the TCGA 
cohort between the low-risk (green box) and high-risk (red box) groups. (C,D) In the GEO cohort, tumor immunity was compared between the low-risk 
(blue box) and high-risk (red box) groups. p values were shown as follows: ns not significant; *p < 0.05; **p < 0.01; ***p < 0.001. (E) Immune checkpoint.
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NLRs detect pathogen-associated molecular patterns, leading to the 
activation of other signaling regulators such as Rip2 kinase, NF-B, 
MAPK, and ASC/caspase-1, ultimately resulting in cytokine 
production (39). Considering these findings, it is plausible that PMGs 
may exert their influence on BLCA cell migration and proliferation 
through modulation of the nod-like receptor signaling pathway. 
Furthermore, several clinical studies have confirmed the impact of 
purine metabolism on the survival of BLCA patients. For instance, in 
Jacyna’s study, a distinct profile of 17 metabolites was observed in the 
urine of BCa patients compared to healthy individuals. These 
metabolites are primarily involved in amino acid metabolism, 
pyrimidine and purine metabolism, and energy metabolism, indicating 
their potential significance in the pathophysiology of BCa (40).

This study provides an accurate prediction of the survival 
outcomes in patients with BLCA. The prognostic model based on 
PMGs demonstrates that an increase in the risk score is associated 
with a higher risk of death. The PMGs identified in this study hold 
promise as valuable biomarkers for predicting patient outcomes in 
BLCA. Recent research has unveiled the intricate connection between 
various cell death mechanisms and the immune response against 

cancer (41). ICIs have revolutionized cancer treatment by unleashing 
the anticancer potential of the immune system. Activation of 
programmed cell death pathways such as pyroptosis, ferroptosis, and 
necroptosis in ICI-resistant tumors has been found to synergistically 
enhance the anticancer efficacy. Furthermore, the involvement of 
insulin in the regulation of immune checkpoints has been investigated, 
particularly in the context of pancreatic ductal adenocarcinoma cells 
(42). Insulin signaling pathways, including increased expression of 
InsR-A in A818-6 cells and modulation of the adaptor protein Gab1 in 
BxPc3 cells, contribute to the enhancement of PD-L1 expression (43). 
Moreover, Kyrollis Attalla has identified TIM-3 and TIGIT as 
promising targets for monotherapy or combination therapy with 
other immune checkpoint inhibitors in patients with urothelial cancer 
of the bladder. These findings provide valuable insights into the 
interplay between ICIs, mRNA chemical modifications (such as m6a), 
and purine metabolism. The observed alterations in PMGs are likely 
to play a crucial role in the initiation and progression of BLCA, 
shedding light on its etiology and development.

The link between purine metabolism and BLCA has been relatively 
underexplored in scientific literature. However, recent bioinformatics 

FIGURE 11

The CIBERSORT scores are validated.
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studies have provided valuable insights into this association in the 
context of cancer (7, 44–46). For instance, Hu et al. identified the 
susceptibility of pancreatic cancer to the combined targeting of de novo 
purine synthesis and glycolysis in the presence of MTAP deficiency. 
Similarly, Yang et  al. developed a Purine and Uric Metabolism 
Signature, highlighting the prognostic value of peripheral blood uric 
acid levels in hepatocellular carcinoma (HCC). Additionally, Su et al. 
constructed a novel HCC prediction model incorporating five PMGs, 
enabling the prediction of patient prognosis. Building upon these 
seminal works, our study supplements existing knowledge by 
incorporating additional PMGs data from the continually updated 
TCGA database. TCGA data served as the primary analysis, with GEO 
data utilized for model validation, ensuring robustness. The inclusion 
of GO and KEGG analyses, as well as GSEA analysis, further 
strengthens the credibility of our findings. Moreover, to enhance the 
reliability of the results, multiple databases were employed to evaluate 
immune cells and functions. Nevertheless, it is essential to acknowledge 
certain limitations, including the reliance on public databases and the 
need for further validation of protein expression in larger datasets, as 
protein expression may diverge from RNA expression.

5. Conclusion

The present study delineates the regulatory functions of 
PMGs and elucidates the underlying factors governing diverse 

clinical outcomes and immunotherapy responses in BLCA across 
various PMG regulatory patterns. A meticulous exploration of 
individual PMG regulatory patterns not only facilitates the 
development of personalized immunotherapy strategies for BLCA 
patients but also enhances our understanding of BLCA immune 
cell characterization. Moreover, the primary objective of this 
research is to identify and comprehensively profile the gene 
signatures associated with PMG-related regulators in BLCA. The 
diverse array of PMG modification patterns significantly 
contributes to the intricate diversity and complexity of the 
TME. Additionally, a predictive model based on PMG signatures 
has been devised, offering the potential to forecast the clinical 
course of BLCA.
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