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The vital role of the intestines as the main site for the digestion and absorption 
of nutrients for the body continues subconsciously throughout one’s lifetime, 
but underneath all the complex processes lie the intestinal stem cells and the 
gut microbiota that work together to maintain the intestinal epithelium. Intestinal 
stem cells (ISC) are multipotent stem cells from which all intestinal epithelial cells 
originate, and the gut microbiota refers to the abundant collection of various 
microorganisms that reside in the gastrointestinal tract. Both reside in the 
intestines and have many mechanisms and pathways in place with the ultimate 
goal of co-managing human gastrointestinal tract homeostasis. Based on the 
abundance of research that is focused on either of these two topics, this suggests 
that there are many methods by which both players affect one another. Therefore, 
this review aims to address the relationship between ISC and the gut microbiota 
in the context of regenerative medicine. Understanding the principles behind 
both aspects is therefore essential in further studies in the field of regenerative 
medicine by making use of the underlying designed mechanisms.
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1. Introduction

Stem cells are a group of cells inside an organism that is yet to be differentiated into mature 
functional cells but have the capabilities to differentiate into any kind of cells, alongside being 
self-renewal (1). These abilities in differentiation into any kind of cells and self-renewal of stem 
cells prove to be important in developing and regenerating certain cells in the body. Stem cells 
are grouped by highest differentiation ability, in descending order: totipotent, pluripotent, 
multipotent, oligopotent and, lastly, unipotent (2), which is from being able to generate an entire 
organism and extraembryonic tissues, to only a single lineage of cells.

Totipotent cells are stem cells that can differentiate into all types of cells in an organism, 
together with the development of extraembryonic tissues such as the placenta (3). Pluripotent 
cells are stem cells that can differentiate into any three distinct germ layers: endoderm, 
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mesoderm, or ectoderm (4). Each layer is responsible for specific 
organogenesis, such as the endoderm layer that develops the 
gastrointestinal tract, liver, pancreas, the mesoderm layer into the 
circulatory system and the musculoskeletal system, and the ectoderm 
responsible for hair, skin, nails, and nervous system (5). Multipotent 
stem cells are also known as adult stem cells or somatic stem cells. 
Examples of multipotent cells in the human body include but are not 
limited to, hematopoietic stem cells, mesenchymal stem cells, skeletal 
stem cells, neural stem cells (6), and intestinal stem cells (7). Similarly, 
oligopotent and unipotent stem cells also contribute to their tissue-
specific cell lineages, capable of differentiation into a limited number 
of cells or terminally differentiated (1).

Continuing from the multipotent stem cells, examples of stem 
cells with this differentiation ability are intestinal stem cells (ISC), 
which are undifferentiated stem cells located in the crypts of intestinal 
epithelium (8). These stem cells are the cells that give rise to the 
intestinal epithelium with its variety of cells and many more 
functionalities by continuously proliferating and dividing (9). From 
the ISCs, the progenitor cells continue to divide and differentiate into 
specific cell lineages such as absorptive or secretory cells (10). 
Facilitation of these processes is crucial to balance both the 
proliferation of new cells and the removal of old or damaged cells, 
which is provided by the plethora of appropriate biochemical signaling 
pathways. Without it, DNA mutations can especially accumulate in 
cells, leading to uncontrolled differentiation and potentially producing 
harmful cancerous cells (11).

The gut microbiota refers to a dynamic community of 
microorganisms that live in the human gastrointestinal tract (12). 
These consist of various bacterial species, viruses, archaea, and fungi. 
As the gastrointestinal tract, particularly the stomach, small intestine, 
and large intestine, are responsible for the digestion and absorption of 
food and drinks ingested, this provides a perfect environment for 
microorganisms to colonize the site of the nutrients and safety 
provided by the human host (13, 14). Despite the enormous number 
of microorganisms in the gastrointestinal tract (GI), a large proportion 
of them have a symbiotic relationship with the human host through 
many biological processes. For example, the gut microbiota helps 
mediate body homeostasis, strengthen the integrity of the 
gastrointestinal tract, and decrease the colonization of foreign or 
pathogenic strains of microorganisms in the GI tract (15). 
Furthermore, the gut microbiota regulates the innate and adaptive 
components of the immune system such as antigen-presenting cells, 
regulatory T cells, and innate lymphoid cells (16).

Unlike any other stem cells, intestinal stem cells exist in tandem 
with the indigenous gut microbiota population in the GI tract, albeit 
living separately within their integrity and maturation of the intestinal 
epithelium depend on the harmonization of both the intestinal stem 
cells and the gut microbiota working together. The absence of either 
will disrupt the equilibrium between the two, either with dysbiosis, the 
imbalance of the gut microbiota, or inflammatory bowel disease (17).

Hence, this review aims to address the relationship between ISC 
and gut microbiota within the context of regenerative medicine. The 
characteristics of ISC are explained thoroughly by investigating the 
Lgr5 and + 4 stem multipotent intestinal stem cells that all intestinal 
epithelial cells are derived from. The diverse bacterial and fungal 
community that makes up the gut microbiota in the human 
gastrointestinal tract is also investigated for the roles they play in the 
host organism. The relationship between the ISC and the gut 

microbiota is then further examined to determine their combined 
roles in regulating the homeostatic function of the intestine. A clinical 
trial is also included on ISC and gut microbiota to highlight these 
specific research studies as summarized in (Figure  1). Future 
perspectives and recommendations are also discussed on progress in 
the field of study.

2. Characteristics and mechanism of 
ISCs in intestinal epithelial 
regeneration

The intestines have been able to perform their function of 
digestion and absorption of nutrients for the body due to the 
meticulous architecture of various cells, substances, and their 
microenvironment. Both the small and the large intestine are 
composed of a single layer of columnar cells that line the epithelium 
of both organs. The small intestine also has villi protruding into the 
lumen and Lieberkühn crypts, while the colon also has the crypts and 
absorptive plates which are alternatives to villi, with these features to 
increase the total surface area of cells that touch the food ingested (18). 
These crypts house intestinal stem cells (ISCs), which all the intestinal 
epithelial cells originate from (9).

Intestinal epithelial cells, also known as mature intestinal cells, 
consist of two lineages: the absorptive lineage and the secretory 
lineage (10). The absorptive lineage with enterocytes, whose main 
function is to absorb nutrients from food, and M cells or microfold 
cells are to continuously examine intestinal microbes and mediate the 
appropriate mucosal immune response (8, 19). Secretory lineage cells 
comprise four types (i) enteroendocrine for hormone production and 
release, (ii) Goblet cells for mucus production and secretion, (iii) 
opioid-secreting Tuft cells (20) and (iv) multifunctional Paneth cells 
for the secretion of antimicrobial peptides as well as signaling 
molecules to facilitate the maturation of intestinal stem cells and their 
subsequent progenitor cells (9, 21).

As mentioned above, mature epithelial cells are derived from 
multipotent intestinal stem cells that reside in the crypt of the 
intestinal epithelium. The turnover of intestinal epithelial cells is 
maintained by differentiation of ISCs into different cell lines of 
secretory or absorption by maturing first into the respective progenitor 
cells (22, 23); also known as transit amplifying cells (TA cells). These 
secretory or absorptive progenitor cells can be further committed to 
their respective lineage and differentiate into secretory Paneth cells or 
absorptive enterocytes, respectively (24). ISCs, TA cells, and other 
types of absorptive and secretory cells are located in the single layer of 
the intestinal epithelium. All except ISCs and Paneth cells continuously 
move across the crypts and villi and toward the lumen before 
ultimately shedding into the lumen (25).

The intestinal stem cells were first discovered to be  located in 
between Paneth cells at the bottom of a mouse intestinal crypt in 
alternating patterns. These cells were coined as crypt-base columnar 
cells (CBCs) and demonstrated their stemness, which is the ability of 
the cells to proliferate and differentiate. This can be confirmed by the 
fact of a similar radioactive component that was observed in intestinal 
cells that differentiated from the CBCs (26). The gene Lgr5+ was 
discovered as one of the genes specific to CBCs (27) during the 
investigation of the Wnt signaling pathway as an important 
homeostatic pathway in intestinal regeneration. These 
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LGR5-expressing cells were collected from intestinal crypts and 
continuously self-renew and were also capable of differentiating into 
the two main intestinal cell lines and are long-lived under conditions 
enhanced by specific growth factors (20, 28, 29). Thus, the self-renewal 
and the ability to differentiate into multiple lineage-specific progenitor 
cells meet the criteria of stemness as described in (Figure 2).

Besides Lgr5+ stem cells, another distinct type of intestinal stem 
cell called +4 stem cells are found in the ISC. The name of the +4 stem 
cells derives from the position of this cell type, as they are the ‘fourth’ 
from the bottom of the crypt (30). These +4 stem cells are observed to 
be more quiescent than Lgr5 ISCs and were generally regarded reserve 
stem cells that help replenish the actively used Lgr5 stem (31), either 
by generating intestinal progenitor cells (32) or by dedifferentiating 
transit-amplifying cells back into Lgr5 stem cells with the transcription 
factor ASCL (33). It has been observed that the Lgr5 stem cell pool can 
be replenished by both absorptive and secretory progenitor cells, and 
mature Paneth cells were also found to be capable of de-differentiating 
(34–36).

2.1. Intestinal stem cells signaling pathways

Many factors and niches are involved in regulating the action of 
the intestinal epithelial cells, their response to injury, as well as the 
subsequent corresponding actions from the nearby ISCs (37). At the 
intracellular level, the signaling pathways that are important for the 
homeostatic function of ISCs are the Wnt, BMP, and Notch signaling 
pathways (38).

The Wnt signaling pathway in (Figure  3) is found to 
be  responsible for the promotion of ISC self-renewal and 
proliferation in intestinal crypts, which decreases dramatically once 
cells reach the villus (39). This pathway is intricately modulated by 

the degradation of the β-catenin protein by the β-catenin 
destruction complex, consisting of multiple proteins such as AXIN, 
casein kinase 1 (CK1), glycogen synthase kinase 3, and adenomatous 
polyposis coli (APC). Studies have shown that mutations in 
adenomatous polyposis coli (APC) destruction complexes along 
this pathway are correlated in multiple cases of colorectal cancers 
(40). APC is a tumor suppressor gene that is essential in the 
regulation of the Wnt signaling pathway; and irregular and mutated 
APCs are commonly observed in colorectal cancers (41). When 
there is a mutation in the structure of the APC protein, another 
protein that is usually inhibited by the APC protein complex called 
USP7 allows the deubiquitination of the β-catenin, thereby leading 
to excessive growth and proliferation of ISCs that can develop into 
cancerous tissues. Additionally, Wnt signaling resume despite with 
the removal of the upstream USP7 gene by CRISPR, thus showing 
a therapeutic potential in administering functional gene and their 
derivative proteins to the intestinal tratcs to possibly cure 
participants with gastrointestinal cancer and once approved, to the 
public as well.

The bone-morphogenetic protein (BMP) signaling pathway 
tightly regulates the proliferation of ISCs to prevent out-of-control cell 
differentiation, crypt fission, and handling the terminal differentiation 
of mature and functional intestinal cells. Signaling was also observed 
to be higher around terminally differentiated cells in the villus to 
prevent the uncontrolled dedifferentiation of these aged cells back into 
progenitor cells. In other words, epithelial cells in the gastrointestinal 
tract are unique compared to other tissues, since epithelial cells are 
capable of dedifferentiate and subsequently acquire stem cell-like 
properties and differentiate into other specific intestinal progenitor 
cells through actions in the BMP signaling pathway (42). Additionally, 
a suppressed or inhibited BMP signaling pathway has been shown to 
cause the appearance of abnormal intestinal crypts and villi in mice, 

FIGURE 1

Graphical abstract. Gut Microbiota and ISC. Created with BioRender.com.
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thereby demonstrating that the BMP pathway is essential in decreasing 
hyperplasia of intestinal epithelium (43, 44).

On the other hand, the Notch signaling pathway works together 
with the Wnt signaling pathway to promote ISC proliferation and 
intestinal epithelial regeneration. When there is an injury to the 
intestinal epithelium, the signaling pathway is activated to promote 
the repair and regeneration of the epithelial surface via the 
proliferation of stem cells (45). A similar study has also shown that an 
inhibited Notch signaling pathway in mice correlates with an increase 
in apoptotic cell rates and fewer columnar cells in intestinal crypts. 
The inhibited pathway leads to a decrease in intestinal functionality of 
mice, as several of them experienced an excessive reduction in body 
weight, with even two mice dead before scheduled euthanasia, which 
can be attributed to the lack of intestinal epithelial regeneration due 
to inhibition of the Notch signaling pathway (45). Furthermore, the 
Notch signaling pathway also plays a decisive role in lineage 
differentiation (46). ISCs can be influenced to differentiate into the 
secretory lineage by expression of certain genes, such as the hairy and 
split enhancer [Hes1] (47), which in turn repress the transcription 
factor mouse atonal homolog 1 [Math1] (48). Similarly, stem cells can 
differentiate into an absorptive lineage when the two genes are 
removed (49). In short, Wnt and Notch signaling pathways promote 
the proliferation of ISCs into intestinal progenitor cells, and BMP 
signaling pathway acts as the regulator to prevent over-differentiation 
and hyperplase of these intestinal epithelial cells. Additionally, Notch 
signaling pathway also serve as a guiding system of which intestinal 
lineage the ISC should differentiate into.

2.2. Intestinal stem cells and its niche: the 
caretaker of intestinal stem cells

In addition to the three main regulatory pathways that are 
responsible for the homeostatic functions of the ISCs, these stem cells 
are also regulated and taken care of by the surrounding niche cells in 
the crypts, namely stromal cells, endothelial cells, Paneth cells, neural 
cells and immune cells. These groups of cells, collectively known as the 
stem cells niche, are believed to be responsible for maintaining the 
number of stem cells and their fate through terminal differentiation 
into absorptive or secretory lineages, and self-renewal (50).

Paneth cells are cells located interdigitally between the Lgr5 
intestinal stem cells of Lgr5  in intestinal epithelial crypts and are 
important cells in the niche, as these cells are believed to maintain a 
sterile environment for stem cells through the secretion of 
antimicrobial factors (9). Homeostasis of the intestinal epithelium is 
believed to be  maintained by Paneth cells is by sensing bacterial 
metabolites from the indigenous microbial community such as lactic 
acid on the protein receptors of the Paneth cells, which can activate 
the release of Wnt3 into the intestinal lumen. Subsequently, epithelial 
regeneration and ISC proliferation are initiated through the Wnt 
signaling pathway, ensuring that intestinal functionality in absorbing 
nutrients continues (51). Furthermore, when prostaglandins are 
produced in an autocrine signaling pathway from the Paneth cells, the 
Wnt pathway is also stimulated to promote the self-renewal and 
proliferation of ISCs in committed progenitor cells (52). Surprisingly, 
the expression in this regulatory pathway is believed to be connected 

FIGURE 2

Intestinal stem cell lineages and differentiation. Created with BioRender.com. The figure is adapted with modification from Haoming Luo et al. (9).

https://doi.org/10.3389/fmed.2023.1195374
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://BioRender.com


Ahmad Sophien et al. 10.3389/fmed.2023.1195374

Frontiers in Medicine 05 frontiersin.org

to the exposure of certain bacterial components such as bacterial 
lipopolysaccharides and IL-6 bacterial immune cytokines (53–55), 
thus suggesting that Paneth cells secrete regulatory factors when 
certain bacterial components are detected in the lumen, further 
solidifying the important role that Paneth cells have in the homeostatic 
function of ISCs.

Stromal cells are a group of connective tissues that are of 
non-epithelial and non-endothelial origin but still play a role in 
helping organ function. Studies have suggested that stromal cells such 
as myofibroblasts that reside beneath the intestinal crypts known as 
lamina propria are involved in the morphogenesis, proliferation, and 
subsequently, differentiation and self-renewal of ISCs through various 
methods (56, 57). Researchers from Hubrecht Institute for 
Developmental Biology and Stem Cell Research have argued that the 
development of intestinal epithelium, simulated using intestinal 
organoids, is possible either through coculture with stromal cells or 
the addition of external Wnt (58). This is further supported by another 
study that discovered the expression of an agonist of the Wnt signaling 
pathway from endogenous stromal cells, possibly highlighting the 
mechanism by which stromal cells support the regeneration of the 
intestinal epithelium even without Wnt secreted by the epithelial layer 
(59). Moreover, in another study in which the subpopulation of 
mesenchymal cells called telocytes in mice is experimentally depleted 
through the administration of diphtheria toxin, the depth of the crypt 
and the height of the villus, along with the rate of stem cell 

proliferation, have been observed to be reduced at the end of the study 
(60), underlining the important role and relationship that stromal cells 
have with the intestinal epithelium.

Innate lymphoid cells represent an important population of the 
stem cell niche. Living in the lamina propria layer, one particular 
subtype of ILC called ILC3s has been extensively researched on to 
produce cytokine IL-22 from the simulation of the gut microbiota 
with different responses depending on the target cells on the intestinal 
epithelium (61). When IL-22 is treated on TA cells, differentiation, 
and proliferation into committed progenitor lines were observed, but 
on ISCs, decreased survival rates and reduced Notch and Wnt 
signaling was observed instead (62, 63). Therefore, IL-22 is believed 
to be essential for the survival of ISCs. However, the process by which 
ILC3 is activated to produce protective cytokines through signals from 
the gut microbiota requires further investigation. Additionally, 
T-lymphocytes play an important role in keeping the 
microenvironment of the intestinal lumen sterile, particularly at the 
crypt housing the ISCs and the progenitor cells. T cells reside in the 
lamina propria of the intestines and are dual-controlled by the human 
host antigens and indirectly by the gut microbiota. When there is an 
external pathogenic infection, Th1 and Th2 cells support immune cells 
macrophage to kill vesicular bacteria and help B cells in the activation 
and antibody production, respectively. In the process, cytokines are 
also released to induce differentiation of ISC to Tuft and Paneth cells 
to further locate and eliminate pathogens, while simultaneously 

FIGURE 3

Intestinal epithelium with ISC signaling pathways. The Wnt and Notch signaling pathways are in a higher concentration in the intestinal crypts, while 
the BMP pathway is more concentrated near the villus. Created with BioRender.com. The figure is adapted with modification from Haoming Luo et al. 
(9).
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inhibiting their own stem cell proliferation. In the same study, the 
researchers have also advocated that T cells may also communicate via 
MHC class II molecules with ISC which results in the production of 
the cytokine IL-10 that encourages self-renewal of ISC (64).

3. Microbiota: characteristics and roles 
in gut health

The gut microbiota refers to the abundant and complex collection 
of complex microorganisms that reside in the gastrointestinal tract. 
These consist of a diverse group of bacteria, viruses, archaea, and 
fungi, which can reach a staggering number of 100 trillion microbes 
when accumulated (14). As the GI tract, particularly the stomach, 
small intestine, and large intestine, are responsible for the digestion 
and absorption of ingested food and drinks, this provides a perfect 
environment for microorganisms to colonize the site for the nutrients 
and safety provided by the host (13, 14).

It is important to note that the gut microbial community is 
enormous and diverse; therefore, a single microbiota composition is 
not properly optimized, as it is unique individually. These depend on 
many factors such as early life factors such as type of delivery, milk 
feeding from the mother and weaning period, as well as external 
factors such as frequency of exercise, sociocultural diet habits, BMI 
level, and enterotypes (12).

Besides, variations in the gut microbiota intra individually can 
also be affected such as in certain anatomical regions. For example, the 
short transit time of the intestine of 3 to 5 h and the high concentrations 
of bile in the small intestine prove to be a difficult environment for 
microbes to thrive. Thereby, a study has revealed that facultative 
anaerobes such as gram-positive lactobacilli, enterococci, and 
streptococci, as well as gram-negative Bacteroides and Proteobacteria, 
were observed through molecular analysis to populate the jejunum 
and ileum region (65, 66). On the contrary, the neutral to mildly acidic 
pH and the slow flow rate of the large intestine harbors a more diverse 
gut microbiota, mainly consisting of obligate anaerobes. In healthy 
individuals, there is minimal microorganism colonization on the 
surfaces of the large intestinal epithelium and an inner mucin layer. 
The distal mucin layer has bacteria with special mucin-degrading 
properties, such as Akkermansia muciniphila and Bacteroides spp., 
which are part of the normal microbial flora, the former having 
immunomodulatory responses in mouse models (67, 68).

Primarily, small metabolites that are produced from their 
metabolism are the main essential method in which the gut microbiota 
can indirectly influence the intestinal epithelial layer function and 
development. Direct exposure of ISC to gut microbes, indigenous or 
not, can be devastating considering the vital role of ISC and progenitor 
cells’ long-term integrity and functionality. Therefore, the main 
method of the effect of the gut microbiota on ISC is mediated by their 
interactions with intestinal epithelial cells in the upper epithelium 
layer, which will subsequently cause the appropriate cascade of 
responses in various feedback systems that can protect ISC and 
progenitor cells from biological damage or promote regeneration of 
the epithelial layer through differentiation and proliferation. Despite 
the enormous number of microorganisms in the gastrointestinal tract, 
a large proportion of them have a symbiotic relationship with the 
human host through many biological processes (15). This includes, 
but is not limited to, the defense against pathogenic microbes, the 

immunomodulatory effects of sending signals to host immune cells 
and helping in host nutrient metabolism (69).

3.1. Defense against pathogens

Gut microbiotas offer the host a pathogen resistance against 
infectious bacteria as both commensal gut microbiota and pathogenic 
bacteria must compete for the same limited nutrient, habitat, and 
energy that is in the host gastrointestinal tract to grow. For that, the 
indigenous gut microbiota has been found to evolve and use certain 
methods to restrict the growth of foreign microbes through direct and 
indirect pathways (70). Direct pathway refers to the indigenous 
intestinal microbes being directly responsible for the protection of the 
GI tract against pathogenic bacteria growth and colonization by 
altering the pH of the GI tract (71–73), producing harmful chemical 
substances that are toxic to the pathogens (74, 75), and competing for 
the limited available nutrients (76, 77). This is done through the 
secretion of specific bacterial metabolites that favor the growth of the 
indigenous gut flora while discouraging the growth of potentially 
harmful strains and species. For the indirect mechanism, the gut 
microbiota is believed to acquire the help of the host immune system 
to eliminate foreign pathogens and bile acid metabolism that mediate 
the maintenance of the intestinal epithelium layer (78, 79) through 
recognition and the response to pathogen recognition receptors 
(PRRs) (80). When the healthy microbial community is disrupted 
either through antibiotics (81), age, dietary patterns, or from the host’s 
genetics (82, 83), this can cause an imbalance in the delicate 
arrangement of the gut microbiota also known as dysbiosis, thus it 
may lead to unhealthy outcomes such as inflammatory bowel disease 
(IBD), infections from opportunistic pathogens, allergies, obesity, and 
cardiovascular disease (84, 85).

3.2. Immunomodulatory and regenerative 
effects

It is important that the physiological system of the human host 
can distinguish between the beneficial or commensal gut microbiota 
of the indigenous population with pathogenic or opportunistic 
microbes. An abnormal immune response such as chronic 
inflammation can therefore be avoided or minimized by maturing a 
properly functioning immune system. This includes both the general 
and specialized immune responses, where the former is responsible 
for the epithelial physical barrier and producing chemicals that 
circulate continuously to identify and destroy a wide variety of 
potentially pathogenic organisms or their antigens (86). These have 
been studied extensively through the use of germ-free animal models 
(87) and animals treated with large concentrations of antibiotics that 
essentially reduce the number of indigenous gut microbes (88, 89).

In contrast, infection from toxic and harmful bacterial strains can 
impede the intestinal epithelium regeneration, such as infection from 
the diarrhea and colitis-causing Clostridium difficile can injure the 
intestinal epithelium and with the toxic metabolite TcdB (90). These 
have been studied extensively through the use of germ-free animal 
models (87) and animals treated with large concentrations of 
antibiotics that essentially reduce the number of indigenous gut 
microbes (88, 89). In contrast, Wang et al. have discovered that the 
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“good-bacteria” Lactobacillus reuteri D8 can stimulate the recovery 
and growth of the intestines and gut organoids after experimentally 
damaging them with TNF-α. This positive effect was observed 
through the increase in Lgr5, Ascl2, and Olfm4 from the Lgr5+ ISCs 
after exposure to the good bacteria L. reuteri, which resulted in a 
greater number of Paneth cells and the regeneration rate of Lgr5 
ISC. Further studies also revealed that the probiotic L. reuteri also can 
stimulate the Wnt/β-catenin signaling pathway contributing to further 
stimulation of the epithelial proliferation via Lgr5 ISCs (91). 
Additionally, erythroid differentiation regulator-1 [Erdr1] is an 
important protein that plays many roles in cell growth homeostasis 
such as cell proliferation, regulating cell apoptosis, and regeneration 
rate (92). Expression of this protein is only achieved with the help of 
the gut microbiota that inhabits the intestine during the early years of 
life, which in particular helps regulate the role of the protein 
expression in the proliferation of Lgr5 ISCs (93). After a considerable 
amount of time, researchers were finally able to culture in vitro 
segmented filamentous bacteria that is critical for immune 
development (94, 95). Such studies demonstrate the importance of the 
gut microbiota in maturing and thus indirectly regulating the host 
immune response in the intestines.

3.3. Nutrient metabolism and the 
subsequent metabolites

The plethora of bacterial phyla such as Bacteroides, Actinobacteria, 
Firmicutes, and Proteobacteria shown in Tables 1–3 comprises the 
majority of indigenous gut microbiota populations in the intestinal 
tract (96), and these microbes require nutrients in order to stay alive 
and perform their metabolic actions. These microbes rely on 
undigested dietary substances or unabsorbed nutrients such as 
carbohydrates (97), proteins, peptides, and dietary fibers as their 
energy source (98). From these metabolisms, metabolites are produced 
subsequently, and it is from these metabolites that can interact with 
the epithelial cells, particularly of ISC via indirect modulatory 
processes. Examples of such metabolites are short-chain fatty acids, 
tryptophan metabolites, and peptidoglycans (99).

Plant fibers can be fermented by Firmicutes and Bacteroidetes to 
produce ethanol, lactate, hydrogen, carbon dioxide, and most 
importantly, short-chain fatty acids (SCFAs) (100). Studies have 
shown the importance of SCFAs in the homeostatic physiological 
function of the human body (101) such as butyrate being the energy 

source of epithelial cells in the colon (102), signaling to receptors 
involved in the regulation of appetite control hormones such as 
glucagon peptide 1 (GLP1) and peptide YY (PYY) (103), and having 
potential anticancer effects by stimulating apoptosis of cancerous 
colonic cells (104). Furthermore, SCFA has also been studied in detail 
for its ability to indirectly affect ISCs by limiting the proliferation rate 
of the progenitor cells to outcompete or block access to the epithelium’s 
critical receptors/binding sites (105, 106).

Tryptophan from dietary intake such as milk (107) plays an 
important role in the indirect production of aryl hydrocarbon 
receptors [AhR] in intestinal epithelial cells. The gut microbiota (108), 
such as Acinetobacter oleivorans (109), Vibrio cholerae, Lactobacillus 
spp., and Chromobacterium violaceum (110, 111) are mainly 
responsible for the metabolism of tryptophan to generate indoles and 
their derivatives. These derivatives could stimulate the production of 
AhR receptors which in turn are important for maintaining normal 
reflux in the intestines and preventing the uncontrolled proliferation 
of ISCs that can lead to tumors (112). A study in elderly mice with an 
irregular AhR pathway revealed abnormal and excessive proliferation 
of ISCs that can risk the generation of tumorigenic cells, due to the 
pathway interfering with the main Wnt/β-catenin signaling (112).

Peptidoglycans which constitute the bacterial cell wall of the gut 
microbiota are involved as immunomodulators and the maturation of 
the intestinal epithelium. Muramyl dipeptide [MDP], which is an 
active component in the peptidoglycan, may prevent the programmed 
apoptosis of Lgr5+ ISCs from oxidative stress and simultaneously 
induce the Lgr5 ISCs proliferation. During injury, MRP is found to 
induce a cytoprotective effect on ISCs. Nigro et al. artificially cultured 
intestinal organoids with various bacterial components commonly 
produced by the gut microbiota, including MDP, and observed the size 
and number of living organoids 4 days post-culture. It was found that 
the MDP-treated group has more organoids and is larger in size 
compared to the control group and other bacterial metabolites such 
as Tetra-dap, Fla., and LPS are used. It is also found that more 
intestinal stem cells are present in the organoids from the treated 
group. The MDP-treated organoid was further tested for its 
cytoprotective effect by observation of in vivo effect of doxorubicin 
hydrochloride, a compound toxic to intestinal stem cells, for their 
ability to repair the damaged intestinal epithelium in mice. 
Interestingly, MDP-treated mice recover much faster after 24 and 72 h 
compared to the MDP control and non-treated mice groups (113). 
Such studies have demonstrated that the bacterial metabolites 
produced by gut microbiota are important key players that can work 
both ways with the ISCS in maintaining the homeostasis of the healthy 
human host intestinal epithelium.

4. Clinical trial

Inquiries regarding relevant clinical trials are conducted in the 
clinicaltrials.gov database, and there are more than 150 clinical trials 
that are related to the either the topics of stem cells, gut microbiota or 
both. Upon various filtrations, currently there is only one completed 
clinical trial that specifically argues regarding ISC and gut microbiota. 
The clinical trial is mainly to investigate the relationship between ISCs 
and diseases related to gastrointestinal tracts. The study by Helse 
Fonna focuses on investigating the effects of symptoms, quality of life, 
fatigue, change in intestinal stem cells, enteroendocrine cells, immune 

TABLE 1 Enterotypes of intestinal bacteria in the GI tract.

Phyla Genus References

Firmicutes Lactobacillus (126)

Bacillus

Clostridium

Enterococcus

Ruminococcus

Bacteroidetes Bacteroides (126)

Actinobacteria

Proteobacteria

Fusobacteria
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system, and dysbiosis before and after fecal microbiota transplantation 
(FMT). FMT refers to the transfer of the intestinal microbiota of the 
fecal material of a healthy individual suspended in liquid form to the 
gastrointestinal tract of another person (114). It is the most widely 
used therapeutic procedure for people who suffer from an infection of 
the Clostridium difficile bacteria, which may be present when there is 
an imbalance in the normal gut microbiota due to repeated antibiotic 
treatment (114, 115). Although the exact procedures may differ from 
various medical institutions, the general principle remains the same 
in all FMT (116). Other clinical trials are correlated with FMT, but 
these clinical trials do not investigate the effect or relation with ISC, 
therefore, these clinical trials are excluded in this manuscript. 
Additionally, certain clinical trials are focused on the usage of other 
types of stem cells such as hematopoietic and peripheral blood stem 
cells, which are not relevant and briefly listed in Table 4.

Briefly, the protocol of this relevant clinical trial is carried out first 
by collecting the stool sample from a healthy individual and then 
rigorously and subsequently screened for transmissible diseases, blood 
and genetic screenings for specific intestinal parasites, C. difficile, 
hepatitis A-B-C, syphilis, HIV, and any other diseases chosen by local 
protocols (117). The screened stool sample is then diluted with PBS or 
other saline before the solution is homogenized and filtered to remove 
any solid particulates. The resulting solution is then either frozen for 
long-term storage or applied directly into the recipients’ intestinal 
tracts via colonoscopy (117). The clinical trial is also conducted in a 
double-blind manner to prevent discrimination and the participants 
were also randomly assigned into three distinct interventional groups 
with a placebo group (patients receiving their own fecal matter), 30 g 
of healthy donor fecal matter group, and 60 g of healthy donor feces. 
The outcome is then assessed by having the participants to answer 
certain questionnaires regarding their global improvement in irritable 
bowel syndrome symptoms, fatigue, and quality of life, all within the 
time frame of 3 months. However, no results have been published for 
this clinical trial.

5. Conclusions and future 
perspectives

The gastrointestinal tract has gone through countless epithelial 
turnovers and regeneration in its lifetime, but more substantial 
research regarding the exact mechanisms by which the proliferation 
and differentiation of ISCs and gut microbiota with its metabolites are 
interacting with each other indirectly remain to be done. The critical 
roles of both ISCs and gut microbiota are to maintain the normal 
functioning of the gastrointestinal tract, and without these two 
important players, the gastrointestinal tract alone would not be able 
to perform its crucial role in the absorption of nutrients.

Both intestinal stem cells and the gut microbiota have their own 
set of mechanisms that work in complement to each other illustrated 
in Figure 3. Evidence has shown some of the mechanisms were agreed 
upon by multiple researchers, for example, bacteria in the GI tract may 
provide essential substances such as SCFA that can act as additional 
energy sources for intestinal epithelial cells, and in response, ISC can 
differentiate into Paneth cells that secrete antimicrobial chemical 
substances and M cells that continuously sample any microbes in the 
GI tract, both serve to protect the indigenous gut microbiota from 
being eliminated by foreign microorganisms. Conversely, the absence 
or imbalance in the normal gut microbiota known as dysbiosis has 
been observed to have many derogatory effects in the host such as 
C. difficile infection that prevents the recovery and regeneration 
process of the intestinal epithelial, irregular hyperplastic intestinal 
crypts to be observed in the GI tract without essential tryptophan 
metabolizing bacteria to name a few (Figure 4).

Due to the microscopic size of cells and bacteria, as well as the 
hundreds of microbes; it is a daunting challenge to pin down every 
single relationship and connection of the ISCs and gut microbiota in 
the proper functioning of the gastrointestinal tracts, particularly of the 
intestines. Much has yet to be discovered. Several studies mentioned 
in this review involved laboratory animals or intestinal biopsies to 
explore ISC, gut microbiota, or both at once by inducing experimental 
variables in the test subjects, and subsequent results are observed. 
Variables that could affect the research outcome are diet diversity, the 
number of processed foods, and newly approved food additives in the 
daily diet, all of which can cause dynamic changes in an individual’s 
gut microbiota.

In the past, culturing bacteria commonly found in the human 
gastrointestinal tract has been a great challenge for biomedical 
scientists to taxonomically collect and classify the human gut 
microbiota (118, 119). Some of the bacterial species are very 
minuscule in number or regarded as unculturable, which can 
be attributed to the extreme differences in the microenvironment of 
inside and outside of the human gastrointestinal tract. A study by Ito 
et al. has successfully cultured a part of this otherwise ‘unculturable’ 
bacteria population using specific culture media such as chocolate 
agar, DHL agar, and gut microbiota medium, among others (120). 
However, there are still many intestinal bacteria with unknown 
functions that cannot be  identified with conventional 
culturing methods.

The current technology of the next-generation sequencing 
(NGS) allows the identification of the genus and species of certain 
bacteria without depending on the lab culturing. At present, the 
commonly adapted NGS methodologies for sequencing bacterial 
DNA or RNA are shotgun metagenomic sequencing and amplicon 

TABLE 2 Fungus enterotypes of the gut microbiota in the GI tract.

Genus Species References

Candida C. albicans (127)

C. tropicalis (128)

C. parapsilosis

C. glabrata

“Colonizers” [not 

indigenous to GI tract]

Malassezia [genus] (128)

Cladosporium

Aspergillus

Penicillium

TABLE 3 Archea enterotypes of gut microbiota in GI tract.

Archaea Family (in order of 
most abundant)

References

Methanobacteriaceae (129)

Haloferacaceae

Methanomethylophilaceae

Euryarchaeota
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sequencing (121). The shotgun metagenomic sequencing method 
uses the attachment of adapters and barcodes to fragmented 
bacterial DNA segments in a randomized manner. The added DNA 
segments are then cross-referenced with reference databases such as 
Genbank and Reference Sequence. Amplicon sequencing, also 

known as 16 s rRNA sequencing method instead amplifies a 
particular segment of the DNA and determines the nucleic acid 
sequence of the amplified product. This is always done on the 16S 
ribosomal RNA gene for the highly preserved sequence among 
bacteria and having nine hypervariable regions that are unique to 

TABLE 4 Completed and ongoing clinical trials involving FMT and different types of stem cells.

Intervention ClinicalTrials.
gov ID

Title Objectives Status Duration

Intestinal stem cells NCT03822299

(Norway)

Effects of Fecal 

microbiota 

transplantation in 

patients with IBS

To investigate the effects of 

symptoms, quality of life, fatigue, 

change in intestinal stem cells, 

enteroendocrine cells, immune 

system, dysbiosis before and after 

fecal microbiota transplantation 

(FMT)

Completed 01 January 2018–05 

May 2019

Hematopoetic stem cell

NCT03819803

(Austria)

Fecal microbiota 

transplantation in 

aGvHD After ASCT

To investigate fecal microbiota 

transplantation in patients with 

acute gastrointestinal Graft-versus-

host-disease after allogeneic 

hematopoetic stem cell 

transplantation (ASCT).

Ongoing–

Phase 3

2017-03-01–Present

NCT04593368

(Russia)

Fecal Microbiome 

Transplantation (FMT) in 

Pediatric Patients 

Colonized With 

Antibiotic-resistant 

Pathogens Before 

Hematopoietic Stem Cell 

Transplantation (HSCT) 

(FMT-HSCT)

To prospectively assess the safety 

and effectiveness of fecal microbiota 

transplantation (FMT) prior to 

allogeneic hematopoietic stem-cell 

translation (HSCT) in patients 

contaminated with antibiotic-

resistant pathogens (ARP)

Ongoing -

Phase 2

2020-12-15–Present

NCT04269850

(Russia)

Fecal microbiota 

transplantation with 

Ruxolitinib and steroids 

as an upfront treatment 

of severe acute intestinal 

GVHD (JAK-FMT)

Pilot study of fecal microbiota 

transplantation in combination with 

Ruxolitinib and steroids for severe 

acute intestinal graft-versus-host-

disease after allogeneic 

hematopoietic stem cell 

transplantation.

Ongoing–

Phase 1

2019-09-01–Present

NCT04935684

(France)

Fecal Microbiota 

transplantation after 

allogeneic stem cell 

transplantation (TMF-

Allo)

To assess the fecal microbiota 

transplantation (FMT) efficacy in 

the prevention of allogeneic 

hematopoietic stem cell 

transplantation (allo-HSCT) 

complications and particularly Graft 

versus Host Disease (GvHD).

Ongoing–

Phase 2

2022-12-20–Present

NCT02733744

(United States)

Fecal microbiota 

transplantation after 

HSCT

To determine the feasibility of fecal 

microbiota transplantation (FMT) in 

hematopoietic stem cell 

transplantation (HSCT) recipients

Ongoing–Early 

Phase 1

2016–05–Present

Peripheral blood

NCT05873348

(China)

A controlled study on the 

regulation of systemic 

inflammation by 

intestinal bacteria 

transplantation in 

patients with COVID-19

To explore the regulatory effect of 

combined capsule FMT on the levels 

of inflammatory factors in 

peripheral blood of patients with 

COVID-19 during treatment.

N/A

2023-01-10–2023-04-

30
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each bacterial genus, thus allowing identification of the said 
unculturable bacteria (121).

The NGS method offers many benefits when it is applied in the 
clinical microbiology field. This includes a reduction in the turnaround 
time for the release of patient test results by the attending physicians, 
a wide selection of identifiable bacterial or fungal etiological agents, 
and less hands-on involvement of laboratory technologists, especially 
with slow-growing or fastidious bacteria (122). Rapid and accurate 
diagnosis is essential in treating patients. Approximately 60% of acute 
encephalitis cases have been undiagnosed, possibly due to the lack of 
specific assays that can detect more than 100 etiological agents of 
encephalitis (123). The same can be  applied to other pathogenic 
organisms, where the NGS method can rapidly identify the presence 
of these organisms as opposed to individual assay kits to detect them 
(124). Therefore, the use of the NGS method can offer a great 
advantage in discovering novel microbes whose unknown or 
additional roles in the gastrointestinal tract can be discovered and 
investigated for their cellular activities.

Additionally, the gut microbiota has many essential roles in the 
maintenance of a properly functioning gastrointestinal tract, particularly 
in its anti-cancer properties. As demonstrated in chapters 2 and 3, there 
are many intertwining feedback systems and regulatory pathways with 
both the ISC and gut microbiota on the homeostasis of the intestinal 
epithelium and the absence of one can affect the other, which may finally 
result in disorganized intestinal crypts and reduced proliferation and 
turnover rate of the epithelium, thus impeding the intestines of its 

function. This leads to an interesting connection with another part of the 
body where there is also an indigenous microbial flora that resides 
outside the cells, and without this microbial community, it can 
subsequently affect the host and also its dependencies. An example of 
such a site is the human breast and its indigenous microbiota (125). 
Nevertheless, more studies are warranted to explore more interactions 
between ISC and gut microbiota, and the techniques that have been used 
when exploring their intricate relationships can be applied when novel 
studies are done on other bodily sites.
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