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Atherosclerosis (AS) is characterized by the accumulation of lipids, fibrous

elements, and calcification in the innermost layers of arteries. Vascular calcification

(VC), the deposition of calcium and phosphate within the arterial wall, is an

important characteristic of AS natural history. However,medial arterial calcification

(MAC) di�ers from intimal calcification and cannot simply be explained as

the consequence of AS. Endothelial cells (ECs) and vascular smooth muscle

cells (VSMCs) are directly involved in AS and VC processes. Understanding the

communication between ECs and VSMCs is critical in revealing mechanisms

underlying AS and VC. Extracellular vesicles (EVs) are found as intercellular

messengers in kinds of physiological processes and pathological progression.

Non-coding RNAs (ncRNAs) encapsulated in EVs are involved in AS and VC,

including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular

RNAs (circRNAs). The e�ects of ncRNAs have not been comprehensively

understood, especially encapsulated in EVs. Some ncRNAs have demonstrated

significant roles in AS and VC, but it remains unclear the functions of the majority

ncRNAs detected in EVs. In this review, we summarize ncRNAs encapsulated in

EC-EVs and VSMC-EVs, and the signaling pathways that are involved in AS and VC.

KEYWORDS

atherosclerosis (AS), vascular calcification (VC), extracellular vesicles (EVs), non-coding
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1. Introduction

Atherosclerosis (AS) is associated with systemic risk factors, including hypertension,

hyperlipidemia, and diabetes mellitus, and is characterized by the accumulation of lipids,

fibrous elements, and calcification in the innermost layers of arteries (1, 2). Several cell

types are directly involved in the pathological progression of AS, such as endothelial

cells (ECs), vascular smooth muscle cells (VSMCs), platelets, and foam cells (3). As a

cellular monolayer lining the blood vessel wall, ECs first contact endogenous metabolite-

related signals in the bloodstream, in which ECs function as danger signal sensors (4).
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ECs play an important role in inhibiting AS by regulating vascular

tension and regulating inflammation (5). However, ECs can

respond to oxidized low-density lipoprotein (ox-LDL) through

different mechanisms, including EC dysfunction (6). Endothelial

dysfunction is essential in the pathogenesis of AS (7–10), which

releases inflammatory cytokines to VSMCs contributing to AS,

including interleukin-1β (IL-1β), tumor necrosis factor-a (TNF-α),

and transforming growth factor-β (TGF-β) (11, 12). VSMCs are the

sole component of the center layer of the vessel wall, the tunica

media (13). VSMCs are hypothesized whose principal function

is contraction, so the contribution of VSMCs to AS has been

greatly underestimated (14, 15). VSMCs have remarkable plasticity

and reprogramming capacity during the complex AS process,

including contractile phenotype, macrophage-like, foam cell-

like, osteochondrogenic-like, myofibroblast-like, and mesenchymal

stem cell-like (11, 16). The hypothesis that VSMCs possess a

“transitional stage between smooth muscle and foam cells” has

Abbreviations: AS, Atherosclerosis; VC, Vascular calcification; MAC, Medial

arterial calcification; ECs, Endothelial cells; VSMCs, Vascular smooth muscle

cells; EVs, Extracellular vesicles; ncRNAs, Non-coding RNAs; miRNAs,

microRNAs; lncRNAs, Long non-coding RNAs; circRNAs, Circular RNAs;

EC-EVs, EVs derived from ECs; HUVECs-EVs, EVs derived from HUVECs;

VSMC-EVs, EVs derived from VSMCs; HCASMC-MPs, MPs derived from

HCASMC; ox-LDL, Oxidized low-density lipoprotein; IL-1β, Interleukin-

1β; TNF-α, Tumor necrosis factor-a; TGF-β, Transforming growth factor-

β; KLF4, Krüppel-like factor 4; IAC, Intimal arterial calcification; mRNAs,

Messenger RNAs; miRNA-seq, miRNA-sequence; RNA-seq, RNA-seq; LPS,

Lipopolysaccharide; HUVECs, Human umbilical vein endothelial cells;

HASMCs, Human aortic smooth muscle cells; Dlk1, Delta-like 1 homolog;

NF-κB, Nuclear factor-κB; AKT, Serine/threonine kinase; ox-LDL-VSMC,

ox-LDL-induced VSMC; ox-LDL-HUVEC, ox-LDL-induced HUVEC; HMGB1,

High-mobility group box 1; KLF2, Krüppel-like factor 2; eNOS, Endothelial

nitric oxide synthase; RHEB, Ras homolog enriched in brain; cGMP, Cyclic

guanosine monophosphate; PKG1, Protein kinase 1; NETs, Neutrophil

extracellular traps; VEGFA, Vascular endothelial growth factor A; MPs,

Microparticles; SOCS3, Suppressor of cytokine signaling 3; JAK2, Janus

kinase 2; STAT3, Signal transducer and activator of transcription 3; HIF-1α,

Hypoxia-induced factor-1; HAECs, Human aortic endothelial cells; ox-LDL-

EVs, EVs derived from ox-LDL condition; HP-EVs, EVs derived from high

phosphate condition; HCAECs, Human coronary artery vascular endothelial

cells; THBS1, Thrombospondin 1; ApoE(-/-), Apolipoprotein E knockout;

HP, High phosphate; AEG-1, Astrocyte elevated gene-1; CXCR6, C-X-C

motif chemokine receptor 6; MMP2, Matrix metalloproteinase 2; Wnt7b,

Wnt family member 7B; Pi, Inorganic phosphorus; Enpp1, Ectonucleotide

phosphodiesterase 1; CKD, Chronic kidney disease; CVD, Cardiovascular

disease; PBS, Phosphate bu�er saline; AOAH, Acyloxyacyl hydrolase; NOD2,

Nucleotide-binding oligomerization domain containing 2; RBM47, RNA-

binding motif protein 47; Runx2, Runt-related transcription factor 2; Osx,

Osterix; AVICs, Aortic valve interstitial cells; HCASMC, Human coronary artery

smooth muscle cells; RhoA, Ras homolog family member A; CAD, Coronary

artery disease; IGF-1, Insulin-like growth factor-1; PGC-1α, Peroxisome

proliferator-activated receptor-γ coactivator-1α; sGC, Soluble guanylyl

cyclase; FH, Familial hypercholesterolemia; BMP2, Bone morphogenetic

protein-2; CAC, Coronary artery calcification; T2DM, Diabetes mellitus

type 2; β-GP, β-glycerophosphate; MVs, Microvesicles; MSCs, Mesenchymal

stem cells.

been demonstrated, which highlights the importance of VSMC

phenotypic modulation in AS (17–19). The switching of VSMCs to

macrophage-like cells may be driven by lipids accumulation which

was Krüppel-like factor 4 (KLF4) dependent (20, 21).

Vascular calcification (VC), the deposition of calcium and

phosphate within the arterial wall, is an important part of AS

natural history and an independent predictor of cardiovascular

morbidity and mortality (22–25). VC occurs in both the intimal

and medial layers of the arteries, and intimal arterial calcification

(IAC) is mainly involved in the calcification of atherosclerotic

lesions (26, 27). Calcifying vascular cells are derived from local

VSMCs, especially in IAC (28). On the contrary, medial arterial

calcification (MAC) is a chronic systemic vascular disorder

distinct from AS, in which its hallmark is the dissemination

and progressive precipitation of calcium phosphate within the

medial layer (29). MAC differs in several ways from the IAC

seen in atherosclerotic lesions, including cellular aging linked

to mechanical stress cooperated and buffered by ECs (27,

30, 31). Initially, VC was regarded as a passive degenerative

process, and now VC is elucidated to be a multifactorial

process through the phenotypic modulation of VSMCs (26,

32–36). It means that ECs have a potential role in MAC.

Correspondingly, endothelial dysfunction under aging or injured

condition promoted VC (37–39). More importantly, it has been

demonstrated that endothelial dysfunction aggravated MAC in

vivo (40, 41). Moreover, extracellular vesicles (EVs) found a novel

messenger in the cellular crosstalk between ECs and VSMCs in VC

(42, 43) (Figure 1).

Extracellular vesicles, as the generic term for particles,

are derived from cells and are delimited by a lipid bilayer

(44). Non-coding RNAs (ncRNAs), messenger RNAs (mRNAs),

and lipids encapsulated in EVs can involve in intracellular

function regulation and intercellular communication. It has

been reported that there were a growing number of studies

about microRNAs (miRNAs) encapsulated in EVs related to VC

(45–50). Nevertheless, there were few special studies aimed to

summarize the miRNAs encapsulated in EVs during intercellular

communication. Therefore, considering the prospect of cellular

communication through EVs, first, we propose to summarize

that the miRNAs have appeared in EVs derived from ECs (EC-

EVs) and EVs derived from VSMCs (VSMC-EVs) in the AS

and VC processes. Subsequently, we will discuss the potential

prospect of long non-coding RNAs (lncRNAs) and circular

RNAs (circRNAs) in EC-EVs and VSMC-EVs during AS and

VC formation.

2. The flexibility and versatility of
miRNAs encapsulated in EC-EVs in AS
and VC

The emerging role of EVs and intercellular communication has

gainedmomentum in the past few years. In the process of biological

message transferring from ECs to other cells, the presence of

EVs has been verified in numerous physiological and pathological

pathways, including AS and VC.
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FIGURE 1

EVs in the microenvironment of IAC in AS and MAC. (A) Three layers of arteries: tunica externa, tunica media (mainly composed of VSMCs), and

tunica intima (composed of ECs and subendothelial layer). VSMCs and ECs are both the donor cells and recipient cells in the microenvironment of

vascular. Circulating EVs in serum and EVs derived from VSMCs and ECs have been involved in cellular communication. (B) Platelet, monocyte,

macrophage, neutrophil, transitional VSMCs, and dysfunctional ECs are involved in AS and IAC. EVs derived from VSMCs and ECs are novel

messengers in the microenvironment of AS. (C) Dysfunctional ECs and transitional VSMCs are involved in MAC. EVs derived from VSMCs and ECs are

novel messengers in the microenvironment of MAC. EVs, extracellular vesicles; IAC, intimal arterial calcification; AS, atherosclerosis; MAC, medial

arterial calcification; VSMCs, vascular smooth muscle cells; ECs, endothelial cells. Created with BioRender.com.

2.1. miRNAs encapsulated in EC-EVs
regulate the process of AS

It has been shown that miRNAs encapsulated in EC-EVs

exerted atheroprotective or proatherogenic function in several

studies. The differential expression of miRNAs encapsulated in EC-

EVs during AS was analyzed by miRNA-Sequence (miRNA-seq)

(51, 52), providing a reasonable prospect to illuminate the detailed

mechanisms miRNAs are involved in. Here, miRNAs encapsulated

in EC-EVs including miR-92a-3p, miR-155-5p, miR-505-3p, miR-

19b-3p, and miR-4306 promoted AS, while miR-126-5p and miR-

145-5p inhibited AS process (53–61).

Xiang et al. (51) performed miRNA-Seq analysis and found

that EVs derived from lipopolysaccharide (LPS)-stimulated human

umbilical vein endothelial cells (HUVECs) promoted human aortic

smooth muscle cell (HASMC) proliferation and migration, in

which four upregulated miRNAs (including miR-27a-3p, miR-

126-5p, miR-155-5p, and miR-365b-3p) and nine downregulated

miRNAs (including let-7b-5p, miR-10a-5p, miR-10b-5p, miR-21-

3p, miR-30a-5p, miR-92a-3p, miR-125a-3p, miR-143-3p, and miR-

181a-2-3p) participated in various aspects of atherosclerotic lesion

formation. In another RNA-seq research, a significant upregulation

of 49 miRNAs (including miR-19b-3p and miR-126-5p) and

downregulation of 19 miRNAs in extra-virgin olive-induced

HUVECs-EVs compared to sunflower oil-induced HUVECs-EVs

were observed, which closely linked to the development of AS

(52). The finding of higher expression of miR-126-5p was detected

in both studies (51, 52). It is no coincidence that miR-126-5p

was found to have a linear relationship with coronary calcium in

outpatients with AS (53). However, the upregulation or transfection

of miR-126-5p promoted ECs proliferation by the suppression of

delta-like 1 homolog (Dlk1) and modulation of nuclear factor-

κB (NF-κB)-mediated serine/threonine kinase (AKT) signaling

pathway (62, 63). On the contrary, the upregulation or transfection

of miR-126-5p limited ox-LDL-induced VSMC (ox-LDL-VSMC)

proliferation and migration as an atheroprotective miRNA
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targeting high-mobility group box 1 (HMGB1) (64). In ECs

and VSMCs, miR-126-5p showed opposite regulation: miR-126-5p

promoted ECs proliferation and inhibited VSMCs proliferation and

migration. From above, we suppose that miR-126-5p encapsulated

in EC-EVs has a double atheroprotective regulation mechanism

when recipient cells assimilate it: it promoted ECs proliferation and

inhibited VSMCs proliferation and migration.

MiR-155, named miR-155-5p now according to miRNA online

database miRBase (https://www.mirbase.org/), was upregulated

according to the profile of miRNAs in EC-EVs (51) and was also

enriched in ox-LDL-HUVEC-EVs (54). By enhancing monocyte

activation toward proinflammatory M1 macrophages, miR-155

showed a proatherogenic function and was negatively regulated

by Krüppel-like factor 2 (KLF2) in an experimental mouse model

(54). MiR-155-5p has emerged as a significant component in AS

(65). In senescent HUVECs, upregulated miR-155-5p mediated

endothelial dysfunction through NF-κB/endothelial nitric oxide

synthase (eNOS) axis and inhibited the proliferation of ECs by

targeting Ras homolog enriched in brain (RHEB) expression (66–

68). In VSMCs, miR-155-5p inhibited the viability of VSMCs

and induced VSMCs phenotypic switching by inhibiting cyclic

guanosine monophosphate (cGMP)-dependent protein kinase 1

(PKG1) (69, 70). In both ECs and VSMCs, miR-155-5p inhibited

the proliferation and migration in AS by inhibiting AKT1 (71).

MiR-155-5p encapsulated in EC-EVs, as distinct from miR-126-

5p, was demonstrated as an element of inflammatory signal

transduction in AS.

Additionally, miR-505, called miR-505-3p at present, is also

highly expressed in exosomes from ox-LDL-HUVEC, which

was finally proved to be a proatherogenic factor by inducing

neutrophil extracellular trap (NET) formation in vitro (55). MiR-

505-3p markedly inhibited the proliferation, migration, and tube

formation capacity of HUVECs by targeting vascular endothelial

growth factor A (VEGFA) (72, 73). Therefore, circulating miR-

505-3p was a prognostic biomarker of endothelial dysfunction

and inflammation in hypertension patients (74, 75). However, the

biological function of miR-505-3p in VSMCs has not been reported,

leaving to further investigation.

MiR-19b encapsulated in HUVECs-EVs mentioned above (52),

the previous name of miR-19b-3p, reduced HUVECs migration

and damaged lymphatic system function by negatively regulating

TGF-βRII expression (56, 76). MiR-19b-3p in endothelial

microparticles (MPs) exaggerated AS by targeting the suppressor

of cytokine signaling 3 (SOCS3) (77). The upregulation of miR-

19b-3p in ECs contributed to endothelial dysfunction by inhibiting

syndecan-1 mRNA and protein expression (78–80). MiR-19b-3p

exerted an inflammatory effect on the vascular microenvironment

and promoted human retinal microvascular ECs apoptosis through

SOCS6-mediated Janus kinase 2 (JAK2)/signal transducer and

activator of transcription 3 (STAT3) axis (81, 82). Similarly, miR-

19b-3p reduced hypoxia-induced HUVECs apoptosis, autophagy,

and inflammation by the inhibition of hypoxia-induced factor-1

(HIF-1α) (83). MiR-19b-3p was increased by more than 3-fold

in LPS-ECs (84). Inhibition of miR-19b-3p reduced TNF-α and

IL-1β expression levels in ox-LDL-HUVEC and AS mice (85)

and mitigated endothelial dysfunction (86). Overexpression of

miR-19b-3p in human aortic endothelial cells (HAECs) caused

intracellular reactive oxygen species accumulation, promoting

apoptosis (87). However, Li et al. adopted a different perspective

toward the role of miR-19b-3p in AS (88, 89). MiR-19b-3p

inhibited HUVECs proliferation, migration, and angiogenesis

targeting STAT3, which may, however, delay unstable plaque

progression in patients with unstable angina (88, 89). This opinion

was contrary to the mentioned studies (85–87). This was not

the only case, Tang et al. (90) demonstrated that miR-19b-3p

attenuated TNF-α-induced ECs apoptosis. We speculate that

this biological difference might be due to the different stimuli

(LPS, TNF-α, and so on), the different types of ECs (HAECs and

HUVECs), and different periods of AS.

Furthermore, miR-4306 encapsulated in EVs derived from

ox-LDL condition (ox-LDL-EVs) from human coronary artery

vascular endothelial cells (HCAECs) upregulated the AKT/NF-κB

signaling pathway enhancing the lipid formation of human

monocyte-derived macrophages (HMDMs), while miR-4306

encapsulated in ox-LDL-EVs from HMDMs inhibited capillary

tubule formation of HCAECs in vitro (57). Wang et al. (91) found

that miR-4306 plays a key role in urban particulate matter-induced

endothelial damage. As a result, miR-4306 manifested promotion

in AS.

The previously reported MiR-92a-3p, named miR-92 or miR-

92a before, performed a different function with its recipient

cells during AS (51). MiR-92a-3p encapsulated in EVs from

HUVEC treated with TNF-α or subjected to shear flows could

be transported to macrophages to suppress KLF4, leading

to the atheroprone phenotypes of macrophage in AS (58).

The progression of AS was associated with a maladaptive

form of angiogenesis which contributed to plaque disruption

and intraplaque hemorrhage (92). Independent atherosclerotic

stimuli (ox-LDL and IL-6) increased miR-92a-3p expression in

donor HCAEC-EVs, promoting an angiogenic phenotype in the

recipient ECs through the downregulation of thrombospondin 1

(THBS1) (59). Meaningfully, miR-92a-3p encapsulated in HCAEC-

EVs increased in a balloon injury rat model and inhibited

the atheroprotective expression of KLF2 (60). Uremic toxins

accumulation upregulated the expression level of miR-92a-3p in

ECs, contributing to endothelial dysfunction (93). MiR-92a-3p

overexpression inhibited VSMCs proliferation andmigration, while

miR-92a-3p inhibition promoted the proliferation andmigration of

VSMCs via the KLF4 pathway (94, 95). MiR-92a-3p encapsulation

in EC-EVs demonstrated a double effect on AS when recipient

cells assimilate it: it promoted ECs phenotype switching while it

inhibited VSMCs proliferation and migration.

MiR-143 (miR-143-3p) and miR-145 (miR-145-5p)

encapsulated in KLF2-transduced or shear-stress-stimulated

HUVEC-EVs induced an atheroprotective HASMC phenotype

and reduced AS in the aorta of Apolipoprotein E Knock-Out

(ApoE(−/−)) mice (61), supporting the bioinformatic prediction of

Xiang et al. (51). MiR-143-3p and miR-145-5p have been reported

frequently, their roles in AS and VC are discussed later.

In brief, numerous studies show plenty of potential EC-

EV-miRNAs that are involved in the progress of AS and

illustrate the multiple signaling pathways. Particularly, miR-126-

5p was upregulated in EC-EVs in atherogenic condition, while

previous studies showed its atheroprotective effect, addressing the
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complicated role of miR-126-5p in the AS process. Further studies

are essential to explore the distribution of miR-126-5p between

EVs and cells, and how biological function diversities are feasible.

In addition, miR-155-5p promoted AS and KLF2 downregulated

the expression of miR-155-5p showing its atheroprotective role.

Correspondingly, the suppression of KLF2 by miR-92a-3p and the

suppression of KLF4 by miR-92a-3p lead to AS. Additionally, the

upregulation of miR-143-3p and miR-145-5p encapsulated in EC-

EVs was transduced by KLF2 and showed an atheroprotective

effect. KLF2, a shear-responsive transcription factor, was critical

because it played a major role in exerting atheroprotective effects

in ECs, which promised a novel target for AS prevention and

treatment (96, 97). Similarly, KLF4, as a therapeutic target of

atherosclerosis, regulates ECs inflammation, VSMC phenotypic

transformation, and foam cell formation during the process

of AS (98). Several miRNAs encapsulated in EC-EVs that

regulate the process of AS are summarized in Table 1 and

Supplementary Table 1.

2.2. miRNAs encapsulated in EC-EVs
regulate the process of VC

We have demonstrated for the first time that high phosphate

(HP)-induced EVs from HUVECs directly promoted and

accelerated VC through astrocyte elevated gene-1 (AEG-1) (99).

Furthermore, miRNAs encapsulated in EC-EVs demonstrated

significant messengers in the biogenesis of VC. Lin et al. (100)

found that miR-670-3p encapsulated in EC-EVs stimulated by

HP could target insulin-like growth factor-1 (IGF-1) resulting in

potentiating the VC process in vitro and in vivo. Freise et al. applied

EC-EVs with a miR-221 (miR-221-3p) inhibitor which provoked a

distinct reduction of VSMC calcification, and miR-143 or miR-145

mimics also provoked a distinct reduction of VSMC calcification

(101). MiR-29b (miR-29b-3p) and miR-126-5p in EC-EVs also

negatively regulated VC (102, 103). Additionally, we detected the

profile of miRNAs in HP-EVs from HUVECs by RNA-seq, finding

that miR-3182 increased while 13 known miRNAs decreased in

HP-EVs from HUVECs (104), indicating the potential function of

miRNAs encapsulated in EC-EVs during VC.

MiR-29b-3p was named miR-29b previously according to

miRBase. Wang et al. confirmed miR-29b-3p encapsulated

in endothelial exosomes mediated anti-calcification and was

associated with C-X-C motif chemokine receptor 6 (CXCR6)

(102). Similarly, miR-29b-3p downregulated VSMC calcification

by targeting matrix metalloproteinase 2 (MMP2) and Wnt family

member 7B (Wnt7b)/β-catenin signal (105–107). The expression of

miR-29b in the coronary artery calcification group was significantly

lower than that in the control group, indicating that decreased

miR-29b-3b level may be a coronary artery calcification risk factor

(108). However, it is a paradox that Fang et al. found that miR-29b

was increased in calcific aortic tissue and the inhibition of miR-

29b mitigated aortic calcification in tissues of calcific aortic valve

diseased rats via directly targeting TGF-β3 (109). Additionally,

inorganic phosphorus (Pi) stimulation increased miR-29b-3p

expression and overexpression of miR-29b-3p facilitated Pi-

induced VSMC calcification (110). Intriguingly, the level of

miR-29b shows no statistical significance in VSMCs during the

exposure of 3mM Pi, compared with normal VSMCs (111). Taken

together, miR-29b-3p encapsulated in EC-EVs inhibited VSMC

calcification, while the role of miR-29b-3p in VSMC calcification

is still ambiguous. Considering specific distribution, further studies

explaining the relationship between miR-29b-3p and VC are

required in the future.

Freise et al. (101) revealed that three miRNAs (miR-221,

miR-222, and miR-126) were significantly enhanced in uremic

toxins-induced-EVs from human ECs. Subsequently, VSMC

calcification was inhibited by a miR-221 inhibitor and a stronger

reduction with a miR-222 inhibitor. Both miR-221 and miR-

222 contribute to the atherogenic calcification of VSMCs (112).

Correspondingly, increased calcium deposition was observed in

the combined treatment of miR-221 and miR-222 that mimics

synergistically but not in individual treatments, with significant

changes in ectonucleotide phosphodiesterase 1 (Enpp1) and Pit-1

expression (113).

By contrast, Freise et al. (101) confirmed that the levels of

miR-143 and miR-145 were significantly decreased during VSMC

calcification. MiR-143 and miR-145 can both inhibit AS process as

mentioned above (61). Similarly, an individual transfection with

miR-143 or miR-145 mimics provoked a distinct reduction of

VSMC calcification and a stronger reduction in a concomitant

transfection (101). Massy et al. (114) suggested that decreasing

levels of miR-143, miR-145, and miR-126, and increasing levels

of miR-223 were potential biomarkers of vascular calcification

associated with chronic kidney disease (CKD). Elevated Pi

significantly downregulatedmiR-143 andmiR-145 and upregulated

miR-223 during VSMCs calcification in vitro and in ApoE(−/−)

mice (111, 115).

In conclusion, miR-143-3p and miR-145-5p inhibited VC,

whereas miR-221-3p and miR-222-3p potentiated VC.

Based on Freise et al. (101) and Massy et al. (114) studies, the

expression of miR-126 was found to be adverse, which probably

was attributed to the different distribution of miR-126 among EC-

EVs, VSMCs, and serum of CKD mice. Massy et al. (114) detected

that the expression of miRNAs (including miR-126, miR-143, miR-

145, and miR-223) in the endothelium or media of the thoracic and

abdominal aorta is different. For example, miR-126 expression of

VSMCs in the upper abdominal aorta is equal to ECs, lower than

ECs in the low thoracic and low abdominal aorta, and higher than

ECs in the upper thoracic (114). However, it must be remembered

that miR-126 is known as miR-126-3p, and miR-126∗ is referred to

as miR-126-5p. Due to some reason, the specific sequence of miR-

126 was not shown in all studies. As a result, miR-126 refers to

miR-126-3p as default. It suggested that miR-126 can be considered

a potential cardiovascular risk and VC biomarker in cardiovascular

disease (CVD) and cerebral troubles associated with CKD (53,

114, 116, 117). Additionally, miR-126 expression is increased in

CKD and ApoE(−/−) mice aorta (118). Furthermore, miR-126

markedly enhanced the regeneration of vascular smooth muscle

(119). In the progress of Pi-induced HASMCs calcification, miR-

126 was involved in the Wnt/β-catenin signaling pathway (120).

However, miR-126-5p encapsulated in HUVEC-EVs stimulated

with advanced glycation end-products led to the reduction of

calcium deposition by blocking the smad1/5/9 signaling pathway

both in vitro and in a mouse model (103). In short, the biological
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TABLE 1 miRNAs encapsulated in EC-EVs regulate the process of AS.

miRNA EVs origin Stimulation Expression Function References

miR-126-5p HUVEC LPS Up Various aspects of AS (51)

miR-155-5p HUVEC LPS Up Various aspects of AS (51)

miR-143-3p HUVEC LPS Down Various aspects of AS (51)

miR-92a-3p HUVEC LPS Down Various aspects of AS (51)

miR-126-5p HUVEC Extra-virgin-olive Up Closely linked to AS (52)

miR-19b-3p HUVEC Extra-virgin-olive Up Closely linked to AS (52)

miR-155-5p HUVEC ox-LDL Up Promoted AS (54)

miR-505-3p HUVEC ox-LDL Up Promoted AS (55)

miR-19b-3p HUVEC miR-19b-3p mimic Up Promoted AS (56)

miR-4306 HCAEC ox-LDL Up Promoted AS (57)

miR-92a-3p HUVEC TNF-α/shear flows Up Promoted AS (58)

miR-92a-3p HCAEC ox-LDL and IL-6 Up Promoted angiogenesis (59)

miR-92a-3p HCAEC Chrysin Down Promoted AS (60)

miR-143-3p HUVEC KLF2 /shear-stress Up Inhibited AS (61)

miR-145-5p HUVEC KLF2 /shear-stress Up Inhibited AS (61)

EVs, extracellular vesicles; HUVEC, human umbilical vein endothelial cell; HCAEC, human coronary artery vascular endothelial cell; LPS, lipopolysaccharide; AS, atherosclerosis; ox-LDL,

oxidized low-density lipoprotein; TNF-α, tumor necrosis factor-a; IL-6, interleukin-6; KLF2, Krüppel-like factor 2.

effects are different between miR-126-3p and miR-126-5p. The

upregulation of miR-126-3p encapsulated in EC-EVs probably

enhances VC, while the upregulation of miR-126-5p encapsulated

in EC-EVs prohibits VC. However, the versatility of miR-126-5p is

still worth exploring because of its atherogenic function. Thus, it is

necessary to validate these results in further study.

To determine whether the HP condition altered the profile

of miRNAs, we (104) detected the upregulation expression

of has-miR-3182, while the downregulation expression of 13

known hsa-miRs (including miR-10a-5p, miR-10b-5p, miR-30a-

3p, miR-30a-5p, miR-30c-2-3p, miR-99b-5p, miR-143-3p, miR-

193b-5p, miR-365a-5p, miR-486-5p, miR-941, and miR-7706)

in the HP-EC-EVs group compared to the PBS-EC-EVs group

by miRNA-seq bioinformatics analysis. Target mRNAs for hsa-

miR-3182 included acyloxyacyl hydrolase (AOAH), nucleotide-

binding oligomerization domain containing 2 (NOD2), and RNA-

binding motif protein 47 (RBM47), implying that miR-3182

might be a novel miRNA in an HP-induced VC. In addition,

accumulating evidence showed that AOAH, NOD2, and RBM47

were also related to AS, which has a close connection with

VC (121–124). Interestingly, miR-10a-5p, miR-10b-5p, miR-30a-

5p, and miR-143-3p were also downregulated and discovered

in accordance with the mentioned research (50), indicating the

protective roles of these miRNAs in the cardiovascular system.

Correspondingly, miR-30a-5p, known as miR-30a, attenuated

osteoblast maturation by suppressing runt-related transcription

factor 2 (Runx2) and smad1/5 (125). Nevertheless, miR-30a was

increased during osteogenic processes and the progression of VC

(126–129). MiR-143-3p, which was referred to as miR-143, has

been reported as a protective factor in AS and VC. MiR-486-5p,

called miR-486 previously, increased in the calcification of aortic

valve, promoting osteoblastic biomarkers Runx2, osterix (Osx),

and calcium deposition of human aortic valve interstitial cells

(AVICs) (130, 131). A further novel finding was that we discovered

another 34 novel hsa-miRNAs, which included 31 downregulated

miRNAs and 3 upregulated miRNAs. In the future, it is essential to

confirm our data through in vitro and in vivo experiments to take a

step forward.

We have discussed the ambiguous role of miR-29b-3p, anti-

calcification roles of miR-143-3p, miR-145-5p, and miR-126-5p,

and pro-calcification roles of miR-221-3p, miR-222-3p, and miR-

126-3p. Overall, the results above show a novel perspective in

intercellular communication during VC: miRNAs encapsulated in

EC-EVs potentiate an anti-calcification or pro-calcification effect

when transmitted to VSMCs. Several miRNAs encapsulated in EC-

EVs that regulate the process of VC are summarized in Table 2 and

Supplementary Table 2.

3. The flexibility and versatility of
miRNAs encapsulated in VSMC-EVs in
AS and VC

The phenotype change from the contractible type to the

synthetic type of VSMCs plays a crucial role in the biogenesis of

AS, VC, and vascular dysfunction. VSMCs are one of the main cells

implicated in AS, retaining remarkable plasticity (132). VSMCs can

adopt alternative phenotypes resembling foam cells contributing

to AS (133). VSMCs are also key players in VC, which transform

into calcifying VSMCs and secrete mineralizing EVs that form

microcalcifications, subsequently increasing plaque instability and

consequential plaque rupture (134). In this review, we summarized

miRNAs encapsulated in VSMC-EVs in the process of AS and VC.

Frontiers inMedicine 06 frontiersin.org

https://doi.org/10.3389/fmed.2023.1193660
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Yu et al. 10.3389/fmed.2023.1193660

TABLE 2 miRNAs encapsulated in EC-EVs regulate the process of VC.

miRNA EVs origin Stimulation Expression Function References

miR-670-3p Mice EC HP Up Promoted VC (100)

miR-221-3p Human EC Urea and indoxyl sulfate Up Promoted VC (101)

miR-222-3p Human EC Urea and indoxyl sulfate Up Promoted VC (101)

miR-126-3p Human EC Urea and indoxyl sulfate Up No effect on VC (101)

miR-143-3p Human EC Urea and indoxyl sulfate Down Inhibited VC (101)

miR-145-5p Human EC Urea and indoxyl sulfate Down Inhibited VC (101)

miR-29b-3p Mouse AEC Transverse aortic constriction Down Inhibited VC (102)

miR-126-5p HUVEC Advanced glycation end-products Up Inhibited VC (103)

miR-3182 HUVEC HP Up Further researched required (104)

miR-99b-5p HUVEC HP Down Further researched required (104)

EVs, extracellular vesicles; EC, endothelial cell; AEC, aortic endothelial cell; HUVEC, human umbilical vein endothelial cell; HP, high phosphate; VC, vascular calcification.

3.1. miRNAs encapsulated in VSMC-EVs
regulate the process of AS

The function and number of VSMCs in AS plaques according to

lineage-tracing studies have been greatly underestimated (135). The

majority of research on EVs that mediate cellular communication

between VSMCs and other cell types has focused on foam cells,

especially EVs from foam cells. As far as miRNAs are concerned,

a couple of studies have illuminated the atherogenic function of

miRNAs encapsulation in EVs from foam cells to VSMCs, including

miR-19b-3p, miR-21-3p, miR-106a-3p, andmiR-186-5p (136–139).

Here, we aimed to review miRNAs encapsulated in VSMC-EVs in

the progression of AS.

Gonzalo et al. (140) demonstrated first that MPs derived

from human coronary artery smooth muscle cells (HCASMCs)

contain miRNAs. Moreover, the packaging of both miR-143-3p

and miR-222-3p was decreased, which is considered a response to

hypercholesterolemia stress in HCASMC and conditioned medium

of AS (140). Thus, it is conceivable that miR-143-3p and miR-

222-3p in HCASMC-MPs would be a source of cardiovascular

biomarkers. In 2009, Boettger et al. defined the miR-143/145

gene cluster as a major regulator of the contractile phenotype

of VSMC (141). In 2012, Hergenreider et al. (61) elucidated a

novel pathway linking endothelial KLF2 expression to VSMC

phenotype regulating miR-143/145 and provided an intercellular

communication mediated by miR-143/145 encapsulated in EC-

EVs. In 2020, Chung et al. (142) demonstrated that miR-143 and

miR-145 downregulated Ras and Ras homolog family member A

(RhoA) expressions, which potentially prevented AS. Dégano et al.

(143) identified that miR-143-3p was independently associated with

time-to-coronary events and that a higher expression in healthy

individuals was related to less risk of an incident coronary artery

disease (CAD) event at 10 years. By contrast, González et al. (144)

suggested that miR-143-3p may be implicated in carotid plaque

instability by the modulation of IGF-IIR, contributing to AS.

The characteristics of miR-222-3p in the process of AS were

subtle, which were different from the ones in the process of VC,

as we summarized in EC-EVs. In 2010, Dentelli et al. demonstrated

that miR-222 acted as an anti-angiogenic miRNA that negatively

regulated STAT5A, providing a promising perspective to prevent

the biogenesis of AS (145). Atherosclerotic plaque rupture

exhibited a decrease in miR-221/222 (146). Both miR-221-3p

and miR-222-3p decreased significantly in patients with AS,

indicating that the downregulation of these two miRNAs may be

connected with AS (147). In addition, miR-222 was involved in

VSMCs proliferation and upregulated by Ang II in promoting

ECs migration and inflammation (148). In 2015, Xue et al. (87)

unveiled miR-221/222-induced EC dysfunction by the suppression

of peroxisome proliferator-activated receptor-γ coactivator-1α

(PGC-1α) in AS. Taraldsen et al. (149) observed that circulating

levels of miR-92a-3p, miR-221-3p, and miR-222-3p were associated

with baseline coronary necrotic core volume. We speculate that

the duality of miR-221-3p and miR-222-3p is due to the different

distribution of VC and that miR-221-3p and miR-222-3p probably

play key roles in MAC.

Efforts would be essential to understand the conflicting role

of miR-222-3p in AS. As a result, increasing number of evidence

is required to address its time-based and spatial location in

ECs, VSMCs, and EVs. The protective function of miR-143-3p

seemed more specific than miR-222-3p in AS. Nevertheless, further

studies are required to elucidate the relationship between the

functional and distributional diversity of miR-143-3p andmiR-222-

3p encapsulated in EV.

Zheng et al. (150) found miR-155 encapsulated in KLF5-

induced exosomes from VSMCs to ECs, which destroyed the

integrity of endothelial barriers, resulting in AS. This result

is consistent with the research mentioned above that elevated

miR-155 enhanced AS progress (54, 151–154). González et al.

(144) suggested that miR-155-5p might be implicated in plaque

instability by targeting AKT, contributing to AS. MiR-155 activated

the NLRP3 by regulating NF-κB in the AS progression of

ApoE(−/−) mice (155). However, evidence showed that miR-155

exerted inhibition on AS in ApoE(−/−) mice (156). Park et al.

(157) suggested that miR-155 was a novel negative regulator in

the soluble guanylyl cyclase (sGC)/cGMP pathway, providing a

novel therapeutic target for AS. MiR-155 attenuated ox-LDL-

induced apoptosis in various cells by targeting p85α, revealing its

therapeutic effect in AS (158). miR-155 was implicated in several
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signaling pathways in AS mouse models, as shown by the evidence.

In the future, the distinction and differential expression of miR-

155 in different conditions still need to be elucidated, and potential

signaling pathways associated with AS also need to be uncovered.

Gonzalo et al. (159) discovered that atherogenic lipoproteins

significantly reduced miR-15b-5p, −24-3p, −29b-3p, −130a-3p,

−143-3p, −146a-3p, −222-3p, and −663a in microvesicles (MVs)

released by HCASMC. MiR-143-3p, miR-222, and miR-29b have

been discussed above. MiR-24-3p and miR-130a-3p were also

reduced in circulating MVs from familial hypercholesterolemia

(FH) patients. In addition, the expression of miR-130a-3p

was reduced in uremia toxin indoxyl sulfate-induced HCAEC-

EVs (160). Downregulation of miR-130a-3p expression leads to

endothelial barrier dysfunction in the development of AS (161).

Paradoxically, serum miR-130a-3p was elevated in cerebral AS

patients and provided a possible method to predict cerebrovascular

events (162). The different expressions ofmiR-130a-3p in AS period

indicated the potential ability in AS diagnosis. However, we suppose

that the signaling pathways of miR-130a-3p that implicate AS need

to be discovered.

We have discussed the protective effect of miR-143-3p and

the versatility of miR-222-3p, miR-155-5p, and miR-130a-3p

in the process of AS. On the whole, versatile distributions

between EVs and intracellular location probably perform profound

effects on cellular metabolism, which implicated a variety of

signaling pathways (Figure 2). Table 3 and Supplementary Table 3

indicate several miRNA-encapsulated VSMC-EVs that regulate the

AS process.

3.2. miRNAs encapsulated in VSMC-EVs
regulate the process of VC

In VC, increased miR-92b-3p expression in both VSMCs

and exosomes downregulated KLF4 and Runx2 expression in rat

VSMCs (163). Similarly, Wang et al. (164) found that miR-92b-3p

inhibited hypoxia-induced proliferation, migration, and phenotype

switch of VSMCs.

MiR-204/miR-211 encapsulated in exosomes from melatonin-

treated VSMCs attenuated VC by targeting bone morphogenetic

protein-2 (BMP2) in vitro and in a 5/6 nephrectomy in

C57BL/6 mice model (165). Indeed, miR-204 deficiency elevated

valvular calcification activity and was independently associated

with coronary artery calcification (CAC) and CVD in patients

with type 2 diabetes mellitus (T2DM) (130, 131, 166–171).

Correspondingly, the overexpression of miR-204 alleviated the

osteoblastic differentiation of VSMCs in vitro and in female

mice by regulating Runx2 (172, 173). In uremic rats, the

expression of miR-29b increased, and the expressions of miR-

133b and miR-211 decreased in calcifying conditions (107).

Moreover, the expressions of miR-31, miR-106a, miR-148a, miR-

204, miR-211, and miR-424 were lower in the aortic stenosis

group than in the controls, whereas the levels of miR-30c

were higher than in the controls (129). In conclusion, miR-

92b-3p encapsulated in VSMC-EVs accelerated VC, while miR-

204/miR-211 encapsulated in VSMC-EVs exhibited an anti-

calcification function.

Pan et al. found that 987 miRNAs were significantly

upregulated, while 92 miRNAs were downregulated in exosomes

from MOVAS-1 cells stimulated with β-glycerophosphate (β-GP)

and pyruvic acid (174). Chaturvedi et al. (175) concluded that

14 miRNAs increased and 19 miRNAs decreased in MVs isolated

from calcifying VSMCs obtained from descending thoracic aorta

in three CKD rats. It is no coincidence that both research studies

shared several common miRNAs: 7 miRNAs were up-regulated

(miR-92b-5p, miR-204-3p, miR-296-3p, miR-494-3p, miR-667-

5p, miR-702-5p, and miR-770-3p) while 6 miRNAs were down-

regulated (let-7b-5p, miR-19b-3p, miR-24-3p, miR-30e-5p, miR-

99b, and miR-199a-5p). Especially, miR-99b and miR-24-3p were

decreased in VC condition in previous studies (104, 159). It

also suggested that Runx2 was controlled by miR-30e, and the

downregulation of miR-30e indicated osteoblast differentiation

regulation (175). These findings facilitate the understanding of the

effect of upregulation and downregulation of miRNAs in VSMC-

EVs and VC, providing a bright prospect in the investigation of

VC (Figure 3). Table 4 and Supplementary Table 4 describe several

miRNAs that encapsulated VSMC-EVs that were regulated during

the process of VC.

4. The emerging role of lncRNAs
encapsulated in EVs in AS and VC
processes

LncRNAs, another type of non-coding RNA larger than 200

base pairs, have significant enrichment in the nucleus compared

with mRNAs, emerging as crucial regulators of tissue physiology

and pathology mechanism (176–179). Many lncRNAs modulated

gene expression in neuronal disorders and cancer (180). In turn,

therapeutic targeting of lncRNAs provided a promising approach

to the treatment of multiple diseases (181). Furthermore, lncRNA

encapsulated in EVs represented an approach to utilizing lncRNAs

in disease diagnostics and therapy (182). Here, we aimed to review

studies related to lncRNAs encapsulated in EV in the process of AS

and VC.

4.1. lncRNAs encapsulated in EVs involved
in the process of AS

Indeed, different lncRNAs involved in AS showed opposite

effects, such as lncRNA RNCR3 has an atheroprotective effect

while lncRNA MIAT has a proinflammatory effect on VSMCs

(183, 184). Moreover, lncRNAs encapsulated in EVs were

also demonstrated to be tightly associated with AS (185). In

mesenchymal stem cells (MSCs)-EVs, lncRNA FENDRR induced

by ox-LDL alleviated HUVECs injury and AS by binding with miR-

28 (186); knockdown of LOC100129516 alleviated the progression

of AS (187). Encapsulated in ox-LDL-EVs from THP-1 cells,

lncRNAGAS5 enhanced the apoptosis of HUVECs andHAECs and

lncRNA LIPCAR-enhanced AS (188–190).

In ox-LDL-HUVEC-EVs, lncRNA MALAT1 promoted AS

by inducing M2 macrophage polarization and NETs (191, 192);

LncRNA ZEB1-AS1 promoted endothelial injuries in AS by
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FIGURE 2

ncRNAs encapsulated in EC-EVs and VSMC-EVs regulate the AS process. Various stimuli stimulate the release of EVs and ncRNAs encapsulated in

EC-EVs, and VSMC-EVs are assimilated by di�erent recipient cells, resulting in AS inhibition or promotion. ncRNAs (miR-155-5p, miR-505-3p,

miR-19b-3p, miR-4306, miR-92a-3p, MALAT1, ZEB1-AS1, CLDN10-AS1, LINC01005, and hsa_circ_0086296) encapsulated in EVs derived from ECs

induced by di�erent stimuli (LPS, extra-virgin-olive, ox-LDL, IL-6, TNF-α, shear flows, and chrysin) were linked to AS via enhancing ECs and VSMCs

phenotype switching, promoting M1 macrophages activation, M2 macrophage polarization, NETs formation, lipid formation of macrophages, and

endothelial injuries; miR-143-3p and miR-145-5p encapsulated in EVs derived from ECs stimulated by KLF2-transduced and shear-stress induced an

atheroprotective VSMC phenotype; ncRNAs (miR-143-3p, miR-222-3p, miR-155-5p, and hsa_circ_0001445) encapsulated in EVs derived from

VSMCs induced by stimuli (including hypercholesterolemia, KLF5, and ox-LD) were linked to AS by reducing expressions and enhancing endothelial

injuries. ncRNAs, non-coding RNAs; VSMCs, vascular smooth muscle cells; ECs, endothelial cells; EVs, extracellular vesicles; AS, atherosclerosis; LPS,

lipopolysaccharide; ox-LDL, oxidized low-density lipoprotein; IL-6, interleukin-6; TNF-α, tumor necrosis factor-a; NETs, neutrophil extracellular traps;

KLF2, Krüppel-like factor 2; KLF5, Krüppel-like factor 5. Created with BioRender.com.

competitively binding to miR-590-5p (193); LINC01005 promoted

VSMC phenotype switch through miR-128-3p/KLF4 axis in

the development of AS (194); lncRNA CLDN10-AS1 promoted

endothelial injuries by sponging miR-186 (195).

In conclusion, lncRNAs encapsulated in EVs provided a

new perspective on the intercellular communication of AS. The

potential role of lncRNAs in the prevention and progress of AS

still needs to be illuminated. Several lncRNAs encapsulated in EVs

involved in the process of AS are summarized in Table 5.

4.2. lncRNAs involved in the process of VC

It has also been shown that the lncRNAs were new players

regulating VC, providing therapeutic targets (196–198).

Bao et al. (199) revealed 728 different lncRNA expressions in

HVSMCs under HP condition compared to the control group,

in which 8 lncRNAs were the most potential lncRNAs in VC.

Jeong et al. (200) discovered 100’s of lncRNAs differentially

expressed in rat VSMCs under HP condition, and Lrrc75a-as1

acted as an inhibitor of VC. LncRNA GAS5, as mentioned

above (188, 189), promoted VC by modulating miR-26-5p

(201). LncRNA SNHG1 alleviated high glucose-induced VSMC

calcification by regulating basic helix–loop–helix family member

e40 (Bhlhe40) (202). Similarly, lncRNA EPS inhibited VC in

diabetic mice through the TGF-β/Wnt/β-catenin pathway (203).

On the contrary, lncRNA LEF1-AS1 promoted VC (204). LncRNA-

ES3 promoted VC by the modulation of miR-34c-5p and Bhlhe40

(205, 206).

Treated with HP, lncRNA H19/Runx2 axis promoted VC

by the modulation of miR-103-3p (207–209). The modulation
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TABLE 3 miRNAs encapsulated in VSMC-EVs regulate in the process of AS.

miRNA EVs origin Stimulation Expression Function References

miR-143-3p HCASMC Hypercholesterolemia Down Cardiovascular biomarker (140)

miR-222-3p HCASMC Hypercholesterolemia Down Cardiovascular biomarker (140)

miR-155-5p HASMC KLF5 Up Promoted as (150)

miR-24-3p HCASMC Atherogenic lipoprotein Down Further researched required (159)

miR-29b-3p HCASMC Atherogenic lipoprotein Down Further researched required (159)

miR-130a-3p HCASMC Atherogenic lipoprotein Down Further researched required (159)

miR143-3p HCASMC Atherogenic lipoprotein Down Further researched required (159)

miR-222-3p HCASMC Atherogenic lipoprotein Down Further researched required (159)

EVs, extracellular vesicles; HCASMC, human coronary artery smooth muscle cell; HASMC, human artery smooth muscle cell; KLF5, Krüppel-like factor 5; AS, atherosclerosis.

FIGURE 3

ncRNAs encapsulated in EC-EVs and VSMC-EVs regulate the VC process. Various stimuli stimulate the release of EVs and ncRNAs encapsulated in

EC-EVs, and VSMC-EVs are assimilated by VSMCs, resulting in VC inhibition or promotion. miR-670-3p, miR-221-3p, and miR-222-3p encapsulated

in EVs derived from ECs induced by stimuli (HP, uremic toxins, transverse aortic constriction, and advanced glycation end-products) promoted VC,

while miR-143-3p, miR-145-5p, miR-29b-3p, and miR-126-5p inhibited VC; miR-92b-3p, miR-204-5p, and miR-211-5p encapsulated in EVs derived

from VSMCs induced by stimuli (curcumin and melatonin), inhibited VC; the profiles of miRNAs encapsulated in EVs derived from VSMCs (β-GP and

pyruvic acid-induced MOVAS-1 and cystic kidney disease rats VSMCs) have been detected. ncRNAs, non-coding RNAs; EVs, extracellular vesicles;

VSMCs, vascular smooth muscle cells; ECs, endothelial cells; VC, vascular calcification; HP, high phosphate; β-GP, β-glycerophosphate. Created with

BioRender.com.

between LncRNA H19 and miR-138 was also discovered in the

HP environment (210). Nevertheless, lncRNA H19 attenuated VC

under ox-LDL and HP conditions in the development of AS (211).

However, there are no studies aimed to investigate the

profile of lncRNAs encapsulated in EVs in the intercellular

communication between ECs and VSMCs. This might be the
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TABLE 4 miRNAs encapsulated in VSMC-EVs regulate in the process of VC.

miRNA EVs origin Stimulation Expression Function References

miR-92b-3p Rat VSMC Curcumin Up Inhibited VC (163)

miR-204-5p Calcifying HVSMC Melatonin Up Inhibited VC (165)

miR-211-3p Calcifying HVSMC Melatonin Up Inhibited VC (165)

miR-19b-3p MOVAS-1 β-GP and pyruvic acid Up Further researched required (174)

miR-19b-3p Descending thoracic aorta Cystic kidney disease Up Further researched required (175)

miR-92b-5p MOVAS-1 β-GP and pyruvic acid Up Further researched required (174)

miR-92b-5p Descending thoracic aorta Cystic kidney disease Up Further researched required (175)

miR-24-3p Descending thoracic aorta Cystic kidney disease Down Further researched required (175)

EVs, extracellular vesicles; VSMC, vascular smooth muscle cell; HVSMC, human vascular smooth muscle cell; VC, vascular calcification; β-GP, β-glycerophosphate.

TABLE 5 lncRNAs encapsulated in EVs involved in the process of AS.

lncRNA EVs origin Stimulation Expression Function References

FENDRR MSC ox-LDL Up Inhibited as (186)

LOC100129516 MSC si-LOC100129516 Down Promoted as (187)

GAS5 THP-1 ox-LDL Up Promoted ec apoptosis (188)

LIPCAR THP-1 ox-LDL Up Promoted as (189)

MALAT1 HUVEC ox-LDL Up Promoted m2 macrophage polarization (191)

MALAT1 HUVEC ox-LDL Up Promoted as (192)

ZEB1-AS1 HUVEC ox-LDL Up Promoted as (193)

LINC01005 HUVEC ox-LDL Up Promoted as (194)

CLDN10-AS1 HUVEC ox-LDL Up Promoted ec injury (195)

EVs, extracellular vesicles; MSC, mesenchymal stem cell; ox-LDL, oxidized low-density lipoprotein; AS, atherosclerosis; HUVEC, human umbilical vein endothelial cell; EC, endothelial cell.

reason that lncRNA expressions are relatively low in EVs

so their transcripts cannot be analyzed in RNA-seq. More

importantly, the lncRNA sequence–function relationship needs

to be explored in the future (212). LncRNAs for the in-

depth study often follow a specific physiologic or pathological

state (213). The relationship between EVs and lncRNAs has

the potential to advance our understanding of AS, VC, and

other diseases.

5. The emerging role of circRNAs
encapsulated in EVs in AS and VC
processes

CircRNAs, generated from intronic lariats during colinear

splicing and characterized by their covalently closed circular

structure, showed tissue-specific and development stage-specific

expression (214–216). Hansen et al. (217) first revealed that

circRNAs were regarded as miRNAs sponges generally in gene

regulation. Some endogenous circRNAs were highly abundant

and evolutionarily conserved, providing potential implications for

research and treatment applications (218). We have discussed

miRNA encapsulated in EVs in AS and VC so far and subsequently

aimed to summarize circRNA encapsulated in EVs in AS

and VC.

5.1. circRNAs encapsulated in EVs involved
in the process of AS

CircRNAs have been identified in the process of AS,

such as circ_USP36, circ_0007478, circCHFR, and circ_0001879

(219–223). CircRNAs encapsulated in EVs were also involved

in the process of AS (224). CircNPHP4 in monocyte-EVs

regulated heterogeneous adhesion in coronary heart atherosclerotic

disease by the modulation of miR-1231 (225). Hsa_circ_0001445

acted as a biomarker in CAD patients and was decreased

in VSMCs-EVs on AS condition (226). Hsa_circ_0005699 was

downregulated in the blood exosomes of patients with coronary

heart disease and upregulated in ox-LDL-treated macrophage,

providing candidate targets for the diagnosis of AS (227).

Encapsulation in serum EVs of patients with unstable/vulnerable

plaque AS, upregulated circRNA_0006896 plays a crucial role

in carotid plaque destabilization by modulation of miR-1264

(228); circ_0043837 and circ_0001801 were independent predictive

factors for artery atherosclerotic stroke (229). Hsa_circ_0086296

was also observed to be higher in AS patient serum EVs and ox-

LDL-treated HUVECs, which promoted ECs injury and AS by

the modulation of miR-576-3p (230). Although many circRNAs in

AS have been revealed, circRNAs encapsulated in EVs during AS

between intercellular communication will be focused, discussing

issues and trends in studies in the future. Several circRNAs
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TABLE 6 circRNAs encapsulated in EVs involved in the process of AS.

circRNA EVs origin Stimulation Expression Function References

CircNPHP4 Monocyte Coronary heart atherosclerotic disease Up Biomarker for as (225)

hsa_circ_0001445 HCASMC Atherogenic lipoprotein Down Biomarker for cad (226)

hsa_circ_0005699 Serum Coronary heart disease Down Biomarker for as (227)

circ_0006896 Serum Unstable plaque as Up Linked to plaque destabilization (228)

circ_0043837 Serum Large artery atherosclerotic stroke Down Biomaker for stroke in as (229)

circ_ 0001801 Serum Large artery atherosclerotic stroke Down Biomaker for stroke in as (229)

hsa_circ_0086296 HUVEC and serum ox-LDL or AS Up Promoted as (230)

EVs, extracellular vesicles; HCASMC, human coronary artery smooth muscle cell; AS, atherosclerosis; CAD, coronary artery disease; HUVEC, human umbilical vein endothelial cell; ox-LDL,

oxidized low-density lipoprotein.

encapsulated in EVs involved in the process of AS are summarized

in Table 6.

5.2. circRNAs involved in the process of VC

Ryu et al. discovered that circSamd4a reduced VC by

modulating miR-125a-3p and miR-483-5p; circSmoc1-2 reduced

VC by the modulation of miR-874-3p (231, 232). Moreover,

CircSamd4a could act as a biomarker for the diagnosis of

VC (233). In contrast, circRNA CDR1 promoted VC by

sponging miR-7-5p (234). Similarly, hsa_circRNA_0008028-

modulated miR-182-5p and promoted high glucose-induced

VC (235). Notably, there were few articles concentrated on

circRNAs participating in VC. Further studies are essential

to elucidate the emerging role of circRNAs in the process

of VC.

6. Discussion

In this review, we have summarized almost all miRNAs

encapsulated in EVs secreted by ECs and VSMCs in the

process of AS and VC. We concluded on the function of

different miRNAs encapsulated in EVs which are effective to

inhibit or aggravate AS and VC, depending on the stimuli

and distributions. In addition, miRNAs encapsulated in EVs

were expected to be indicators in the diagnosis and prognosis

of cardiovascular diseases. There is still a long way to go.

Different methods (direct electroporation, cell transfection, and

chemical transfection) were developed to vehicle therapeutic

molecules through EVs (236). Nevertheless, limitations, such as

EV disruption and aggregation, still exist. The application of the

atheroprotective miRNAs encapsulated in EVs in the treatment is

still needed to be further investigated. In addition to elucidating

the versatility of miRNAs in different signaling pathways, the

complicated and subtle effects in the animal model should

be illustrated.

Moreover, lncRNAs and circRNAs are expressed

differentially during AS and VC. We have discussed the

current understanding of lncRNAs and circRNAs in AS and

VC. We have noticed the potential prospect of lncRNAs

and circRNAs in the prevention, diagnosis, and treatment

of AS/VC.

In conclusion, the versatile non-coding RNAs encapsulated in

EVs provide a novel perspective on the biogenesis mechanisms of

AS and VC.
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