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Long COVID is characterized by persistent symptoms beyond 3-months of 
severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) infection that 
last for at least 2  months and cannot be explained by an alternative diagnosis. 
Autonomic, immunologic, endothelial, and hypercoagulation are implicated 
as possible mechanisms of long COVID symptoms. Despite recognition of the 
public health challenges posed by long COVID, the current understanding of 
the pathophysiological underpinnings is still evolving. In this narrative review, 
we explore the long-term effects of SARS-CoV-2 infection on T cell activation 
such as autoimmune disorders and endothelial cell dysfunction involving vascular 
impairments within pulmonary and renal architecture. We have described how 
endothelial dysfunction and vascular abnormalities may underscore findings of 
exercise intolerance by way of impaired peripheral oxygen extraction in individuals 
with long COVID.
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1. Introduction

Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) poses an ongoing public 
health challenge with the long-term after-effects yet to be fully appreciated. According to the 
Center of Disease Control’s (CDC’s) coronavirus disease (COVID-19) data tracker, 6,183,075 
total hospitalizations and 1,132,206 deaths have resulted due to COVID-19 complications in the 
United States (US) between January 2020 and May 2023 (1). The clinical presentation following 
SARS-CoV-2 infection ranges from mild or asymptomatic to severe or critical with respiratory 
distress, cytokine storm, and coagulopathy. Certain chronic comorbidities, such as hypertension, 
cardiovascular disease, obesity, diabetes, and kidney disease, are highly prevalent in people with 
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COVID-19. While these comorbidities do not appear to increase the 
risk of developing COVID-19, they are associated with an increased 
risk of disease severity and mortality (2). Several studies over the 
course of the pandemic have reported that COVID-19 is associated 
with hyperglycemia in people with and without known diabetes (3, 4). 
Moreover, a number of studies have reported new-onset diabetes as 
being associated with the presence of COVID-19 and current data also 
suggest a bidirectional relationship between type 2 diabetes mellitus 
(T2DM) and COVID-19 (5).

SARS-CoV-2 is an enveloped positive strand RNA(+ssRNA) virus 
which has a ~ 30 kb RNA genome. The 3′-terminus of this genome 
encodes four structural proteins including the spike surface 
glycoprotein (S) which is composed of peripheral (S1) and 
transmembrane (S2) subunits (6). The SARS-CoV-2 virus gains access 
to host cells through the angiotensin-converting enzyme 2 (ACE2) 
receptor. Data suggests that the hosts genetic makeup influences the 
susceptibility, immune response, and outcomes to SARS-CoV-2 
infection (7). In their review, Fricke-Galindo et  al. (7) noted that 
HLA-A*25:01, -B*15:27, -B*46:01, -C*01:02, and-C*07:29 alleles are 
associated with COVID-19 susceptibility; while HLA-A*02:02, 
-B*15:03, and-C*12:03 are alleles with low risk of infection. Similarly, 
variants in cytokine genes like IL1B, IL1R1, IL1RN, IL6, IL17A, 
FCGR2A, and TNF could be associated with disease susceptibility and 
cytokine storm, and/or COVID-19 complications (7).

The virus spike protein (composed of S1 and S2 subunit), 
protrudes from the virus surface and binds to ACE2 receptor. After 
binding to the ACE2, the S1 subunit dissociates with the ACE2 
receptor, through a process that requires the transmembrane serine 
protease 2 (TMPRSS2) protein. The resultant conformational change 
allows the S2 subunit to fuse with the host cell membrane. Unlike 
other coronaviruses, SARS-CoV-2 does not appear to use other 
receptors for cellular access and binding to the ACE2 receptor is 
obligatory for SARS-CoV-2 cellular entry (8). In humans, both ACE2 
mRNA and TMPRSS2 mRNA are expressed in several endocrine 
glands, including the pancreas, thyroid gland, ovaries, and testes. This 
makes these endocrine glands particularly susceptible to both 
destruction and dysfunction from COVID-19 infection.

Our understanding regarding the pathogenesis of inflammation 
has evolved from evidence on the acute local infection with systemic 
inflammatory response to the chronic low intensity inflammation 
induced by the SARS-CoV-2 virus (9). The four stages of invasion 
described by Gusev et al. (9) are as follows:

 1. Primary blockage of the innate immunity: The invasion stage 
involves the attachment of the Spike protein to the ACE2 
receptors and co-receptors and alternate receptors (as 
described above). After incorporation into the cell, as SARS-
CoV-2 multiplies, it also blocks off mechanisms of 
innate immunity.

 2. Virus protection against adaptive immunity that involves the T 
and B lymphocyte activation

 3. Acute complications secondary to resultant inflammation
 4. Long term complications as a progression from acute ones

The SARS-CoV-2 virus penetrates target cells via various cell 
surface receptors, such as ACE2 and TMPRSS2. While certain 
receptors (like ACE2) and co-receptors/cofactors (like Neuropilin 1) 
allow cell entry while other receptors (called pattern recognition 

receptors) initiate an anti-viral immune response. This pattern 
recognition receptors (PRRs) recognize components of the attacking 
virus, or the cell components of damaged/dying host cells known as 
pathogen associated molecular patterns (PAMP) or Damage-
associated molecular patterns (DAMP) respectively (9). Once these 
PRRs are activated, they activate innate immunity that includes 
antiviral action of Interferons (IFNs), complement system 
macrophages, neutrophils, mast cells, natural killer (NK) cells and the 
coagulation system (see Figure 1). Activation of all these pathways 
results in rise in body temperature, drop in neutrophil, red cell and 
platelet counts, changes in vascular permeability, microthrombi 
formation, inflammation, oxidative stress and elevation of ferritin, 
fibrinogen, and D-dimer.

Destruction of cells lead to recruitment of additional 
macrophages and monocytes that release cytokines and activate the 
adaptive immunity of T and B cells (11). In most cases, the host 
immune response overcomes the inhibitory effects exerted by the 
virus and is able to clear the pathogen from the body. However, in 
certain susceptible populations, namely those 80 years of age and 
older, multiple existing comorbidities, and immunocompromised, 
the SARS-CoV-2 exerts its pathogenicity and inhibits innate 
immunity. It also disrupts specific immune pathways as well as 
universal cell distress signaling pathways. This protects the virus and 
provokes a dysfunctional immune system to attack host tissues via 
autoimmune and autoinflammatory processes. In the acute phase, 
with the excessive release of cytokines (“cytokine storm”), a severe 
systemic inflammatory response with associated complications can 
occur. Wang et  al. (12) used a high-throughput autoantibody 
discovery method known as rapid extracellular antigen profiling 
(REAP) in 194 patients and demonstrated high levels of antibodies 
against immunomodulatory proteins (cytokines, complement system, 
chemokines etc.) as compared to uninfected controls. These 
antibodies ranged from wide spectrum antibodies (like antinuclear 
antibodies, antiphospholipid antibodies, anticytoplasmic antibodies) 
to specific antibodies (like anti IFN alpha antibodies, antiglutamic 
acid decarboxylase antibodies, antithyroglobulin antibodies).

With immune system dysfunction, viral clearing gets delayed 
triggering chronic inflammation promoting persistent symptoms of 
COVID-19 (9, 11). Persistence of antinuclear antibody titers ≥1:160 in 
43.6% of 142 patients at 12 months post–COVID-19 symptom onset 
have been described in the literature (13, 14). Similar to other post-
acute viral syndromes, there are increasing reports of persistent and 
prolonged effects after acute COVID-19 termed long COVID (also 
referred to as post-acute sequelae COVID-19, post-COVID syndrome, 
and long haulers) (15–17). The clinical case definition of long COVID, 
as defined by the World Health Organization (WHO), includes 
individuals with a history of probable or confirmed SARS-CoV-2 
infection, usually 3 months from the onset of COVID-19 with 
symptoms and that last for at least 2 months and cannot be explained 
by an alternative diagnosis (18). Long COVID has been described by 
some as ongoing constitutional symptoms of fatigue, dyspnea, 
cognitive impairment, mood alterations, headaches, joint and chest 
pains, muscle aches, cough, smell and taste dysfunction that persist 
for over 4 weeks after symptom onset or hospital discharge (19). Using 
the Long COVID Symptom Tool, 85% of symptomatic patients after 
2 months were still reporting symptoms 1 year following symptom 
onset (20). Importantly, reductions in quality of life were reported to 
increase 6 months after the onset of symptoms (20).
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Vaccine-induced immunity, natural immunity, and the 
combination of the two (i.e., hybrid immunity), offer protection 
against hospitalization and mortality from SARS-CoV-2 infection 
(21–24). Based on low level evidence, vaccination prior to infection 
and after infection is shown to reduce the incidence of long COVID, 
with two doses being more beneficial than one dose (25, 26). 
Additionally, vaccinating individuals with existing long COVID 
symptoms does not seem to offer beneficial effects on symptomatic 
reduction (27). In individuals with breakthrough infections, the risk 
of long COVID is lower when compared to those with SARS-CoV-2 
infection without prior vaccination (28). Thus, vaccination prior to 
infection seems to provide some protection against the development 
of long COVID but does not eliminate the risk altogether. High quality 
data is needed to determine how potential confounding factors 
influence the impact of vaccination status on long COVID. Moreover, 
data on effects of natural and hybrid immunity are currently limited 
and require further investigation.

The prevalence of long COVID is reported to range between 10 
to 70% and higher in those infected by the historical variant when 

compared to Alpha, Delta, or Omicron (29, 30). Female sex, 
pulmonary disease, diabetes, obesity, and organ transplantation 
have been identified as potential risk factors for long COVID (31). 
Of note, autonomic, immunologic, endothelial, and 
hypercoagulation are implicated as possible mechanisms 
underlying long COVID (32). Here, in this narrative review, 
we aim to extend the current understanding of long COVID by 
exploring the long-term effects of SARS-CoV-2 infection on T cell 
activation such as autoimmune disorders and endothelial cell 
dysfunction involving vascular impairments within pulmonary 
and renal architecture. We  then describe how endothelial 
dysfunction and vascular abnormalities may underscore findings 
of exercise intolerance by way of impaired peripheral oxygen 
extraction in individuals with long COVID. Comprehensive 
literature searches of PubMed/MEDLINE, Web of Science, Google 
Scholar, and select reference lists were conducted from inception 
to May 2023 using the following primary search terms: SARS-
CoV-2, COVID-19, Post-acute Sequelae of COVID-19, 
Long COVID.

FIGURE 1

SARS-CoV-2 spike protein binds to ACE2 receptor of the host’s cells, primarily the pulmonary epithelial cells. This stimulates the release of PAMPs, 
DAMPs, and cytokines/chemokines into the cellular microenvironment and results in the recruitment and activation of innate immune cells followed 
by adaptive immune cells to the site of damage. In cases with normal physiologic immune cascade activation, the immune response effectively clears 
the virus, thus resolving infection and restoring tissue homeostasis. However, in patients with immune dysregulation, there is a hyper-inflammatory 
response (the “cytokine storm”), with further damage to the pulmonary epithelium in a positive feedback loop but ineffective viral clearing. Damaged 
epithelial cells stimulate the release of more pro-inflammatory chemokines/cytokines and DAMPs, exacerbating epithelial cell damage and death. 
Cytokine storm syndrome causes of acute respiratory distress syndrome (ARDS), endothelial dysfunction, sepsis, and multiple-organ dysfunction. 
Endothelial dysfunction results in coagulation cascade activation resulting in microthrombi and further complicating the clinical picture [Figure 
adapted from Burgoyne et al. (10)]. Created with BioRender.com.
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2. SARS-CoV-2 infection and 
autoimmune endocrine disorders

2.1. Thyroid disease

It is well known that thyroid hormones modulate innate and 
adaptive immune responses through both genomic and nongenomic 
mechanisms. Physiological concentrations of L-thyroxine (T4) and 
3,3′,5-triiodo-L-thyronine (T3) stimulate the production and release 
of cytokines, which are also components of “cytokine storm” in viral 
infections. Also, T4 and T3 can potentiate the IFN. The immune 
cascades stimulated (i.e., the cytokine and hyperactivation of Th1 
helper cells response) in response to viral infection are the same as 
those observed in autoimmune thyroid disorders (AITD), and IFN 
related thyroid disease (33). Patients can present with 
hyperthyroidism due to subacute thyroiditis (SAT), painless 
thyroiditis, thyroid hormone toxicosis or Grave’s disease; or 
hypothyroidism from primary or central hypothyroidism; or 
euthyroid sick syndrome. Out of these thyroid derangements, SAT 
appears to be most common in acute COVID settings similar to 
several other viral infections (34).

Using a retrospective analysis, Bostan et  al. found that the 
incidence of newly diagnosed SAT was 0.136% in 2018, 0.127% in 
2019, 0.157% in 2020, and 0.114% in 2021 (p = 0.19). They also 
noted that in their cohort, SAT patients were clustered in the 
autumn (35.1%) in 2018 and 2019, and that this cluster shifted to 
the winter (33.0%) in 2020 and 2021, in parallel with COVID-19 
case peaks (35). SAT can occur during acute COVID-19 infection 
or typically within 6–8 weeks after the viral infection. It occurs 
most commonly in middle-aged females and the clinical 
presentation can be varied. Some data suggests that neck pain is 
more intense, fever more frequent, and post SAT hypothyroidism 
is more common than other forms of SAT. Importantly, post-
COVID-19 fatigue may be  due to residual post-SAT 
hypothyroidism. Treatment of SAT requires the same approach as 
non-COVID-19 SAT with use of non-steroidal and glucocorticoid 
therapy (36). Similarly, management of all other thyroid 
conditions follows current established practice guidelines for 
these conditions.

2.2. Adrenal disease

There are several putative mechanisms by which SARS-CoV-2 can 
impact adrenal function. These include hypothalamic–pituitary–
adrenal (HPA) axis dysfunction with critical illness-related 
corticosteroid insufficiency; direct cytopathic impact of the virus on 
the adrenals, pituitary, and hypothalamus; immune-mediated 
inflammation; small vessel vasculitis; microthrombotic events; 
resistance of cortisol receptors; and impaired post-receptor signaling; 
and dissociation of adrenocorticotropic hormone and cortisol 
regulation (37). Hyponatremia is a common finding in acute 
COVID-19 infection and serum sodium levels <135 mmol/L may 
be  associated with poorer outcomes (38). It could result from 
syndrome of inappropriate antidiuretic hormone secretion, 
hypovolemia as well as adrenal insufficiency. Several case reports of 
adrenal infarction and adrenal hemorrhage have been described in the 
literature, in acute COVID settings (39).

2.3. Disorders of the pancreas

Wu et al. (40) mechanistically linked acute COVID-19 to diabetes 
and found that the SARS-CoV-2 receptor, ACE2, and related entry 
factors (TMPRSS2, Neuropilin 1, and Transferrin receptor) are 
expressed in beta cells, with selectively high expression of Neuropilin 
1 (NRP1). They showed that SARS-CoV-2 infected human pancreatic 
beta cells in patients who died of COVID-19 and selectively infected 
human islet beta cells in vitro. Their ex-vivo and in vitro studies 
showed that SARS-CoV-2 directly induced beta cell death by apoptotic 
beta cell signaling, similar to that observed in type 1 diabetes (T1DM). 
Proposed mechanisms include direct virus-mediated injury, systemic 
inflammatory response as well as circulating proinflammatory 
interleukins, lipotoxicity induced by the virus, and drug-induced 
injury (41).

Hyperglycemia is a common occurrence in acute COVID-19 
infections and has been widely reported even in patients not 
previously known to be diabetic (42). Several reports of ketosis, new 
onset T1DM as well as T2DM have been published in the literature 
(42). Other reports have indicated that hyperglycemia upregulated 
ACE2 and TMRSS2 cell surface receptors thereby augmenting 
possibility of infection with COVID-19. Sathish et al. conducted a 
meta-analysis and showed a pooled proportion of 14.4% for newly 
diagnosed diabetes in hospitalized COVID-19 patients (43). It is 
widely accepted that patients with sub-optimally controlled diabetes 
have a more severe and protracted course of COVID-19 illness and 
poorer outcomes. The complex interplay between SARS-CoV-2 and 
pancreas/diabetes in acute and long COVID continues to be an area 
of extensive research worldwide (44).

2.4. Disorders of the gonads

Men with acute COVID-19 have been reported to have high levels 
of prolactin and luteinizing hormone and low levels of testosterone 
and follicle-stimulating hormones, indicating possible primary 
testicular damage during active disease (45). Studies have shown that 
ACE2 expression is observed in seminiferous tubules, Leydig cells, and 
Sertoli cells (46). It plays an important role in testosterone or 
steroidogenesis regulation, interstitial fluid volume, and in 
maintaining healthy spermatogenesis (46). The underlying mechanism 
of SARS-CoV-2 action on the male gonads remains unclear but 
possible actions include infection-induced oxidative stress, HPA axis 
dysfunction due to acute severe infection, and direct gonadal damage 
(46, 47). Concerns regarding long term spermatogenic failure, sperm 
alterations, and male infertility are still areas of uncertainty. In their 
review of 148 published papers on impact of COVID on fertility, Ata 
et al. (48) noted that there appears to be no co-expression of ACE2 and 
TMPRSS2 in the myometrium, uterus, ovaries, or fallopian tubes. 
Oocytes on the other hand may be  susceptible to SARS-CoV-2 
infection due to presence of the ACE2 receptor and TMPRSS2 
coreceptor; however, viral RNA in oocytes has not been reported thus 
far. Embryos, especially late blastocysts, may be susceptible to SARS-
CoV-2 infection. Most studies have not reported a significant impact 
of COVID-19 on ovarian reserve, ovarian function, or follicular fluid 
parameters. Transient impact of COVID-19 on menstrual patterns 
may occur (48). Further studies are needed to advance our 
understanding on impact of COVID on female fertility.
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Most of the endocrinopathies described herein pertains to acute 
COVID setting and research is ongoing in the long COVID setting to 
decipher which of these conditions can persist long-term.

3. SARS-CoV-2 infection, lung 
function, and pulmonary vasculature

The mortality of acute COVID is often determined by the severity 
of respiratory failure. Significant endothelial dysfunction and 
coagulopathy have been noted in acute COVID pathogenesis (49). 
Autopsy studies have found progressive diffuse alveolar damage, but 
also significant pulmonary arterial thromboses (50, 51). Thus, it is 
thought that endothelial dysfunction is a critical component of acute 
pulmonary pathogenesis including progressive hypoxic respiratory 
failure and acute respiratory distress (52). Moreover, there are 
suggestions that endothelial dysfunction may contribute to ongoing 
symptoms in long COVID.

An early meta-analysis indicated that 24% of people survive their 
acute COVID episode continue to have unresolving dyspnea (53). This 
meta-analysis did not stratify patients by acute severity, however in 
other studies, prevalence of dyspnea appeared to correlate with 
severity of infection with outpatients having the least persistent 
dyspnea and critically ill patients having the most (54). In those with 
residual pulmonary fibrosis, the cause of dyspnea is clear. Still, many 
patients have persistent dyspnea without any significant CT 
abnormalities. Especially in those with mild COVID who never 
developed hypoxic respiratory failure, pulmonary fibrosis is rarely 
seen, though dyspnea is often reported (55). There are numerous 
hypothesized mechanisms for dyspnea in long COVID, of which 
endothelial dysfunction is thought to represent one possibility. Causes 
other than pulmonary fibrosis includes chronic pulmonary emboli, 
worsening of underlying COPD or asthma, diaphragmatic 
dysfunction, and potentially a poorly described neurologic 
phenomenon of mismatched respiratory effort with respiratory 
sensory inputs, which could be from either a peripheral neuropathy 
or central neurologic change.

On pulmonary function testing, the most common abnormality 
is an impairment in diffusing capacity (56). Diffusing capacity of 
carbon monoxide (DLCO) is a measure of the ability of gas to 
transfer from the lungs to the red blood cells, by traversing the 
alveoli, basement membrane, and pulmonary capillaries (57). 
Limitations in any of those areas such as anemia, interstitial lung 
disease or emphysema, and pulmonary vascular disease can result 
in a decreased diffusing capacity. Kersten et al. (58) demonstrated 
that individuals with highly symptomatic long COVID experienced 
impaired diffusion capacity and reduced distance in the 6 min walk 
test despite having average or only mildly affected mechanical lung 
function. While the exact mechanisms explaining impaired diffusion 
capacity in long COVID is unclear, when noted in those with a 
relative lack of pulmonary fibrosis or emphysema, it strongly 
suggests a component of pulmonary vascular disease or potentially 
anemia. Early data on patients discharging from the hospital 
indicated that anemia and deconditioning were significant factors 
for cardiopulmonary limitations (59). However, a recent meta-
analysis of studies utilizing CPETs reported numerous possibilities 
beyond anemia or deconditioning, including decreased peripheral 
oxygen extraction, preload failure, chronotropic incompetence, and 

various pulmonary limitations (60). Thus, there are many hints that 
the prolonged respiratory difficulties experienced by those who 
survive SARS-CoV-2 infection may be  related to a myriad of 
vascular issues.

SARS-CoV-2 results in reduced ACE2 during the recovery 
period, which may result in a slight hypercoagulable state. 
Furthermore, persistent SARS-CoV-2 spike protein has been reported 
in long COVID patients, which may promote a prolonged 
inflammatory response (61). The combination of reduced ACE2 and 
persistent inflammatory response may lead to chronic pulmonary 
vessel remodeling, though remodeling in other areas likely affects 
pulmonary function. While some cases of dyspnea may be due to 
direct damage to the pulmonary vasculature (even in the absence of 
pulmonary fibrosis), others may be  due to increased venous 
capacitance resulting in the decreased preload with exercise. And 
finally, there may be decreased peripheral oxygen extraction, which 
may be a vascular/capillary phenomenon resulting in poor oxygen 
delivery to tissues and essentially left to right shunting.

4. SARS-CoV-2 and kidney disease

Acute Kidney Injury (AKI) is common in the setting of active 
COVID-19 infection. More than 20% of patients who are hospitalized 
with COVID-19 infection develop AKI and the numbers are even 
higher, approaching 50% in patients who are admitted to the ICU 
(62–65). Nearly 10% of all hospitalized patients with COVID-19 
infection require kidney replacement therapy. AKI is a significant risk 
factor for chronic kidney disease (CKD) (65, 66). In a retrospective 
observational cohort study of 12,891 hospitalized adult patients with 
prior SARS-CoV-2 infection, it was found that an episode of 
COVID-19 associated AKI was associated with decreased survival 
(67). This hospitalized cohort of COVID-19 patients had a particularly 
high rate of AKI with more than 50% of the patients having a 
minimum of one episode of AKI. The severity of the AKI episode was 
also associated with decreased recovery of kidney function and 
increased mortality.

Al-Aly et al. (68) evaluated the electronic health records from the 
Veterans Health Administration and found that SARS-CoV-2 
infection increased the long-term risk of developing CKD and that the 
risk was particularly high in those with the most severe cases of viral 
infection. Among hospitalized Veterans with COVID-19 infection, 
there was incident development of AKI and CKD after 30 days of a 
COVID-19 infection. Likewise, a study from China showed 35% of 
patients had an eGFR <90 mL/min/1.73 m2 6 months after being 
hospitalized with a diagnosis of SARS-CoV-2 infection (69). Of the 
patients who had normal kidney function initially, 13% subsequently 
developed a decrease in estimated glomerular filtration rate (eGFR) at 
follow-up.

The pathogenesis of AKI in acute COVID-19 infection is 
multifactorial and involves activation of the immune system, 
coagulation cascade, endothelial injury, and the renin-angiotensin-
aldosterone system. Hypotension, low cardiac output, development of 
renal microthrombi, nephrotoxic medications and hypoxia may also 
contribute. Acute renal tubular injury is the most common 
histopathology seen in COVID-19 associated AKI. There are also 
reports of glomerular injury with thrombotic microangiopathy and 
collapsing focal segmental glomerulosclerosis (70).
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COVID-19 infection may impact the kidney through direct effects 
of the virus or indirectly through the systemic inflammatory response 
(65). It is unclear if the virus directly invades kidney cells as there is 
no evidence of viral replication using molecular techniques including 
RNA in situ hybridization and immunohistochemistry. However, 
positive COVID-19 polymerase chain reaction (PCR) tests of kidney 
tissue have been documented (71). Nandula et al. has shown in a small 
group of pre-diabetic post-COVID patients that podocytes may 
be affected in the kidneys and podocyte specific proteins may remain 
elevated even up to 1 year post infection (72). Interestingly, podocyte 
specific protein estimation in the urine has been established as an early 
and sensitive biomarker for cardio-renal function in those with 
diabetes and prediabetes (73).

SARS-CoV-2 viral effects may persist long after clinical resolution 
of the infection. The immune system’s response to the virus could 
potentially trigger increased predisposition to recurrent AKI and thus 
increased chances of CKD development (74). However, the long-term 
pro-inflammatory impact of a prior COVID-19 infection requires 
further study. It is also possible that the COVID-19 infection increases 
the risk for incident or worsening of preexisting diabetes mellitus, 
hypertension, and cardiovascular disease thus leading to increased 
risk for CKD.

Progressive CKD in the setting of SARS-CoV-2 infection likely 
involves multiple mechanisms including persistent inflammation and 
maladaptive repair of injured nephrons from prior AKI. There can 
be resultant compensatory hypertrophy of remaining nephrons. These 
mechanisms can come together potentially leading to interstitial 
fibrosis and glomerulosclerosis. However, not all patients with SARS-
CoV-2 infection and prior AKI develop progressive CKD. There are 
different trajectories of kidney function following SARS-CoV-2 
infection including patients who develop rapid decline in kidney 
function following viral infection, complete recovery, recurrent AKI, 
incomplete recovery of kidney function with no further decrease in 
GFR, and incomplete recovery of kidney function with progressive 
CKD (74). Therefore, the interaction of SARS-CoV-2 infection with 
other predisposing genetic risk factors for progressive CKD including 
APOL1 gene mutations needs to be explored further (75).

5. Exercise intolerance

Individuals living with long COVID often experience reductions 
in exercise capacity (i.e., exercise intolerance). In a meta-analysis of 9 
studies including 464 individuals with long COVID symptoms and 
359 without symptoms who completed CPET assessments, mean peak 
oxygen consumption (VO2) was found to be 4.9 mL/kg/min lower in 
those with long COVID symptoms compared to those without 
symptoms (60). Several potential sites involved in the oxygen delivery 
and utilization pathway have been implicated in exercise intolerance 
in individuals previously infected with SARS-COV-2 and those 
experiencing long COVID (59, 60, 76–84). Of note, impaired 
peripheral oxygen extraction has surfaced as one potential site of 
importance when considering limiting factors contributing to exercise 
intolerance in long COVID (see Figure 2) (59, 60, 78, 82). Singh et al. 
(78) compared systemic and pulmonary hemodynamics, ventilation, 
and gas-exchange in 10 patients who recovered from COVID-19 and 
without cardiopulmonary disease to 10 age-and sex-matched control 
participants. Invasive CPET examinations revealed reductions in peak 

VO2 to be associated with impaired systemic oxygen extraction despite 
preserved peak cardiac index (78).

Peripheral oxygen extraction is dependent on hematocrit level, 
kinetics of oxygen off-loading from hemoglobin, erythrocyte mean 
capillary transit time, diffusional oxygen conductance, capillary 
density, and muscle oxidative capacity (85). Reductions in 
peripheral oxygen extraction have been reported in clinical 
populations with metabolic myopathies (86). Skeletal muscle 
alterations including reduced force capacity, fiber atrophy, 
mitochondria and metabolic dysfunction, and capillary 
impairments have all been observed in patients following SARS-
CoV-2 infection and are thus likely to contribute to reduced 
peripheral oxygen extraction in those with long COVID (87). 
Additionally, endothelial and autonomic dysfunction due to SARS-
CoV-2 infection may decrease erythrocyte mean capillary transit 
time due to vasoconstriction. Future studies are needed to confirm 
the contributions of these factors to reduced peripheral oxygen 
extraction and exercise intolerance in long COVID.

6. Physical activity and long COVID

Physical activity level is a strong predictor of adverse outcomes 
following SARS-CoV-2 infection (88, 89). Those who are consistently 
inactive have greater risks for hospitalization, admission to the ICU, 
and death due to COVID-19 than individuals who are doing some 
physical activity or consistently meet the physical activity guidelines 
(88). These findings underscore the potential importance of physical 
activity and fitness for combatting outcomes resulting from SARS-
CoV-2 infection and has led to the proposal of various interventions 
including exercise, cardiopulmonary rehabilitation, diaphragmatic 
breathing techniques, cognitive behavioral therapy, and mindfulness 
training (90–95). In a systematic review, rehabilitation seemed to 
improve dyspnea, anxiety, kinesiophobia, muscle strength, walking 
capacity, sit-to-stand performance, and quality of life (96).

7. Post-exertional symptom 
exacerbation and exercise in long 
COVID

Despite promising preliminary findings, further research is 
required to uncover the potential benefits of rehabilitation and exercise 
interventions in individuals with long COVID (97, 98). Concerns have 
been raised about the applicability of exercise-based treatments in those 
with long COVID due to the potential for post-exertional symptom 
exacerbation (29, 99, 100). For example, in a subset of individuals with 
long COVID, worsening of symptoms after physical or mental exertion 
has been reported (99, 100). In an observational study of 213 
participants experiencing persistent symptoms due to COVID-19 that 
did not predate the confirmed or suspected infection, most individuals 
reported post exertional symptom exacerbation with 58.7% meeting 
the threshold for post exertional malaise (100). Therefore, exercise is 
not recommended for any individual with long COVID who 
experiences post exertional malaise or meeting diagnostic criteria for 
myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). In 
such instances, other treatment strategies to manage energy levels such 
as “pacing” should be considered. Future studies examining for whom 
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exercise is most appropriate, which symptom(s) should be targeted, and 
optimal dosing would be of great value to those living with long COVID.

8. Summary

SARS-CoV-2 causes multi-organ system dysfunction during the 
acute responses to infection. Delayed viral clearing resulting from 
immune dysfunction triggers chronic inflammation and the promotion 
of persistent symptoms of COVID-19. Lymphocyte activation and 
persistent inflammation has been noted in various settings post COVID, 
however, whether this persists long-term leading to constellation of signs 
and symptoms in long COVID needs to be investigated with urgency, 
so that clinicians are cognizant of these possible maladies. The 
combination of reduced ACE2 and persistent inflammatory response 
may lead to chronic pulmonary vessel remodeling, though remodeling 
in other areas likely affects pulmonary function. While some cases of 
dyspnea may be due to direct damage to the pulmonary vasculature 
(even in the absence of pulmonary fibrosis), others may be  due to 
increased venous capacitance resulting in the decreased preload with 
exercise. Progressive CKD in the setting of SARS-CoV-2 infection likely 
involves multiple mechanisms including persistent inflammation and 
maladaptive repair of injured nephrons from prior AKI. These 
mechanisms can come together potentially leading to interstitial fibrosis 
and glomerulosclerosis. Finally, exercise intolerance is a may have 
significant implications on functional capacity and quality of life in those 
with long COVID. Peripheral oxygen extraction is one potential factor 
contributing to the exercise intolerance experience by these individuals. 
While exercise may be beneficial for combatting the consequences of 
long COVID in some, the possibility of post-exertional symptom 
exacerbation highlights the importance for individualized treatment 
prescription. Despite the expansion of knowledge and understanding in 
long COVID, future research is needed to determine how this newly 
gained information can be best applied to maximize clinical benefit.
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