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Cancer related cognitive impairment (CRCI) is commonly associated with cancer 
and its treatments, yet the present binary diagnostic approach fails to capture the 
full spectrum of this syndrome. Cognitive function is highly complex and exists on 
a continuum that is poorly characterized by dichotomous categories. Advanced 
statistical methodologies applied to symptom assessments have demonstrated 
that there are multiple subclasses of CRCI. However, studies suggest that relying 
on symptom assessments alone may fail to account for significant differences in 
the neural mechanisms that underlie a specific cognitive phenotype. Treatment 
plans that address the specific physiologic mechanisms involved in an individual 
patient’s condition is the heart of precision medicine. In this narrative review, 
we  discuss how biotyping, a precision medicine framework being utilized in 
other mental disorders, could be applied to CRCI. Specifically, we discuss how 
neuroimaging can be  used to determine biotypes of CRCI, which allow for 
increased precision in prediction and diagnosis of CRCI via biologic mechanistic 
data. Biotypes may also provide more precise clinical endpoints for intervention 
trials. Biotyping could be made more feasible with proxy imaging technologies 
or liquid biomarkers. Large cross-sectional phenotyping studies are needed in 
addition to evaluation of longitudinal trajectories, and data sharing/pooling is 
highly feasible with currently available digital infrastructures.
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Introduction

Up to 75% of survivors of cancers that originate outside of the central nervous system 
demonstrate cognitive impairment before, during or following cancer treatments (1–4). CRCI 
typically presents as difficulties with attention, executive function, memory, and processing 
speed that can last months or years after the conclusion of treatment (1–5). CRCI can have 
debilitating effects on survivors’ quality of life including their social and occupational 
functioning (3, 4, 6–9), and is associated with increased death including cancer-related and 
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all-cause mortality (10–12). Millions of cancer survivors [16.9 million 
in 2019 alone (13)] are at risk for CRCI.

Cognitive symptoms vary greatly from person to person in terms 
of domains impacted, as well as symptom severity and trajectory (e.g., 
late onset, persistent, improving over time). In fact, most symptoms 
associated with treatment toxicities or cancer pathology are highly 
variable and unique to each survivor. Thus, recent calls to action have 
been made for precision survivorship in the field of oncology, where 
some genetic risks for treatment-related toxicities have been identified 
in pediatric oncology populations (14). Since 2016, the National 
Cancer Institute (NCI), has prioritized precision medicine which 
includes “precision oncology” and “precision survivorship” (15).

The NCI defines precision medicine as using a person’s own 
biology to diagnose cancer or determine a course of treatment for 
cancer. Many advancements have been made in precision medicine 
with respect to cancer diagnostics and treatments, but there has been 
a lag in applying precision medicine to cancer survivorship, especially 
for adult cancer survivors (16). Pre-treatment data could be used to 
determine who is most susceptible to treatment related toxicities, 
including CRCI.

Precision medicine approaches to CRCI may significantly improve 
the diagnosis and prognosis of this syndrome. Under or over 
diagnosing of CRCI incurs significant costs such as negative 
individual, familial (including impact to the caregiver), and societal 
burden. The economic benefits of accurate and timely diagnosis have 
been shown to significantly reduce health care costs. For example, one 
study showed that health care costs would be reduced by more than 
half to two-thirds if a diagnosis had been made earlier (17). Patients 
with CRCI often experience increased stress, anxiety, and depression, 
loss of employment opportunities, and more social isolation. Patients’ 
distress can be significantly reduced by health-related perceptions of 
situational control, validation, and course of deficit, all of which are 
impossible without a correct diagnosis. Understanding and correctly 
characterizing the CRCI condition is also imperative for precisely 
developing and guiding patients toward interventions that can 
ameliorate their symptoms.

Defining CRCI

Clinical symptoms of CRCI are currently assessed using 
standardized neuropsychological tests and/or self-report measures. 
Guidelines for using neuropsychological tests in CRCI research were 
published in 2011 (18). These tests provide insight regarding an 
individual’s cognitive strengths and weaknesses and can assist with 
diagnosing neuropsychiatric conditions. However, several reports 
have suggested that these tests may have limited sensitivity, specificity, 
and reliability for CRCI (19–22). Many of these measures were 
developed to assess severe neuropathology (21, 23) and therefore may 
have ceiling effects for CRCI. These tests tend to lack ecological 
validity (24, 25) and there is also evidence of ethnic or racial biases in 
standardized neuropsychological testing (26–28).

Guidelines for using self-report measures in CRCI research were 
published in 2021 (29). Self-report measures reflect daily functioning 
(30), correlate with mood and psychological factors (24, 30–32), and 
some were developed specifically for cancer survivor populations (33, 
34). Incidences of CRCI are higher when subjective measures are used 
(3) suggesting they may be more sensitive to this syndrome. However, 

self-report measures also have several limitations including 
susceptibility to retrospective recall, response, and state-dependent 
biases as well as demand characteristics (35–38). Importantly, some 
studies have found elevated response bias among cancer survivors 
compared to normative groups (36, 37, 39). Self-reported CRCI has 
been criticized for rarely correlating with neuropsychological 
performance (31). However, it is likely that self-report and 
neuropsychological tests measure different aspects of CRCI and 
cannot be considered interchangeable (40). Accordingly, evidence 
suggests that subjective and objective measures of CRCI represent 
different neural phenotypes. Both objective and subjective measures 
of CRCI have been shown to correlate with structural and functional 
brain abnormalities, but these appear to be  largely distinct and 
non-overlapping (41–45).

Neither standardized cognitive tests nor self-report measures can 
track an individual’s day-to-day variability in cognitive function. Both 
rely on population-based methods (between group variability) rather 
than precision-based methods (within person variability). Cognitive 
functioning is subject to individual variability and real-life demands, 
thus using one’s own cognitive variability within one’s own 
environment may be a more ecologically valid and unbiased way of 
assessing CRCI. A precision health approach to defining CRCI, which 
is an individually focused approach, is especially beneficial for 
historically marginalized groups, such as racial/ethnic minorities, as 
mentioned above.

Dichotomous definitions of CRCI

One of the greatest challenges to clinical management of CRCI is 
its inconsistent definition within the existing literature. As noted 
above, CRCI is currently evaluated using neuropsychological test 
performance. However, these tests rarely provide normative cutoff 
scores for deficient performance. Therefore, classification of 
impairment based on these tests in patients with cancer has relied on 
arbitrary cutoff scores leading to inconsistent results (46). To better 
harmonize CRCI studies, the International Cognition and Cancer 
Task Force (ICCTF) suggested a specific metric for determining 
impairment based on z-scores (18). Few studies have compared the 
ICCTF definition to other rubrics, although one study showed it was 
nearly twice as sensitive to impairment compared to other definitions 
(47). However, different results occur depending on the reference 
group used for z-score calculation and the size and composition of the 
testing battery (48, 49).

A major limitation of the z-score and similar approaches, 
including standardized based regression (50) and reliable change 
index (22), is that they result in dichotomous classification (yes/not 
impaired; yes/no declined). Dichotomous classification is not 
consistent with the complex, continuous nature of brain function. 
Akin to “black and white thinking,” dichotomization ignores 
dimensional nuances that could provide greater insight regarding 
cognitive function (51). In fact, a recent study demonstrated that 
binary impairment definitions, including the ICCTF criterion, yield 
unreliable cognitive classifications (52). This is particularly important 
for CRCI given the historical controversy regarding its existence. 
Specifically, many patients are classified as “unimpaired” on 
neuropsychological tests despite experiencing significant difficulties 
completing everyday cognitive tasks. This inconsistency may suggest 
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that there are latent subgroups of patients whose cognitive changes do 
not fit into black and white categories.

Several statistical techniques exist that can determine subgroups 
within the data that are not readily apparent (Table 1). For example, 
growth mixture modeling, latent profile analyses and clustering have 
been used to discover CRCI subgroups in a data-driven manner. 
Growth mixture modeling determines latent subgroups based on 
different trajectories of an outcome across longitudinal timepoints 
(69). Prior studies of CRCI using growth mixture modeling have 
identified up to five latent subgroups of self-reported or objective 
cognitive function, with the most common finding being three 
subclasses (53–58).

Once the latent subgroups are identified, characteristics of the 
subgroups can be examined to determine their clinical significance 
including factors associated with risk and resilience. For example, 
using growth mixture modeling, Merriman et al. (54) identified three 
latent subgroups of subjective CRCI in patients with breast cancer. 
They labeled the subgroups “more frequent,” “persistent,” and “almost 
never” based on frequency of cognitive complaints. They found that 
patients in the “more frequent” subgroup had unique profiles of 
treatment regimens, genotypes, and psychiatric symptoms compared 
to the other subgroups (54). Alternatively, covariates can be included 
in the initial model to examine their impact on the longitudinal 
outcome (70).

Latent profile analysis also seeks to identify unknown subgroups 
within a larger population using a probabilistic model that describes 
the distribution of the data (71). Latent profile analysis is appropriate 
for cross-sectional and longitudinal data. Like growth mixture 
modeling, latent profile analysis allows for inclusion of covariates to 
predict latent subgroup membership. Latent profile analysis has been 
applied to study CRCI subgroups in both pediatric and adult cancers 
(59–64).

Other latent general linear model analysis techniques have been 
used to provide insight regarding the association of self-reported 
cognitive function and neuropsychological tests in patients with breast 
cancer (65). However, real-world data do not always meet linear 
model assumptions. Clustering is another statistical technique useful 
for discovering latent subgroups which is appropriate for linear or 
nonlinear cross-sectional or longitudinal data. Clustering is based on 
distances between data points and aims to identify subgroups within 
a sample that have both high within-group similarity and high 
between-group dissimilarity. Very few studies have applied clustering 
to examine profiles of CRCI. Romero and colleagues identified four 
subtypes of neuropsychological testing scores using k-means 
clustering (66). The authors interpreted these findings at the test level 
in terms of which tests were sensitive to impairment, but their results 
suggested subgroups of participants with different levels of impairment 
(66). Another study employed k-means clustering as a sensitivity 
analysis for their latent profile analysis, both of which identified only 
a dichotomous solution (59).

These studies represent advances in the literature towards a more 
precise definition of CRCI. However, the mechanisms that result in 
various symptoms must be known to develop treatments, particularly 
the mechanisms that differentiate patients who respond better to one 
treatment versus another. Mechanistic knowledge cannot be derived 
from symptom assessments alone given that similar symptoms can 
result from different pathologies (72). Neuropsychological tests, for 
example, can identify memory, attention, or other cognitive domain 

deficits. However, these tests summarize multiple cognitive processes 
into one score and thus are too broad for identifying the precise neural 
mechanisms involved. Novel data driven approaches as used in the 
studies above are more granular and able to classify patients into 
different subtypes based on behavioral data, but the resultant subtypes 
do not consider the differences in pathophysiology that would dictate 
precision treatment.

CRCI is a brain-based disorder

The biologic mechanisms of cognitive disorders are frequently 
examined using neuroimaging techniques. Multiple magnetic 
resonance imaging (MRI) studies have demonstrated that CRCI is a 
brain-based syndrome characterized by significant changes in brain 
function and structure. Breast cancer survivors who receive 
chemotherapy treatment tend to show more pronounced global, 
cortical gray matter and subcortical white matter volume loss when 
compared with chemotherapy naïve and noncancer controls [see 
reviews by Sousa et al. (41), Schroyen et al. (42), and Niu et al. (73)]. 
McDonald et  al. (74) reported the first prospective, longitudinal 
volumetric MRI study of CRCI. They observed a significant reduction 
over time in regional gray matter density from pre-chemotherapy to 
1-month post-chemotherapy followed by partial improvement over 
time (74). Gray matter alterations have also been demonstrated in very 
long-term survivors (75–77). We uniquely used volumetric MRI to 
estimate cortical brain age and demonstrated that it is significantly 
increased from pre- to post- breast cancer chemotherapy (78). We also 
distinctively demonstrated that chemotherapy treated breast cancer 
survivors are significantly more likely to be  classified as having 
incipient Alzheimer’s disease based on volumetric brain network 
organization compared to chemotherapy naïve survivors (79).

Pathologic white matter changes determined using T2-weighted 
MRI in patients with cancer exposed to chemotherapy were first 
described in the nineties (80–82). These changes tended to occur 
acutely after chemotherapy completion but persisted at 1 year of 
follow-up (81). Diffusion tensor imaging (DTI) has demonstrated 
abnormal white matter integrity in the corpus callosum of 
chemotherapy treated patients with breast cancer compared to 
noncancer controls (83). Subsequent studies have shown diffuse white 
matter integrity abnormalities that correlate with cognitive impairment 
(84, 85), indicating that a demyelinating process may partly underlie 
CRCI (75). DTI was also uniquely used by our group to computationally 
simulate the effects of aging on white matter organization, 
demonstrating that chemotherapy treated breast cancer survivors have 
lower resilience to brain aging compared to non-cancer controls (86).

Task-based functional MRI (fMRI) studies suggest that certain 
cognitive tasks are more challenging for patients with breast cancer as 
they demonstrate expanded recruitment of brain regions to maintain 
task accuracy. Several lines of research suggest that chemotherapy 
used in treatment of breast cancer upregulates neural activity (82, 
87–91). Brain hypoactivation compared to non-cancer controls has 
also been reported in several cross-sectional studies (92, 93), yet brain 
hyperactivation is more often evident over time and is associated with 
self-reported cognitive complaints (90, 91, 94, 95).

Hyperactivation may therefore help explain the discrepancy that 
is commonly observed between neuropsychological tests and self-
reports of cognitive function. Specifically, patients with breast cancer 
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TABLE 1 Summary of studies utilizing precision health methods for subtyping CRCI.

References Sample Subtyping 
method

Cognitive outcome(s) CRCI subtypes 
identified

Allemann-Su et al. (53) N = 397 adult breast cancer Growth mixture 

modeling

AFI 3 (High, moderate, low 

effective action)

4 (Very low, low, moderate, 

high attentional lapses)

2 (Low and high 

interpersonal effectiveness)

Merriman et al. (54) N = 209 adult breast cancer

N = 122 adult noncancer controls

Growth mixture 

modeling

PAOFI 3 (More frequent, persistent, 

almost never)

Morin and Midlarsky 

(55)

N = 403 adult cancer Growth mixture 

modeling

Total recall 3 (High, middle, low recall)

Rolfe et al. (56) N = 130 adult breast cancer Growth mixture 

modeling, K-means 

Clustering

AVLT Trials 1–5, 7, & 8; NART 3 Classes immediate 

retention; 2 classes delayed 

recall; 3 classes learning

Tometich et al. (57) N = 319 adult breast cancer

N = 347 adult noncancer controls

Growth mixture 

modeling

NAB digits forward, digits backward, list 

learning immediate recall, short delay, long 

delay; COWA; TMT-A and B; Digit Symbol 

Coding test; Logical Memory I & II; FACT-

Cog

2 (High and low symptom)

Westrick et al. (58) N = 2,986 adult cancer Growth mixture 

modeling

Immediate and delayed recall of a 10-word 

list; IQCODE

5 (Very low, low, medium-

low, medium-high, high 

memory loss)

Agelink van Rentergem 

et al. (59)

N = 62 adult breast cancer

N = 228 adult noncancer controls

Latent profile analysis, 

K-means clustering, 

Hierarchical Clustering

ACS 2 (Cognitively unaffected, 

Cognitively affected)

Atallah et al. (60) N = 1,329 adult cancers (breast, 

gastrointestinal, gynecological, 

or lung cancer)

Latent profile analysis AFI 3 (High, moderate, low 

attentional function)

Karlson et al. (61) N = 101 pediatric cancers 

(leukemias, lymphoma, solid 

tumors, brain tumors and other 

cancers)

Latent profile analysis WISC-IV, Digit Span Forward/Backwards, 

Letter-Number Sequencing, Processing Speed; 

WASI/WAIS- III, Digit Span Forward/

Backwards, Letter-Number Sequencing, 

Processing Speed; WIAT-II, Stroop Color and 

Word Test, CPT-II; CVLT-C/CVLT-II

3 (Class 1, 2, 3)

Peterson et al. (62) N = 364 pediatric cancers (brain 

tumors, acute lymphoblastic 

leukemia) or ADHD

Latent profile analysis SCT 3 (Low, medium, high SCT)

Sharkey et al. (63) N = 89 pediatric cancer (brain 

tumor)

Latent profile analysis WISC-IV/WISC-V, PSI, Digit Span; TOL-DX 4 (Average, Cognitive Deficit, 

Social/Cognitive Deficit, 

Discrepant)

Utne et al. (64) N = 365 adult cancers (breast, 

gastrointestinal, gynecological, 

or lung)

Latent profile analysis AFI 3 (Low, moderate, high 

function)

Li et al. (65) N = 132 adult breast cancer

N = 45 adult noncancer controls

Latent General Linear 

Model Analysis

MASQ; CPT, Vigilance, Distractibility; D-KEFS 

CWI, Inhibition, Word Reading, Color Naming; 

D-KEFS TMT, Motor Speed, N/L Switching, 

Letter Sequencing, Number Sequencing, Visual 

Scanning; D-KEFS VFT, Letter, Category; WAIS-

III, Digit Symbol Coding; PASAT, 3″, 2″; WMS-

III, Faces I, Faces II; CVLT-2, Trial 1, MRR, List 

B, Trials 1–5, LDFR; GPT, Right & Left

N/A

(Continued)

https://doi.org/10.3389/fmed.2023.1199605
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Kesler et al. 10.3389/fmed.2023.1199605

Frontiers in Medicine 05 frontiersin.org

often demonstrate normal objective task performance but report 
significant cognitive difficulties (21, 96). Hyperactivation is believed 
to reflect neural compensation in response to brain injury, which can 
thus mask the underlying deficit (92). However, patient awareness of 
the additional neural effort required to maintain performance is 
reflected in their low self-ratings of cognitive function. Hyperactivation 
has been consistently observed in association with aging and is greater 
in individuals with age-related neurodegeneration (97–99).

Resting state fMRI functional connectivity studies provide insight 
regarding the brain network’s organization in terms of parallel 
information processing. Some studies show diffuse hyperconnectivity 
in chemotherapy exposed breast cancer patients and survivors 
compared to controls (88, 100, 101) while others have shown 
hypoconnectivity (45, 102–106). Given the brain’s vast complexity, the 
interpretation of hyper- vs. hypo- activation/connectivity is difficult 
especially since both can exist simultaneously. Most observations have 
been made by comparing patients and controls. It is likely that there 
are subgroups of patients characterized by distinct patterns of brain 
abnormalities which may help clarify some of the inconsistent findings 
observed across studies.

Biotyping

Historically, neuropsychiatric conditions have been diagnosed 
and categorized based on the patient’s symptoms and the level of 
distress or functional impairment they experience. However, this 
approach is limited as it fails to capture the wide-ranging 
neurobiological mechanisms that can underlie similar 
symptomatology. This poses a significant challenge for the 
development of precision medicine, which requires a more nuanced 
understanding of the underlying mechanisms. To improve precision 

medicine, neuropsychiatric research is currently focusing on 
diagnoses that emphasize biology. For example, the National Institutes 
of Health’s Research Domain Criteria (RDoC) (107) and the Bipolar-
Schizophrenia Network for Intermediate Phenotypes (B-SNIP) (108) 
projects aim to define subgroups of patients within a traditional 
diagnostic category based on neurobiologic profiles (107, 109).

The RDoC framework involves examination of psychological 
and biological dimensions across various levels of functioning 
within six primary functional domains. The RDoC framework 
emphasizes the measurement of behavioral, physiological, and self-
reported data to gain a comprehensive understanding of each 
diagnostic dimension. The primary goal of the RDoC framework is 
to facilitate new research approaches that will enhance precision 
medicine for mental health conditions. B-SNIP is a multi-site 
consortium that aims to establish biotypes of mood and psychotic 
disorders (110, 111). Their work has resulted in a large, well-
described neuropsychiatric population in which the RDoC 
framework can be  applied. This includes examining different 
aspects of biotype expression such as demographics, symptom 
clusters, genetic variation, and treatment response.

Machine learning techniques applied to neuroimaging data can 
be  used to identify subgroups with distinct profiles of brain 
abnormalities (Figure 1). These biotypes represent disease subtypes 
based on their neural mechanisms. Most biotyping studies to date 
have relied on resting state functional magnetic fMRI. Resting state 
fMRI is relatively easy to acquire as it has no behavioral requirements, 
and it has consistently been shown across multiple studies to be highly 
sensitive to even subtle neuropathology (112). Resting state fMRI data 
are used to measure the connectivity of intrinsic functional brain 
networks (113). The sensitivity of these functional brain networks 
stems from various factors including their relatively high consumption 
of physiological resources, their association with gene expression 

TABLE 1 (Continued)

References Sample Subtyping 
method

Cognitive outcome(s) CRCI subtypes 
identified

Romero-Garcia et al. 

(66)

N = 17 adult cancer (diffuse 

glioma)

N = 268 adult noncancer controls

K-means clustering WAIS-IV; BMIPB; OCS 4 (Neuropsychology Memory, 

Verbal Skills and Attention, 

OCS-Bridge Attention, 

Nonverbal Skills and Low 

Variance)

Kesler et al. (67) N = 80 adult breast cancer

N = 103 adult noncancer controls

Biotypes (k-means 

clustering and random 

forest proximity of 

neuroimaging data)

CTMT Trials 1 & 5; D-KEFS-VFT; RAVLT, 

Immediate Recall, Delayed Recall; BRIEF-A

3 (Low cognitive function, 

Cognitively resilient, 

Moderately low cognitive 

function)

Mulholland et al. (68) N = 80 adult breast cancer

N = 82 adult noncancer controls

Biotypes (k-means 

clustering and random 

forest proximity of 

neuroimaging data)

CTMT Trials 1 & 5; D-KEFS-VFT; RAVLT, 

Immediate Recall, Delayed Recall; BRIEF-A

3 (Low cognitive function, 

Cognitively resilient, 

Moderately low cognitive 

function)

Neuropsychological measures: ACS, Amsterdam Cognition Scan; AFI, Attentional Functional Index; AVLT, Auditory Verbal Learning Test; BMIPB, Brain Injury Rehabilitation Trust Memory 
and Information Processing Battery; BRIEF-A, Behavioral Rating Inventory of Executive Function - Adult Version; COWA, Controlled Oral Word Association Test; CPT, Conners’ Continuous 
Performance Test; CPT-II, Conners’ Continuous Performance Test-Second Edition; CTMT, Comprehensive Trail Making Test; CVLT-C, California Verbal Learning Test for Children; CVLT-II, 
California Verbal Learning Test- Second Edition; D-KEFS, Delis-Kaplan Executive Function System; FACT-Cog, Functional Assessment of Cancer Therapy-Cognitive Function; GPT, Grooved 
Pegboard Test; IQCODE, Jorm Informant Questionnaire for Cognitive Decline; MASQ, Multiple Ability Self-Report Questionnaire; NAB, Neuropsychological Assessment Battery; NART, 
National Adult Reading Test; OCS, Oxford Cognitive Screen; PAOFI, Patient Assessment of Own Functioning Inventory; PASAT, Rao Paced Auditory Serial Addition Test; RAVLT, Rey 
Auditory Verbal Learning Test; SCT, Sluggish Cognitive Tempo Scale; TMT, Trail Making Test; WASI, Wechsler Abbreviated Scale of Intelligence; WAIS- III, Wechsler Adult Intelligence Scale-
III; WAIS-IV, Weschler Adult Intelligence Scale IV; WIAT-II, Wechsler Individual Achievement Scale-II; WISC-IV, Wechsler Intelligence Scale for Children- Fourth Edition; WISC-V, Wechsler 
Intelligence Scale for Children-Fifth Edition; WMS-III, Wechsler Memory Scale-III; TOL-DX, Tower of London-Drexel Version. Neuropsychological measures subtest/subscales: CWI, Color 
Word Interference Test; VFT, Verbal Fluency Test; TMT, Trial Making Test; N/L Switching, Number-Letter Switching; MRR, Middle Region Recall; LDFR, Long Delay Free Recall.
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patterns that are important for synaptic function and their 
involvement in multiple aspects of information processing (114–117).

Using machine learning and resting state fMRI data, Drysdale and 
colleagues identified four unique patterns of abnormal intrinsic 
functional brain connectivity in individuals with major depressive 
disorder (118). Each of the four biotypes presented with a unique 
profile of clinical features, highlighting the imprecision of the single 
diagnostic category used to describe them. Using similar methods, 
biotypes of other neuropsychiatric and neurological conditions have 
also been identified, including bipolar disorder, multiple sclerosis, 
Parkinson’s disease, attention deficit disorder, and schizophrenia 
(119–124).

To date, there have been few studies of CRCI biotypes. By 
applying clustering algorithms to resting state brain fMRI functional 
connectivity data, we previously identified three distinct profiles of 
abnormal brain connectivity, i.e., biotypes, in chemotherapy treated 
breast cancer survivors (67). Each biotype was associated with a 
unique cognitive phenotype as well as distinct demographic and 
clinical characteristics. We  also demonstrated that our biotype 
algorithm was reproducible in an independent dataset. In a 
follow-up study (68), we  demonstrated that each biotype had 
unique genetic and psychologic characteristics. We also showed that 
dichotomous, symptom-based classification combined patients with 
distinct profiles of abnormal brain connectivity into a single category 
of impaired cognition (68). In other words, divergent biological 
mechanisms were ignored by symptom assessment. Additionally, 
symptom-based assessment was unable to distinguish cognitive, 
genetic, or psychologic characteristics. Further research is needed 
to determine the reliability of biotypes across cancer types, if 
biotypes can predict different CRCI trajectories, and importantly if 
biotypes are associated with different responses to 
CRCI interventions.

Prediction of outcomes

Another critical barrier to appropriate clinical management of 
CRCI is the inability to determine which patients will experience this 
adverse event. Several studies have revealed correlations between 
CRCI and older age, lower physical and mental activity (i.e., cognitive 
reserve), higher disease severity and greater chemotherapy treatment 
intensity (125–127). As described above, neuroimaging studies 
indicate that the final common biologic pathway of cancer-related 
cognitive impairment is altered brain structure and function (4, 128, 
129). Several studies have shown that baseline neuroimaging can 
be  used to build models that are accurately predictive of future 
cognitive outcomes. For example, baseline quantitative MRI has been 
used previously to accurately predict the onset of neurogenerative 
disorders, post-neurosurgical cognitive status, and cognitive 
rehabilitation outcome (130–134).

Although traditional inferential statistical approaches can 
be valuable in this space, machine learning algorithms (135) are more 
commonly used to build these predictive models because of the high 
dimensional and often nonlinear nature of quantitative neuroimaging 
data. Additionally, the priority for predictive models tends to 
be  generalizability rather than inference and machine learning 
methods emphasize accuracy across samples and conditions. CRCI is 
a complex, heterogeneous condition with numerous potential 
contributors and confounds that must be considered in predictive 
models. The large number of potential demographic and clinical 
predictors in combination with the high dimensional nature of 
neuroimaging data warrants large sample sizes which are not always 
feasible. Compared to traditional statistical methods, machine 
learning algorithms are often better at handling this “large p, small n” 
problem (136). Several studies have demonstrated that the inclusion 
of quantitative neuroimaging metrics significantly improves the 

FIGURE 1

Overview of biotyping using neuroimaging. Neuroimaging can be used to determine biological subtypes (biotypes) of cancer-related cognitive 
impairment (CRCI). A subtyping algorithm, such as clustering, is applied to neuroimaging data (volumes, connectivity values, etc.). This results in 
distinct subtypes of patients who have common patterns of brain function or structure that may represent neural mechanisms of cognitive impairment. 
Behavioral or clinical characteristics, such as cognitive test performance, are then measured for each subgroup to determine the clinical relevance of 
the subgroups. Best practice is to then test the biotypes by applying the subtyping algorithm solution to an independent validation sample of patients, 
measuring the characteristics of interest and comparing these results to those from the original sample. Other validation methods include applying a 
naive algorithm to the data to determine if the same biotypes are replicated and examining longitudinal trajectories of different biotypes.
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accuracy of machine learning predictive models for cognitive 
outcomes (137–139).

Some studies have shown cognitive impairment and brain injury 
in patients with breast cancer prior to chemotherapy treatment 
suggesting that tumor pathogenesis may contribute to CRCI (7, 140–
146). These early abnormalities may reflect a vulnerable baseline 
condition within the brain that is later compounded by anti-cancer 
treatments, resulting in chronic CRCI. Our group pioneered the use 
of pre-treatment neuroimaging biomarkers to predict long-term CRCI 
following breast cancer treatment (147, 148) and other groups have 
since followed (149). However, this research has relied on binary 
cognitive outcomes or continuous outcomes with no definition of 
deficit. Thus, the identification of CRCI biotypes could increase the 
precision of these prediction algorithms.

As noted above, biotyping can also be used to predict intervention 
response. Given the complexity of neuropsychiatric disorders, several 
treatment regimens must often be tried to find the most effective one 
for a given patient. Interventions for CRCI are currently very limited 
but several show some promise, including cognitive training, cognitive 
rehabilitation, physical exercise, and neuromodulation (150–154). 
However, it is unknown which patients benefit most from which 
intervention. The traditional trial-and-error approach to prescribing 
interventions results in unnecessary side effects, time toxicity, 
increased costs, and delays in symptom management.

The overarching goal of biotyping is to identify disease subtypes 
that respond differently to various interventions such that precise 
treatment plans can be made for patients within that subtype. Drysdale 
et al. demonstrated different outcomes among depression biotypes 
after transcranial magnetic stimulation treatment (118). Specifically, 
using biotypes, they identified a priori which patients were most likely 
to benefit from the intervention. It is likely that patients with CRCI 
will not homogeneously respond to any one intervention and therefore 
biotypes could be useful in predicting treatment response. However, 
few if any CRCI intervention studies to date have included 
neuroimaging biomarkers.

Interventions for CRCI

Once a precision health CRCI diagnosis or prognosis is made, an 
intervention may be required. Currently, there are no standardized, 
evidence-based interventions specifically for CRCI. However, several 
pharmacological and behavioral/integrative interventions have been 
examined as potential treatments for CRCI. Pharmaceutical 
treatments have included psychostimulants (155, 156), nicotine 
patches (157), anemia medications (158), and anti-dementia 
medications (159). Nguyen and Ehrlich described multiple other 
drugs that could potentially be repurposed for treating CRCI (160). 
Preclinical studies have evaluated several novel agents including 
PAN-811, a ribonucleotide reductase inhibitor (161), mesenchymal 
stem cells (162–164), functionalized mitochondria (165), dual leucine 
zipper kinase (166), histone deacetylase 6 inhibitor (167), KU-32, for 
mitochondrial repair (168), and astaxanthin, an antioxidant (169), 
among others. However, these treatments have yet to be translated into 
clinical studies.

There have also been several studies examining behavioral (e.g., 
psychoeducational, cognitive behavioral therapy, compensatory 
strategies, cognitive training, cognitive rehabilitation), lifestyle (e.g., 

physical activity, diet, stress management), neuromodulation 
(neurofeedback, transcranial magnetic stimulation), and integrative 
(e.g., acupuncture, music, meditation, yoga) interventions for CRCI 
(153, 170–176). A meta-analysis of 29 randomized control trials 
reported that the best options among behavioral interventions for 
CRCI in descending order of efficacy were: meditation/mindfulness-
based stress reduction, combined cognitive training with exercise, 
cognitive training, cognitive rehabilitation, exercise, cognitive 
behavioral therapy, qigong, supportive therapy, yoga, and acupuncture 
(170). Another meta-analysis of nonpharmacological interventions for 
CRCI reported significant effects on objective measures of attention, 
immediate recall, and processing speed and subjective cognitive 
function, depending on intervention type and mode of delivery (177).

Measuring outcomes in CRCI intervention trials based on 
symptoms alone may yield inaccurate results given the limited 
sensitivity and specificity these assessments have for CRCI and the 
lack of reliable impairment cutoffs. For example, several previous 
CRCI intervention trials have observed few if any significant changes 
in cognitive testing scores yet demonstrated significant effects on 
functional brain metrics in breast cancer survivors (178, 179). 
Stimulant medication trials for CRCI have shown very mixed results 
(180) despite anecdotal evidence that these medications can 
be helpful for certain patients with CRCI and fatigue. It is possible 
that a subgroup of patients benefits from these medications or that 
the outcome measures used in these trials were not sufficiently 
sensitive for detecting cognitive changes. Biotypes allow us to 
identify biologically based classifications that could be  used as 
clinical endpoints for intervention trials and to determine more 
accurate cut off scores for classifying impairment from 
symptom assessments.

The role of animal models

Animal models are not likely to be specifically useful for biotyping 
or prediction modeling since these methods rely on the patient’s 
individual biology and developing animal models for CRCI poses 
significant challenges due to the intricate nature of replicating the 
human disease (181). However, for optimal clinical utility, CRCI 
diagnostic and prediction models require further knowledge regarding 
which chemotherapies are associated with cognitive deficits. The 
biological effects exerted by each chemotherapy drug are extensive, 
and this complexity increases when combined with other medications. 
This cannot be  ethically examined in human patients given that 
patients cannot be  randomized to different treatment regimens. 
Preclinical models offer the advantage of assessing individual 
chemotherapeutic agents and elucidating their specific molecular 
mechanisms. By employing preclinical models, researchers can also 
better regulate variables such as age, sex, environmental factors, type 
of cancer, treatment types, and comorbidities [see review by Seigers 
et al. (182)]. Several recent studies have demonstrated cognitive and 
neurobiologic deficits in mice treated with doxorubicin, 
cyclophosphamide, or cisplatin chemotherapy (183–188). Potential 
mechanisms of CRCI examined in these studies include sphingosine-
1-phosphate receptor 1 activation, brain derived neurotrophic factor 
levels, apolipoprotein E4 genotype, and neuroinflammation [see 
review by Gibson and Monje (189) for potential mechanisms]. 
However, few studies have compared different chemotherapy regimens 
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or utilized combination chemotherapies and therefore, significant 
work is still required in this area.

Future directions

Biotyping is a nascent field that warrants replication of results 
across several dimensions, which is known as deep validation (72, 
190). Deep validation steps including applying an existing biotype 
algorithm to new, independent data without reclustering to determine 
if biotype expression remains the same as in the original data, 
clustering independent data with a naïve algorithm to determine if 
biotypes can be reproduced, and extending cross-sectional biotypes 
to longitudinal data (72). These methods aim to determine whether 
the existence of biotypes in a particular condition is reliable, if the 
original biotyping solution is generalizable, and if biotypes can predict 
different disease trajectories.

Most biotyping studies to date have employed fMRI neuroimaging. 
However, neuroimaging it is not currently standard practice for breast 
or other non-CNS cancers, it is costly and associated with 
contraindications such as electronic or magnetic biomedical implants, 
magnetic orthodontia, and claustrophobia, among others. Neuronal 
activity is associated with increased oxygen delivery and the difference, 
or contrast between diamagnetic oxygenated hemoglobin and 
paramagnetic deoxygenated hemoglobin is measured by MRI. This is 
known as the blood-oxygen-level-dependent (BOLD) contrast and is 
the standard method used in functional MRI (191). There are other 
non-invasive technologies that are used to measure brain activity 
including electroencephalogram and magnetoencephalography. 
However, functional near-infrared spectroscopy (fNIRS) is the most 
similar available technology to fMRI. FNIRS also measures the BOLD 
contrast but does so using near-infrared light. Whereas most 
biological tissues are transparent to near-infrared light between 700 
and 900 nanometers, hemoglobin absorbs and scatters near-infrared 
light in this range. Oxygenated and deoxygenated hemoglobin absorb 
near-infrared light at different wavelengths, which constitutes the 
BOLD contrast for fNIRS measurement (192, 193). FNIRS is highly 
tolerant to motion and has no environmental restrictions, 
contraindications or known risks (194).

The primary limitations of fNIRS are that it can only measure 
cortical tissue and cannot penetrate to subcortical structures (194) and 
most commercially available fNIRS devices only measure frontal 
regions. However, it is important to point out that prefrontal cortex is 
involved in most brain functions (195–197). Compared to 
chemotherapy naïve patients, chemotherapy-treated patients with 
breast cancer consistently show significantly changed prefrontal 
structure and function (74, 79, 82, 85, 198–201). Altered prefrontal 
regions are among the most predictive of long-term cognitive status 
in patients with breast cancer (147, 148). Further, in patients with 
breast cancer, lower prefrontal-executive function is the single best 
predictor of medication non-adherence (202) and has been associated 
with decreased quality of life following chemotherapy treatment (203). 
Thus, prefrontal fNIRS has significant potential as a proxy for whole 
brain fMRI in the study of CRCI that could be  more easily used 
in-clinic. Surprisingly, no studies to date have applied fNIRS to the 
study of CRCI.

The correspondence between liquid and neuroimaging biomarkers 
is another avenue of research for discovering potential proxy 

technologies that support biotyping. Several lines of evidence suggest 
that cancer and its therapies accelerate aging processes (77, 86, 204–
206). Individuals with age-related neurodegeneration and related 
cognitive decline tend to demonstrate greater amyloid-beta peptide 
accumulation and tau hyperphosphorylation compared to cognitively 
normal individuals (207). Tau and amyloid-beta can be measured 
from serum or plasma using the commercially available, single-
molecule array (SIMOA) assay (208–210). Several studies have 
demonstrated that blood-based measurements of amyloid-beta or tau 
using SIMOA are associated with age-related neurogenerative 
conditions (211–214) as well as other neurologic conditions (215, 
216). We uniquely demonstrated that blood-based amyloid beta and 
tau are highly predictive of cognitive functioning in breast cancer 
survivors, in combination with age, cytokines, and anthropomorphic 
measures (217).

Inflammatory biomarkers have long been of interest to researchers 
studying CRCI. Objective measures of CRCI have been shown to 
correlate with some inflammatory cytokines (e.g., IL-1β, IL-6, TNF-α, 
CRP), other proteins (e.g., GM-CSF), neurodegenerative markers 
(e.g., Aβ − 42, Aβ − 40, tau), and methylation ratios (42). Subjective 
measures of CRCI have demonstrated both significant and 
nonsignificant correlations with cytokines (IL-4, IL-1β, IL-6, MCP-1, 
IGF-1) and no significant correlations with TNF-alpha or CRP (42), 
suggesting perhaps more complex and inconsistent relationships 
between inflammatory biomarkers and CRCI.

Circadian biomarkers that can be measured objectively with saliva 
and blood or biorhythms (e.g., actigraphy) and are implicated in 
numerous side effects seen in cancer including CRCI. Similarly, to 
inflammatory biomarkers, data on circadian markers and CRCI 
relationships have been inconsistent and additionally quite limited in 
cancer research. For example, a recent study by Ancoli-Israel and 
colleagues showed that disrupted circadian rhythms were associated 
with reductions in objectively measured neurocognitive function in 
their longitudinal study of women with breast cancer (218). However, 
other studies failed to find any association between circadian 
rhythmicity and cognition in women with metastatic breast cancer 
(219). We suggest more research is warranted on the relationships 
between liquid and rhythm biomarkers in CRCI.

Neurofilament light, NF-L, a marker of neuroaxonal injury, is 
another protein that has received recent attention in relation to 
neurodegenerative diseases, including Alzheimer’s dementia (220). 
Increased blood concentration of NF-L have also been detected in 
person with frontotemporal dementia (221), Huntington’s disease 
(222), and Parkinson’s disease (223), suggesting that NF-L may be a 
biomarker of neurodegenerative processes in general. Blood based 
assays using SIMOA to detect NF-L are commercially available but no 
studies of NF-L and CRCI have been conducted to date.

Another emerging biomarker of cognitive decline is known as 
neuron derived exosomes (NDE). Exosomes are extracellular vesicles 
that play an integral role in intracellular communication by conveying 
materials such as RNA and proteins between cells (224). Exosomes are 
released by a most cell types, including neurons, and can be detected 
in blood, saliva, and urine (225, 226). NDE’s appear to contribute to 
cognitive impairment by transporting toxins during pathological 
conditions (224). This is evidenced by findings of increased NDE 
levels in individuals with neurodegenerative syndromes (227, 228). 
Koh et al. provided a comprehensive overview of NDEs as potential 
biomarkers of CRCI (229).
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CRCI research initiatives, including many funding opportunities, 
have emphasized the need for longitudinal studies as they determine 
patterns of individual cognitive change which can be more sensitive 
than a single static cognitive assessment. Longitudinal studies can also 
provide insight regarding the separate and combined effects of 
different anti-cancer treatments on cognitive function. However, large 
cross-sectional studies should not be neglected or discounted as they 
help establish reliable syndrome phenotypes (230) and are necessary 
for the initial steps in biotyping. Large multi-site, national studies or 
pooled studies are needed to validate neuroimaging biomarkers and 
biotypes of CRCI. Data sharing and pooling can be  facilitated by 
online databases such as EBRAINS,1 the Human Connectome 
Project,2 and LONI,3 among others.

Finally, most CRCI studies to date have focused on breast cancer 
although growing evidence indicates cognitive impairment across 
cancer types (231). A critical component of future research will be the 
ability to demonstrate that biotypes can be applied to other cancer 
diagnoses to determine what CRCI is, agnostic to disease. Further 
research is required to examine biomarkers of CRCI across different 
cancer types.

Conclusion

CRCI is a prevalent condition that is not fully understood and, as 
a result, not diagnosed accurately, limiting treatment trials and 
implementation. Advanced statistical methodology, such as growth 
mixture modeling, allows for determination of latent subgroups using 
self-report and longitudinal data, offering significantly more precision 
in understanding cognitive trajectories and outcomes. However, the 
main limitation of symptom-driven subtypes classification remains 
lack of biological data. Neuroimaging can be used to identify brain 
biomarkers both individually and in clusters to define biological 

1 https://www.ebrains.eu

2 https://www.humanconnectome.org

3 https://ida.loni.usc.edu/login.jsp

subgroups to diagnosis and predict outcomes. Like symptom-derived 
subtypes, biotyping accounts for variability in patient functioning by 
evaluating brain function to define the best taxonomy for patients but 
does so by utilizing the mechanistic information required for 
precision medicine.
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