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Epistaxis is a typical presentation in the otolaryngology and emergency

department. When compressive therapy fails, directive nasal cautery is necessary,

which strongly recommended operating under the nasal endoscope if it is

possible. Limited by the operator’s clinical experience, complications such as

recurrence, nasal ulcer, and septum perforation may occur due to insu�cient

or excessive cautery. At present, deep learning technology is widely used in the

medical field because of its accurate and e�cient recognition ability, but it is still

blank in the research of epistaxis. In this work, we first gathered and retrieved

the Nasal Bleeding dataset, which was annotated and confirmed by many clinical

specialists, filling a void in this sector. Second, we created ETU-Net, a deep learning

model that smartly integrated the excellent performance of attention convolution

with Transformer, overcoming the traditional model’s di�culties in capturing

contextual feature information and insu�cient sequencemodeling skills in picture

segmentation. On the Nasal Bleeding dataset, our proposed model outperforms

all othersmodels that we tested. The segmentation recognition index, Intersection

over Union, and F1-Score were 94.57 and 97.15%. Ultimately, we summarized

e�ective ways of combining artificial intelligence with medical treatment and

tested it on multiple general datasets to prove its feasibility. The results show that

our method has good domain adaptability and has a cutting-edge reference for

future medical technology development.

KEYWORDS

epistaxis, nasal endoscope, deep learning, image segmentation, Transformer, attention

mechanism, model fusion

1. Introduction

Epistaxis is a typical emergency for primary care physicians and commom presentation

in otolaryngology and emergency department. According to statistics, more than 60% of

the population has experienced epistaxis in their lifetime, and 6% need medical help (1).

Epistaxis has a bimodal age distribution, common in children around 10 years old and older

adults around 60 years old (2, 3). Epistaxis mostly shows as unilateral hemorrhage, and a

few can occur as bilateral. Most anterior epistaxis originates primarily from the Kiesselbach

plexus (3), whereas the posterior epistaxis is less common but more fierce. Local illnesses of

the nasal cavity, such as dry mucosa, trauma, inflammation, tumors, etc., are the main causes
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of epistaxis. Systemic diseases, such as coagulation dysfunction,

hypertension, acute febrile infectious diseases, etc., can also induce

it (4).

Local compression and nasal spray with vasoconstrictor are the

primary treatment options for epistaxis (5). When such methods

are ineffective, directive nasal cautery by silver nitrate or electro-

drying should be performed as soon as possible under the nasal

endoscope (6, 7). Nasal endoscope is a long, rigid tube used

to view the interior of the nasal cavity. Its camera at the front

captures color high-definition video images projected to the screen

in real-time (8). During the operation, to avoid local ulcers,

mucosal atrophy, and nasal septal perforation caused by excessive

damage to the nasal mucosa, the operator needs to accurately

judge the shape of malformed vessels under the nasal endoscope.

Due to the complex anatomical structure of the nasal cavity and

the rich submucosal vascular network, it is a big challenge for

primary care physicians and junior physicians to accurately identify

malformed vessels. Now, the emergence of artificial intelligence

image segmentation algorithms provides the possibility to solve

this dilemma.

In recent years, with the development of deep learning

technology, artificial intelligence combined with medical treatment

has become a research hotspot (9). The deep learning algorithm

has the ability to process a large amount of complex medical

information and images by continuously accumulating and

learning disease data. Taking image segmentation as an example, it

refers to the classification of images at the pixel level. It separates

the target and the background to perceive the target accurately.

Yadav et al. (10) developed a probabilistic neural network based

on deep learning to segment the brain tumor area from the

image, achieving a segmentation accuracy of 99.21%. Dong et al.

(11) achieved high performance in the automatic segmentation of

coronary arteries with a multi-scale feature aggregation method.

Bateson et al. (12) emphasized the passive domain adaptability

of segmentation. They proposed a framework using a priori

entropy minimization method so that the model can maintain

better indicators in different segmentation tasks. While good

results have been achieved in the field of image segmentation,

there is still a lack of research on the problem of epistaxis

treatment under nasal endoscope. This is further exacerbated by

the difficulty in acquiring medical image data, which requires

specialized equipment and involves ethical and privacy issues.

These challenges present a significant barrier to research in the

field of epistaxis treatment, including the development of artificial

intelligence solutions.

Our work focuses on segmentation of epistaxis image under

nasal endoscope and aims to use deep learning technology to help

clinicians accurately judge malformed vessels. The contribution

of this paper mainly has three aspects, which are summarized

as follows:

(1) Collected and organized a Nasal Bleeding dataset, which can

be used for segmentation model learning and evaluation in the field

of epistaxis;

(2) Proposed the ETU-Net, a model which uses a U-

style structure combining the convolutional neural network

and Transformer, and can be used for segmentation tasks of

medical images;

(3) Introduces the related strategies of model training, evaluates

the performance of the proposed model on multiple datasets, and

compares it with multiple advanced models.

2. Related work

2.1. Convolutional neural network for
image segmentation

Convolutional Neural Network (CNN) (13) is a classic model

that combines deep learning and image processing technology.

As one of the most representative neural networks in deep

learning technology, it has made many breakthroughs in image

analysis and processing. Many accomplishments based on CNN

have been realized, including image feature extraction and

classification (14), pattern recognition (15), etc., in the widely

used academic picture annotation set ImageNet (16). CNN is a

deep model with supervised learning. Its basic idea is to share the

weights of the feature map at different positions of the previous

layer of the network and use the relative spatial relationship

to reduce the number of parameters to improve the training

performance. When operating image segmentation, CNN has

excellent feature extraction capabilities and good feature expression

capabilities. Unlike traditional image processing techniques, it

requires manual image features extraction, and does not need too

much preprocessing of images. Therefore, CNN has been widely

used in medical image segmentation in recent years (17–19).

To successfully apply CNN in image segmentation, the first

issue must be addressed is that the fully connected layer at the

conclusion of traditional CNN can only get one-dimensional

category probability information, causing the lose of global

pixel information. Therefore, in Long et al. (20) proposed FCN

(full convolutional neural network), which replaced the original

fully connected layer of one-dimensional vector in a form of

a convolutional layer. It is a pioneering work in CNN image

segmentation. U-Net (21) was born on the basis of FCN, which

is dedicated to biomedical images. Its network adopts the U

channel structure of the encoder-decoder, and the channels are

connected by jumps, as shown in Figure 1. Similar improved

network U-Net++ (22) and three-dimensional structure V-Net (23)

are successively being proposed. CNNs that have demonstrated

excellent capabilities in image segmentation also include DeepLab

v3 Plus (24), PSPNet (25), and HrNet (26), but most of them

lack global multi-scale recognition and context modeling capability

and cannot pay attention to the feature and position information

directly associated with the segmented object.

2.2. Transformer: a new deep learning
network architecture

Transformer (27) is currently the hottest network architecture

in the field of artificial intelligence. It was proposed in 2017.

The entire network structure of the Transformer is completely

composed of the attention mechanism and the Multilayer

Perceptron (MLP) feedforward neural network, as shown in

Figure 2. Some CNNs also adopted attention mechanism, such as
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FIGURE 1

The structure diagram of the U-Net model, which uses the encoder-decoder architecture, the arrow in the middle is the skip connection, the upper

part of the bar is the corresponding number of channels, and the left side is the size of the feature map.

SE-Net (28) and CA-Net (29). They mainly draw on the attention

allocation mechanism of human vision, and learns an information

vector associated with the context through the module to assign

weights to the input sequence. The MLP feedforward network is

the so-called multi-layer perceptron, and the different layers are

connected in a fully connected manner.

The classic Transformer uses a self-attention mechanism,

which is an Encoder-Decoder superposition model. It was

originally used for natural language processing in which sentences

need to be segmented in the input network. Similarly, in image

segmentation training, the image segmented into multiple patches

for inputs, and mapped into a linear embedded sequence which is

encoded by the encoder. Then the decoder decoded it by the output

of the class embedding, recover the original image by up sampling

and predict the corresponding class for each pixel to output

the final prediction map. Segmenter (30) is a complete semantic

segmentation model of the Transformer architecture. Experiments

have proved that it captures the global context information of the

image well and can be used for long-term modeling and encoding.

Similar to Segmenter there is the Swin-Unet (31) model and

the amazing point is that it completely replaces the convolution

block in the original U-Net with Transformer, and it is 2.28%

higher than U-Net in terms of dice score. However, the pure

Transformer, despite its high precision and strong performance,

does not perform well on small datasets, and at the same time,

too many fully connected layers will bring a dramatic increase

in the amount of calculations. Such simplistic model, which

relies on storage space and processing resources for accuracy

performance, is clearly inapplicable tomedical image segmentation.

TransUNet (32) has noticed this. It adopts a hybrid structure of

CNN and Transformer, uses CNN to obtain feature maps and

inputs them into Transformer for encoding, and uses a cascaded

upsampler to ensure accurate prediction. Moreover, UCTransNet

(33) starts from the channel attention mechanism, optimizes the

skip connection in U-Net, and proposes a multi-scale channel

crossing information module. Based on above, it is not difficult

to find that the architecture of CNN combined with Transformer

can be compatible with the advantages of both, and has achieved

a new breakthrough in image segmentation, which has reference

significance for the work of this paper.

3. Materials and methods

3.1. Dataset acquisition

Image segmentation is a pixel-level classification task, and

training a model with superior performance and accurate

recognition is closely related to the quality of the dataset. In

existing reference sources, we could not find a professionally

annotated epistaxis medical imaging dataset with corresponding

segmentation masks. So we propose a dataset called Nasal Bleeding.

This dataset utilizes epistaxis image data collected by professional

nasal endoscopy equipment (OTV-SC, Olympus) since May 2020

at the Ya’an People’s Hospital, Sichuan Province, China, and is used

for the development of the deep learning segmentation model in

this paper. These images were collected during nasal examinations

of patients who voluntarily consented to the study. After the images
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FIGURE 2

The Transformer model’s structure diagram comprises a self-attention layer and a feed-forward neural network. Its input is sequence data, which is

suitable for parallel computing.

were collected, all the data were desensitized to ensure that no

ethics and personal privacy of patients were involved. There are

a total of 405 images in the entire original dataset, and Figure 3

shows some of our dataset images. The curated dataset includes

a variety of conditions during the examination, including blurred

perspective, reflections, heavy nasal bleeding, and spot and tendril

vascular malformations.

After exporting the endoscopic epistaxis image, we saved the

original RGB color image in JPG format (765 x 570, 24 bit, 960

dpi). The image labeling was completed by a professional rhinology

physician with more than 5 years of specialist work experience.

Using the Labelme image labeling tool based on the Anaconda

prompt platform, all nasal endoscopic epistaxis images were labeled

with bleeding sites and abnormal vessels, and were divided into

two categories, spot or tendril vascular malformations, according

to the shape of malformed vessels, and then cross-validated by two

other rhinologists. If there is any dispute over the labeling of the

epistaxis image, it will be decided by three people through joint

discussion or voting. For annotating images pixel by pixel is both

time and energy consuming, the strategy we adopt is similar to

Curti et al. (34), and we try our best to focus on the bleeding areas.

When malformed vessels are observed, we prefer to label those

vessels rather than the whole bleeding area. After the annotation,

a JSON file is obtained containing all the information about the

image and the coordinate points used to generate the mask, for a

total of more than thirteen million annotated pixels. Subsequently,

we use the written Python script to generate masks in PNG format

for each label. Finally, we got all the image datasets that meet the

clinical segmentation requirements. This dataset is the first targeted

dataset proposed on this issue so far, and it will help advance the

research of deep learning in the field of epistaxis. In order to further

explore the impact of label semantics on model performance, we

divided the dataset into two cases. One uses two types of labels:

background class and abnormal class; another uses three classes

tags: background class, spotting tag, and bleed tag. Figure 4 shows

some labels of our dataset.

3.2. Image preprocessing

We performed necessary image preprocessing procedures on

the dataset, namely image improvement and data augmentation, to
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FIGURE 3

Display of part of the dataset, which includes, blurring, reflections, and spot and tendril vascular malformations.

FIGURE 4

Schematic diagram of the dataset labels, from top to bottom are the original image, the black and white label image and the visualization result of the

label in the original image.

increase the practicability of the dataset as well as the robustness of

the training model and its generalization ability. Common medical

imaging datasets frequently contain uneven data distribution, a

small number of image samples, and blurring. As a result, we first

normalize the image using the following equation:

y =
input −min(input)

max(input)−min(input)
(1)

In Equation 1, input refers to the input pixel value of the image,

output refers to the output pixel value of the image, max(input)

andmin(input) represent the maximum andminimum pixel values

in the input, and finally this step can combine all pixel feature

values are adjusted to the range of (0, 1), which will effectively

prevent the influence of affine transformation and speed up the

convergence of the model. In addition, we also manually refined

the dataset to remove the influence of overly blurred images during

model learning.

In this study, various data augmentation techniques were

adopted, including random angle rotation, brightnessmodification,

contrast enhancement, chroma sharpness enhancement, and
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mirror flip, to increase the dataset size to 3,582. Data augmentation

has been employed to boost the dataset’s diversity as well as

geographic diversity expression. Modeling using augmented data

is also expected to achieve significant robustness since certain

augmented situations that may happen in the clinical practice can

be captured. Additionally, effective solution(s) could be found for

the overfitting issue arising from limited data. For example, as

shown in Figure 5, a fragment of the image generated after image

preprocessing, these techniques enhance dataset variability, which

can help decrease the model’s generalization error and improve its

ability to recognize key features.

Random angle rotation can improve the model’s ability to learn

data from different angles, boosting the model’s flexibility. Also,

with the brightness modification and contrast enhancement, we

adjust images’ contrasts and brightness to improve their texture

details, helping our model recognize essential features accordingly.

Chroma sharpness enhancement could increase images’ color

saturation, improve their contrast, and highlight the target area in

various lighting conditions, improving the data’s quality. Flip is an

efficient method to expand dataset size by mirroring images and

improve recognition accuracy by enabling the model to identify the

target from different perspectives.

To sum up, data augmentation is a feasible method to improve

the quality and quantity of a dataset, including in medical imaging.

By incorporating data augmentation techniques into the model,

our model has become more robust and adaptable in clinical

practice. This paper leverages these techniques to enhance the

dataset’s variability, which helps improve the model’s performance

and generalization.

3.3. Training parameters and evaluation
metrics

The experiment described in this article was carried out on

a machine running the Ubuntu 20.04 operating system. PyTorch

1.10.0 is the deep learning framework. The processor is an Intel(R)

Xeon(R) Gold 5320 with a clock speed of 2.20 GHz and 32 GB of

RAM. The graphics card is an NVIDIA RTX A4000 with 16 GB of

video memory and Compute Unified Device Architecture (CUDA)

11.3 acceleration.

Our dataset is separated into training and testing sets in an 8:2

ratio. The training set is used for the model’s continuous learning,

and the test set is a batch of data that the model has never seen

before to assess its generalization ability. The batch size of the

model in each training is 12, the total number of training is 200

rounds, the initial learning rate is set to 0.0001, the learning rate

is dynamically changed by the cosine annealing algorithm (35),

the momentum is set to 0.975, and Adaptive Moment Estimation

(Adam) (36) optimizer, which is a faster gradient descent optimizer,

can comprehensively consider the first-order moment estimation

and second-order moment estimation of the gradient, and calculate

the update step size.

It is worth emphasizing that we selected a batch size of 12

due to our use of GPUs with a limited memory capacity of

24 GB. Our experimental experience suggests that a reasonably

large batch size can lead to better results while still maximizing

computing resources. We uniformly set the epoch to 200 rounds

to ensure fairness. Furthermore, through prior research, we found

that the loss function approached convergence around 200 rounds.

Nevertheless, different models may have different convergence

intervals, which prompted us to standardize the epoch of ourmodel

to 200 rounds after comprehensive consideration.

During the experiment, the model will continue to learn on the

training set, and will eventually generate multiple weight results

that perform well on the training set. In order to further evaluate

on the test set, we design five indicators to comprehensively test

the performance of the model from different aspects. The model

with the highest comprehensive evaluation score among all the

well-performed models is finally selected as the final application

model. At last, we compared the designed ETU-Net model with

various advanced models in current academia, and tested it on

other medical datasets to reflect the advancement and domain

adaptability of our model.

The intersection ratio refers to the ratio of the overlapping part

of the two regions to the union of the two parts. It reflects the gap

between the model segmented region and the real marked region.

The more accurate the model prediction is, the Intersection over

Union (IoU) value will be higher. The specific equation of IoU is as

follows, where A represents the real label area and B represents the

model prediction area. And mIoU is the average of different types

of IoU.

IoU =
A ∩ B

A ∪ B
, IoU ∈ [0, 1] (2)

Precision refers to the proportion of true positive samples out of

all the positive samples predicted by the model. Recall refers to the

proportion of the positive samples predicted by the model out of all

the true positive samples, that is, sensitivity. The specific equations

of the two are as follows, where TP refers to the number of positive

samples that are correctly classified. In this paper, this positive

sample refers to the number of pixels that are correctly predicted

as abnormal classes, and FP refers to the number of pixels that

are predicted as abnormal classes but actually are the background

class, FN refers to the number of pixels that are predicted to be the

background class but actually are the abnormal class.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

In evaluating a model’s performance, the use of single metrics

such as Precision and Recall may be inadequate, as high values

in one metric may not give an accurate reflection of the

overall performance of the model, particularly when compared

to metrics with comparatively lower values. Consequently, we

recommend the use of the F1-score equation to evaluate themodel’s

performance across different tasks effectively, with a particular

focus on image segmentation problems. The F1-score is obtained

by computing the harmonic mean of Precision and Recall, yielding

a comprehensive metric that can effectively evaluate a model’s

overall performance. High Precision scores indicate accurately

detected object boundaries, while high Recall scores indicate that
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FIGURE 5

Schematic diagram of image preprocessing. From left to right and from top to bottom are the original image, adjusted brightness, adjusted contrast,

adjusted sharpness, adjusted chroma, and random flip results. When the data is enhanced, the label will also change accordingly.

all object boundaries have been delineated accurately. Therefore,

to achieve high performance in image segmentation problems, a

model should strive for a balance between these two metrics. The

F1-score equation provides a quantifiable measure and provides

insight into how well the model is performing across these two

metrics, making it an essential evaluation metric. The specific

equation for the F1-score is as follows:

F1− score =
2×mPrecision×mRecall

mPrecision+mRecall
(5)

In this paper, we also introduce an average index of Dice-

score, which is specially used to evaluate the pixel classification of

abnormal classes, rather than the overall evaluation. The specific

equation is as follows:

Dice− score =
2× TP

2× TP + FN + FP
(6)

3.4. Transfer learning and freeze-thaw
training

There are obviously many similarities in the process of picture

segmentation, such as the necessity to detect the contour of the

object in the image, and the positions where the objects appear

in the image are generally comparable. Based on this feature,

we propose using transfer learning to boost the models learning

ability. Transfer learning refers to the application of new learning

tasks in an old field by reusing existing model learning weights,

analogous to how humans learn new tasks. Transfer learnings

major purpose is to train the model on a very big dataset to obtain

appropriate weights, and then utilize the generated weight model

as an initialized basic model to learn on a new dataset. We pass the

experiment, proving that this method is feasible which can quickly

promte the network’s convergence and significantly improve the

model’s accuracy. It can be seen that objects in real life have many

analogies, which is also in line with human perception. We chose

the Pascal VOC 2007 dataset (37) as our prior knowledge for

transfer learning, which is a large official dataset from the Pascal

VOC competition, consisting of nearly 10,000 realistic images,

including humans, animals, vehicles, and furniture categories.

Transfer learning can converge to a higher level of accuracy

with less training data and less training time. We employ a freeze-

thaw training strategy to use these priors more efficiently instead

of randomly initializing the network. Since the features extracted

by the backbone feature extraction part of the neural network on

large datasets are common, in the early stage of network training,

we can freeze the weights of the backbone network of the model

without changing the parameters of the feature extraction network.

The network is fine-tuned. In the middle and late stages of network

training, in order to adapt to new learning problems, the entire

network will be unfreezed to participate in model training, and

relevant parameters will be greatly adjusted.

3.5. ETU-Net

In this paper, we propose a network model named ETU-Net,

whose structure is shown in Figure 6. The overall architecture

of ETU-Net is in the form of Encoder-Decoder. The left

side is the model encoder, which comprises an initialization

block and four Down Blocks. It is mainly responsible for

image feature extraction and will gradually reduce image feature

information through the network layer. The right side is the

model decoder, consisting of four Up Attention Blocks and one

End Block, is mainly responsible for restoring the target details

and spatial dimensions through the image features extracted

by the encoder, and outputting pixel-level segmentation results

one by one. Between the encoder and the decoder, we imitate

the structure of U-Net and adopt a skip connection. This
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FIGURE 6

The structural diagram of the ETU-Net model. The model is divided into a decoder and an encoder. The SC-Trnasformer multi-scale feature fusion

module connects the middle part. The input network is an original image of 3×224×224. The corresponding prediction map will be output.

FIGURE 7

A detailed view of the Down Block module. It can be seen that Down Block uses convolution as a component, using attention mechanism, pooling,

and residual connection.

form can splice feature maps from the same encoder and

decoder layer, and then restore the feature map produced during

upsampling. Because the feature map now has more semantic

information from the original image, it can increase image

segmentation fineness.

Unlike the U-Net network, our model includes four

contributions that offer equivalent methods for encoder, decoder,

skip connection, and loss function to construct a novel U-paradigm

network model, and an ablation experiment is devised to test its

effectiveness. We will elaborate the ETU-Net network model in the

following subsections.

3.6. Encoder

Encoders are composed of more efficient modules. The

downsampling form of the original U-Net network is the module

superposition form of the normal convolution-pooling-activation
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FIGURE 8

Schematic diagram of grouped convolution. We assume that the

length and width of the feature map are H and W. After the group

convolution operation, c1 represents the number of channels at the

input, c2 represents the number of channels at the output, and g

represents the number of groups. The input feature maps will be

averaged into g groups by channel, perform conventional

convolution on each group, and then concatenate the output

feature map. The parameter amount of this operation will be

reduced to 1
g
of the original conventional convolution.

function. We design and propose the ETU-Net after referring

to the structure of the constituent modules of EfficientNet v2

(38). The Down Block in EfficientNet v2 can well balance the

three-dimensional features of depth, width, and resolution like

the MBConv module in EfficientNet v2. At the same time, the

Squeeze-and-Excitation (SE) attention module is embedded in the

module, which naturally assigns attention weights to the feature

maps during upsampling.

The Encoder part of ETU-Net consists of an initialization

module and four Down Blocks. The initialization module is similar

to the downsampling module of U-Net, but the activation function

uses Swish (39). The schematic diagram of the composition of the

Down Block is shown in Figure 7. It consists of two 11 convolution

blocks, one group convolution, one SE Block, one max pooling,

and two convolution blocks. The two 11 convolution blocks at the

beginning and the end are used respectively for dimension increase

and dimension reduction. The group convolution operation in

the middle is different from ordinary convolution. Figure 8

depicts a schematic diagram in which the convolution kernels are

dedicated to one channel and a channel is convolved by only

one convolution kernel, which has the advantage of reducing the

number of parameters during the deep convolution operation

and improving the diagonal correlation between the convolution

kernels. SE Block is a conventional attention module. Through

the Squeeze process, that is, through AdaptAvgPool, the global

compressed feature quantity of the current feature map is obtained,

and then through the Excitation process, the weight of each

channel of the feature map is obtained by two layers of full

connection, and the dimension is reduced. Here we replace the

fully connected layer with a 11 convolutional block equivalent,

which can effectively reduce the amount of parameters. Because the

traditional CNN network connection method frequently contains

connections across neighboring layers, themore information is lost,

the deeper the network. To avoid this problem, we use a shortcut

connection method to connect multiple convolutional layers in

series to form a deep network. That is, the shallow information can

be mapped into the deep network to avoid gradient dispersion. At

last, there are MaxPool layers and two convolutional layers, which

expand the receptive domain of downsampling and preserve the

texture features.

3.7. Skip connection

Transformer-based multi-scale feature fusion skip connection

demonstrates that our proposed ETU-Net is a novel model

that combines convolution and Transformer. CNNs and

Transformers are two architectures commonly employed in

the computer vision field, each possessing different strengths.

CNNs excel at local feature extraction, while Transformers

are suitable for global interaction and parallel computation.

Based on such prior knowledge, we consider integrating the

Transformer into the original U-shaped architecture for semantic

segmentation networks.

In the original U-Net network, although skip connections

are used between the same layers to alleviate the information

loss that is prone to occur during the sampling process, it does

not take into account the semantic gap between different layers,

especially shallow encoders and the decoder. To achieve accurate

medical image segmentation, the image features acquired by the

decoder should contain information between layers. However, if

more skip connections are added or a fully connected method is

used, the network will become too redundant. Therefore, it can be

considered to use the form of intermediate modules to perform

feature fusion on the information obtained by skip connections,

particularly leveraging the long-term dependency modeling ability

of the Transformer.

We established the SC-Transformer in ETU-Net based on CCT

(33), which consists of 4 Transformers, and each Transformer

contains a multi-channel cross-attention, multi-scale feature

embedding, and multiple MLPs, as shown in Figure 9.

First, the output of each downsampling layer is loaded into

the SC-Transformer as input. Second, these input features will

be dimensionally reduced into Transformers planarized sequence.

Because there are a total of four layers of downsampling input,

a total of four scales of encoder feature information can be

obtained, and the number of channels remains unchanged during

this process. Subsequently, the four Tokens (connected) are concat

together, and each token is abbreviated as Ti, and the 6T after

concat is then input into the multi-head cross-attention module

as key and value, and then the encoding of each channel of

the pairing as well as the interdependence between channels are

completed by an MLP with residual structure, which refines the

encoders correlation features. In the multi-head cross-attention

module, there are five inputs in total, including four Ti as

queries, 6Ti after Concat as keys and values, and five outputs are

weighted:

Qi = TiWQi ,K = T6iWK,V = T6iWV (i = 1, 2, 3, 4) (7)

where WQi ∈ RCi×d, WK ∈ RC6i×d, WV ∈ RC6i×d, d refers to the

length of the sequence, and Ci refers to the channel dimension of

the four downsampling inputs. Using Q, K, and V, the similarity

matrix can be generated through cross-attention, and the value can

be weighted. The equation is as follows:
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FIGURE 9

The detailed illustration of SC-Transformer is similar to Transformer. MLP and self-attention modules make up the SC-Transformer. The self-attention

here is the multi-head cross-attention module.

CAi = MiV
⊤ = σ

[

φ

(

Q⊤
i K√
C6i

)]

V⊤

= σ

[

φ

(

W⊤
Qi
T⊤
i T6iWK

√
C6i

)]

W⊤
VT

⊤
6i

(8)

Where σ is the Sigmoid activation function and φ the

instance normalization approach (40), which normalizes the

similarity matrix of each instance in order to smooth the gradient

propagation. After the multi-head cross-attention module, the

obtained MCA output is as follows, and the number of multi-heads

in practical applications is N = 4:

MCAi =
(

CA1
i + CA2

i+, . . . ,+CAN
i

)

/N (9)

Oi = MCAi +MLP
(

LN(Qi)+MCAi

)

(10)

MLP refers to amulti-layer perceptronwith a residual structure,

and LN refers to a layer normalization method (41), which can

normalize all features of each sample. The above equation will be

repeated four times to build a four-layer Transformer, and the final

output result will be concatenated with the previous layer’s decoder

output in the Up Attention Block module.

3.8. Decoder

To further obtain the semantic information obtained from

the encoder and SC-Transformer, we designed the UP Attention

module, as shown in Figure 10. Its primary task is to re-upgrade

the Token formed after the feature map is loaded into the

Transformer to a multi-channel feature map, followed by assigning

corresponding weights to each feature using spatial and channel

attention, and finally upsampling to restore image details and

output the pixel class of the object.

The input of the UP Attention module is the feature map from

the previous layer and the Token obtained by the SC-Transformer.

The two are inconsistent in dimension, so the CSA module is

needed to eliminate the ambiguity. The specific operation is to

combine the two after average pooling and multi-layer perceptron,

and then pass the activation function to obtain a multi-scale fusion

feature map. Do matrix multiplication between the feature map

and the upsampling result to obtain the attention distribution

in the channel direction, and then calculate the mean value and

maximum value of the results respectively, concatenate the two

results to increase the dimension, and then multiply the result with

the matrix, and finally get the weight feature map after multi-scale

channel and spatial attention distribution through the activation

function. The resulting output by the CSA module will also be

spliced with the featuremap of the previous layer, and the shape and

size of the feature map will be gradually restored after two layers of

convolution operations. Finally, a 3×224×224 prediction map is

obtained through the End Block.

3.9. Loss function

By observing the pixels of the dataset, it is not difficult

to find that our Nasal Bleeding dataset has a strong "long tail

effect," that is, the distribution of the dataset is uneven, and

the background class labels in the image occupy most of the

label information. The network fends to pay more attention to

improving the accuracy of the background class and ignore the

abnormal class labels we really need, so we introduce the Focal

Loss function (42), which assumes that the outliers and learning
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FIGURE 10

A detailed diagram of the Up Attention Block module. It consists of pooling, MLP, and spatial and channel attention modules, which reshape the

information of the Transformer, and at the same time obtain the feature map of the previous layer and the output fusion of the skip connection.

saturation are ignored. In some cases, the data that are easy

to classify during the training process actually have little effect

on improving the model, so the model should focus on those

few hard-to-classify samples. This assumption fits well with our

dataset distribution.

The function equation of Focal Loss is as follows. Among

them, α and γ are adjustable factors that are artificially set. In the

experiment, we set them as 0.5 and 2, and y = 0,1 represents two

categories, which can be regarded as background and abnormal

categories in the task of this paper. In the equation, p is the

similarity between the model prediction result and the real label,

and the larger p is, the more consistent the model prediction result

is with the real label, that is, the closer the pixel classification is to

category y. For samples with correct classification, the closer p is to

1, (1 − p)r tends to 0; for samples with inaccurate classification,

p tends to 0, and (1 − p)r tends to at 1. The smaller p is,

the more difficult it is to classify the sample. At this time, the

adjustable factor can be used to assign greater weight to this

sample, so that the entire function is optimized to favor these

difficult samples, thereby improving the classification accuracy of

the sample.

Focal Loss =

{

−α(1− p)γ log(p), if y = 1

−(1− α)pγ log(1− p), if y = 0
(11)

4. Results and discussion

4.1. Comparison with state-of-the-art
methods

To demonstrate the segmentation performance of the ETU-

Net proposed in this paper, we performed a comparative

validation on the nosebleed dataset. The advanced models

for comparison include: U-Net (21), DeepLabv3 Plus (24),

SegFormer (43), PSPNet (25), and HrNet (26). The results of

the experiment are visualized in Figure 10 and Table 2. The

models mentioned in this section all adopt the method of

transfer learning on the VOC2007 dataset, so the results obtained

are the best metrics achieved by these models on the Nasal

Bleeding dataset.

First, as shown in Figure 11, we compared the performance

of the six models on three indicators. It can be seen from the

visualization that the mIoU and Dice-score of most of the models

exceed 0.9, and the F1-score reaches above 0.9, indicating that

the Nasal Bleeding dataset has good versatility, and there is no

substantial decline in the indicators of a certain model on this

dataset. Therefore, the Nasal Bleeding dataset can contribute to

future model research on nasal bleeding image segmentation.

In Table 1, we further show the specific values, and supplement

the average Precision and average Recall data of the six models. In

the table, we also bold the indicators of the highest performance of

the model. ETU-Net performed the best among these six models.

Its mIoU and Dice-score reached 94.57% and 0.9473, which has

a greater performance breakthrough than other advanced models.

ETU-Net reached 97.38 and 96.93% on mPrecision and mRecall.

In order to balance the two, the concept of the F1-score was

introduced. It can be seen that the F1-score of ETU-Net is still

2.62% higher than the original U-Net, and the Dice-score has

reached more than 5% improvement. DeepLabv3 Plus does not

perform well on our dataset because the backbone of its network

is a lightweight MobileNet. Although its inverted residual module

can use depthwise separable convolutions to reduce computational

overhead in high dimensions, it may cause the gradient return jitter

during the optimization process, which will eventually affect the

model performance. The second comprehensive ranking in each

indicator is SegFormer, which is also a work of CNN combined

with Transformer. Its encoder is a complete Transformer, while
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FIGURE 11

A line-column plot of the model results. The figure visually reflects

the test performance of the six models on the Nasal Bleeding

dataset.

decoder is constructed by CNN. Similar to ETU-Net, SegFormer

considers multi-scale feature fusion. Experiments have proved

that this method is effective. Its mIoU reached 93.44%, F1-

score and Dice-score reached 0.9652 and 0.9359. The PSPNet

network uses the spatial pyramid pooling module to obtain

contextual information and multi-scale information. The most

obvious feature is that the input feature maps from different

regions are pooled together and then bilinearly upsampled and

spliced to the next layer. In the experimental results of the

PSPNet network, the mIoU, F1-score, and Dice-score were 0.9073,

0.9497, and 0.9071, respectively. Based on the performance of

the above models, we can conclude that the models using

CNN combined with Transformer perform better in this dataset,

because they can take into account the advantages of both,

and perceive local and global information better. Similarly, the

multi-scale fusion module helps to improve the performance of

the CNN architecture, usually using a pyramid structure or a

skip connection. To further lessen the amount of processing

in the model, utilizing grouped convolution or separable depth

convolution is a viable strategy.

4.2. Exploration of dataset semantic labels

In this section, we focus on exploring the impact of dataset

semantic labels on the model training process to illustrate the

evaluation results of using dataset 2 as the model in this paper.

We use three models of U-Net, DeepLabv3 Plus and HrNet for

experiments. It can be seen intuitively from the Table 2 that the

results of the two types of datasets are generally higher than the

results of the three types. Taking U-Net as an example, in the two

cases, the difference between mIoU is 6.18%, and the difference

between F1-score and Dice-score is 0.0387 and 0.0726. DeepLabv3

Plus is least affected by the label semantics of the dataset, and

the change of most indicators is about 3%, and even the Dice-

score on the three types of datasets is 0.02 higher than that of

the two types of datasets. In general, the semantic labels of the

dataset have an impact on all indicators of the model, especially

mIoU. This is because mIoU is the similarity of the comparison

area. Once the label information is refined, it will cause confusion

among various classes, and may also be limited by the long-tail

effect in the dataset, which leads to the model having a high degree

of confidence in the categories with dominant numbers in the

dataset, but low in those with inferior numbers, resulting in unfair

segmentation results. This paper believes that we can try to improve

these situations by expanding the dataset, increasing the weight

of the loss function on the category, or resampling the inferior

category. Due to the low demand for judging the type of epistaxis

in the clinical practice operators only need to know which areas

in the nasal cavity have bleeding symptoms, or find out abnormal

vessels. Therefore, the dataset can be divided into background

and abnormal categories to meet the needs of clinical diagnosis

assistance. On the other hand, the datasets of the two types of

labels in the experiment have a good influence on the model, so

our subsequent experiments mainly use the two types of labels as

reference results.

4.3. Impact of transfer learning on model
performance

As mentioned earlier, we adopted a model training method

of transfer learning, which refers to using the prior knowledge

of the model obtained on a large-scale dataset, and then training

the model on different task datasets of the downstream branch.

This method can often achieve good results, because the model

has acquired the ability to obtain information like the outline

texture of the perceptual image target, rather than randomly

guess the results at the beginning of random initialization. We

mainly use five models for comparison of transfer learning, as

shown in the Table 3. Before transfer learning, the mIoU of each

model under the same conditions was mostly around 83%, but

after transfer learning, mIoU mostly reached more than 90%, an

increase of nearly 7%. On the ETU-Net, after transfer learning,

F1-score and Dice-score have increased respectively by 5.76 and

11.49%. Comparing this result with U-Net and SegFormer, we

can found that transfer learning does not improve them as

much as the ETU-Net. The mIoU of U-Net differs by 6.18%

before and after, and the F1-score and Dice-score are improved

4.26 and 8.76%. SegFormers performance before transfer learning

is not outstanding in all models. It is precisely because of

transfer learning that mIoU has increased by 10.63%. It can be

seen that transfer learning can improve the performance of the

model in general, especially for CNN combined with Transformer

architecture. Because Transformer lacks inductive bias for image

space translation invariance and local relations, it frequently

requires huge amounts of data to train, hence transfer learning on

large-scale datasets is a crucial training approach for models of this

architecture.
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TABLE 1 A data table of model results.

Model mIoU mPrecision mRecall F1-score Dice-score

U-Net 0.9023 0.9455 0.9480 0.9467 0.9016

DeepLabv3 Plus 0.8396 0.9219 0.8889 0.9050 0.8102

SegFormer 0.9344 0.9644 0.9661 0.9652 0.9359

PSPNet 0.9073 0.9480 0.9515 0.9497 0.9071

HrNet 0.8827 0.9588 0.9110 0.9343 0.8678

ETU-Net 0.9457 0.9738 0.9693 0.9715 0.9473

The highest data in the figure are presented in bold.

TABLE 2 The result table of the model under di�erent categories of datasets.

Model Classes mIoU mPrecision mRecall F1-score Dice-score

U-Net Two 0.9023 0.9455 0.9480 0.9467 0.9016

Three 0.8405 0.9210 0.8953 0.9080 0.8290

DeepLabv3 Plus Two 0.8396 0.9219 0.8889 0.9050 0.8102

Three 0.7906 0.8871 0.8681 0.8774 0.8302

HrNet Two 0.8827 0.9588 0.9110 0.9343 0.8678

Three 0.8134 0.8975 0.8878 0.8926 0.8135

ETU-Net Two 0.9457 0.9738 0.9693 0.9715 0.9473

Three 0.8699 0.9342 0.9228 0.9285 0.8793

The classes column in the table represents the category division of the dataset, two indicates that there are only abnormal and background categories, and three indicates that there are

background, tendril, and point categories.

4.4. Ablation experiment

In order to explore the influence between the various

components of our proposed ETU-Net model, we conducted an

ablation experiment and tried to split each component to study

the relationship between them. Since SC-Transformer and the

subsequent UP Attention Block have a fixed conversion of data

types, the two cannot be independently formed into a block,

so we regard the two as a component for research, and get

four groups of comparison results, as shown in the Table 4. In

the first row of data, the U-type network without Down Block

and SC-Transformer has a large decline in model performance,

and mIoU, F1-score and Dice-score, compared with the optimal

combination, are reduced by 4.34, 2.62, and 5.07%, respectively.

By introducing the Down Block model, the model get the ability

to match weights with attention, and can filter useless information

during the downsampling process, therefore, compared with the

original situation,mIoU has increased by 2.79%, andDice-score has

increased by 3.35%. If only SC-Transformer is added to the model,

although the Dice-score index has increased by 4.53%, the mIoU

has decreased because of the lack of a powerful downsampling

module. Even if the multi-scale fusion of each layer is performed,

the image features obtained initially are not as good as those

obtained by the Down Block module. It can be concluded from the

data table that each module has various contributions to the final

performance of the ETU-Net model, and only when the modules

are used in combination can the optimal experimental results

be achieved.

4.5. Exploring the domain transferability of
models

As shown in the Table 5, we explored the domain transferability

of the ETU-Net model in three other different medical research

fields, namely DRIVE (44), Kvasir (45), and Liver (46) dataset. In

general, ETU-Net is suitable for these fields, and compared with

the optimal results, the performance of ETU-Net is not behind

or even surpassed. DRIVE is a classic retinal blood vessel image

segmentation dataset, consisting of 40 JPEG color fundus images,

including seven abnormal pathological cases. On this dataset, we

compared with the other three models, and ETU-Net is close to

the most advanced RV-GAN (47) onmost indicators, and surpasses

it in sensitivity by 4.29%, with only 0.0036 difference in F1-score.

Our model is also tested on the Kvasir dataset, an open dataset of

gastrointestinal polyp images, which is often cited by deep learning

models for disease segmentation in recent years. The results show

that our model performs best on the three indicators proposed by

the dataset. Compared with the previous best model FCBFormer,

the Dice-score exceeds its 1.58%. Compared with U-Net, Dice-

score increased by 21.89%. The overall mIoU has reached the

best level, which is 95.02%. On the Liver dataset, a liver tumor

segmentation benchmark containing a total of 200 CT scan images,

ETU-Net also performed the best. Compared with the model

indicators already given, the mIoU of ETU-Net increased the most,

reaching 9.42%, and mPrecision and mRecal respectively reached

99.34 and 99.39%. Therefore, the ETU-Net proposed in this paper

can be further extended to other fields of medical segmentation.
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TABLE 3 Results table of transfer learning.

Model Transfer
learning

mIoU mPrecision mRecall F1-score Dice-score

U-Net
No 0.8405 0.9210 0.8953 0.9080 0.8290

Yes 0.9023 0.9455 0.9480 0.9467 0.9016

DeepLabv3 Plus
No 0.7776 0.8499 0.8653 0.8575 0.7163

Yes 0.8396 0.9219 0.8889 0.9050 0.8102

HrNet
No 0.8366 0.9467 0.8663 0.9047 0.8058

Yes 0.8827 0.9588 0.9110 0.9343 0.8678

SegFormer
No 0.8281 0.8917 0.9075 0.8995 0.8146

Yes 0.9344 0.9644 0.9661 0.9652 0.9359

ETU-Net
No 0.8570 0.9167 0.9205 0.9186 0.8497

Yes 0.9457 0.9738 0.9693 0.9715 0.9473

This table details the performance changes of the five models before and after transfer learning.

TABLE 4 Ablation experiment result table.

Model DB SCT mIoU mPrecision mRecall F1-score Dice-score

ETU-Net

No No 0.9023 0.9455 0.948 0.9467 0.9016

Yes No 0.9302 0.9566 0.9604 0.9585 0.9318

No Yes 0.8930 0.9476 0.9393 0.9434 0.9424

Yes Yes 0.9457 0.9738 0.9693 0.9715 0.9473

In this table, DB indicates whether there is a Down Block module, and SCT indicates whether there is an SC-Transformer and Up Attention Block module.

Whether it is endoscopic shooting or CT scan data, the model has

good adaptability and is less dependent on the type of data source.

4.6. Visualization of prediction results of
ETU-Net model

In this section, we provide the visualization of the prediction

results of the ETU-Net model, as shown in Figure 12.We compared

the original image, the real label, and the prediction results of

the four model models. These four images are all from the test

set. For the parts that need special attention, we use red dotted

boxes to highlight them. Through the comparison of the first

column and the second column, it can be clearly seen that the

ETU-Net model has a higher level of segmentation refinement

than the U-Net and PSPNet models. Due to the lack of local scale

awareness in the model structure and the insufficient receptive

domain of the feature map, which causes the loss of local detail

information, the prediction results of U-Net and PSPNet are

typically circular. In the results of the fourth column, the ETU-

Net models prediction is more in line with the real bleeding

area, covering almost all the pixels in the area, and is even better

than manual labeling. In the results of the fifth column, the

role of context information in segmentation be clearly reflected.

Taking U-Net as an example, The result predicted by the model

in the upper branch on the right is approximately a circle. Both

PSPNet and SegFormer think that there is only one main stem

bleeding in this picture, while the ETU-Net model distinguishes

that there are two branches here, and the direction of the tendril

is well- judged. Thus it can be seen that the ETU-Net model

proposed in this paper has good context awareness as well as local

attention acquisition and has excellent performance for extremely

fine medical segmentation tasks.

5. Conclusions

In this research, we present an ETU-Net model based on

the Encoder-Decoder structure to solve the endoscopic epistaxis

image segmentation challenge and assist physicians in distinguish

bleeding area and abnormal vessels in practice. Because medical

images are regular, AI algorithms may mine data attributes,

learn, and eventually provide a model that can be deployed

and applied.

We first proposed a Nasal Bleeding dataset as an evaluation

basis. The dataset was presented for the first time in this

field and was collected and labeled by doctors with years of

clinical experience. Secondly, we use the Down Block module

to strengthen the image feature extraction during the down-

sampling process, use the group convolution to improve the

extraction efficiency, and use the SE Block to introduce the

attention mechanism; SC-Transformer reflects that our model

uses CNN combined with Transformer architecture. Ordinary

deep learning models have limitations in the receptive field

in the image. It is challenging for them to capture adequate

contextual feature information with high efficiency, so it will

cause confusion between the bleeding area and the surrounding

normal vessels and a lack of generalization at different scales,

which makes it difficult to judge the direction of bleeding branches.
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TABLE 5 Performance evaluation tables on three datasets.

Model F1-score Sensitivity Specificity Accuracy

U-Net 0.8174 0.7822 0.9808 0.9555

DFUNet

0.8190 0.7863 0.9805 0.9558

RV-GAN 0.8690 0.7927 0.9969 0.9790

DRIVE

ETU-Net(Ours) 0.8654 0.8356 0.9707 0.9620

Model Dice-score mIoU mRecall

U-Net 0.7821 0.8141 0.8450

ResUNet++ 0.8074 0.7231 0.7874

FCBFormer 0.9385 0.8903 0.9401

Kvasir

ETU-Net(Ours) 0.9533 0.9502 0.9733

Model Dice-score mIoU mPrecision mRecall

U-Net 0.9302 0.8985 0.9279 0.9429

Res-U-Net++ 0.9219 0.8898 0.9119 0.9428

DeepLabv3 Plus 0.9253 0.8932 0.9244 0.9361

Datasets

Liver

ETU-Net(Ours) 0.9533 0.9874 0.9934 0.9939

The highest-performing results in the table are shown in bold.

FIGURE 12

A visualization of the predictions for each model. Among them, the part marked by the dotted red box needs special attention for it can reflect the

di�erences between each model in the prediction process.
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As a result, we investigate the U-Net skip connection, which

can deliver shallow feature map information to the decoder.

However, the simple skip connection has limitations in that

because it only evaluates correlation between the same levels,

resulting in semantic gaps between various layers, hence we use

SC-Transformer for multi-scale feature fusion. Transformer has an

efficient multi-head self-attention mechanism and strong sequence

modeling ability. It divides the two-dimensional information of

the image into blocks and maps them into a linear embedding

sequence, thereby converting it into one-dimensional sequence

information to complete the process of feature fusion. Therefore,

it is more appropriate to use it to design skip connections and

achieve multi-scale fusion, which can make up for the lack

of convolution. In the process of upsampling, we propose an

attention Up Attention Block module based on channel and

space, which converts the result of the Transformer into data that

can be processed by convolution, gradually restores the image

size and do the final for each pixel classification. In summary,

the ETU-Net model is a novel U-type model combining CNN

with Transformer. It has good context awareness and multi-scale

feature fusion capabilities and can effectively identify global and

local information.

Furthermore, we conducted a step-by-step analysis of the

models superiority, conducted experiments on dataset semantic

labeling, migration learning, and ablation of each module, and

conducted domain migration experiments on DRIVE, Kvasir,

and Liver datasets, including datasets of different scales and

images collected by various devices, all of which demonstrate

that our model can play a role in multiple fields. In particular,

we delved into the role of the Transformer in ETU-Net. By

comparing the performance of ETU-Net and traditional pure

Transformer-based semantic segmentation networks such as

SegFormer in Table 1, we found that several metrics of ETU-

Net surpass those of SegFormer. Considering the substantial

computational cost of pure Transformer architectures, we believe

that adopting the ETU-Net convolutional fusion Transformer

architecture offers more robust performance. Moreover, ablation

experiments in Table 4 reveal that the Transformer, when employed

as skip connections, significantly contributes to the success

of ETU-Net. Due to the Transformer’s capability for long-

range sequence modeling, especially its multi-head attention

mechanism, the model is guided to focus on contextual

information. When replacing the SC-Transformer in ETU-

Net, several metrics decline. Consequently, we argue that

incorporating a Transformer at appropriate positions within

the network is effective, and for small-scale medical imaging

datasets, employing the Transformer to guide convolutional

modules for segmentation between the encoder and decoder is a

promising approach.

Our work shows that deep learning technology can learn and

acquire knowledge in the data to obtain the same or higher level

of accuracy of epistaxis image recognition as professional, help

to reduce the complications caused by inexperienced operators

and address the problems of lack of senior doctors. Next, we will

explore the feasible deployment of ETU-Net and conduct clinical

research to verify its effectiveness in assisting segmentation in

clinical practice, so as to truly improve peoples health.
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