
Frontiers in Medicine 01 frontiersin.org

mTOR signaling in hair follicle and 
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Mammalian target of rapamycin (mTOR) signaling pathway is a major regulator 
of cell proliferation and metabolism, playing significant roles in proliferation, 
apoptosis, inflammation, and illness. More and more evidences showed that the 
mTOR signaling pathway affects hair follicle circulation and maintains the stability 
of hair follicle stem cells. mTOR signaling may be  a critical cog in Vitamin D 
receptor (VDR) deficiency-mediated hair follicle damage and degeneration and 
related alopecia disorders. This review examines the function of mTOR signaling 
in hair follicles and hair diseases, and talks about the underlying molecular 
mechanisms that mTOR signaling regulates.
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1. Introduction

Mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that detects 
and combines a range of external and intracellular signals. It also regulates a number of 
functions, such as gene transcription, autophagy, mRNA translation, protein synthesis, cell 
proliferation, and metabolism (1, 2). Target of Rapamycin (TOR), named after its inhibitor 
rapamycin, was first isolated from soil bacteria in the 1970s. Rapamycin, also known as 
sirolimus, interacts with fk506-binding protein 12 (FKBP12) to limit the function of mTOR (3). 
Recent studies have demonstrated that mTOR signaling plays a role in a variety of epidermal 
homeostasis activities, including hair follicle cycles, skin barrier function, and skin healing 
(4–8). The incidence of numerous hair diseases is linked with dysregulation of mTOR signaling, 
such as alopecia areata, androgenetic alopecia, fibrosing alopecia, and hair follicle tumors 
(9–12). In this review, the function of mTOR signaling in hair follicles and hair diseases was 
highlighted, and underlying molecular mechanisms regulated by mTOR were discussed. 
We envision that analyzing these mTOR functional implications during hair follicle cycling will 
be essential for the development of new treatments for hair diseases.

2. mTOR signaling

The mTOR pathway is a crucial metabolic regulator. The mTOR protein exists in two 
complexes with distinct structures and functions, called mTOR complex 1 and mTOR complex 
2 (1, 13). The proline-rich Akt substrate 40 kDa (PRAS40), an inhibitory subunit, and the 
regulatory associated protein of mTOR (RAPTOR) are both included in the mTORC1 protein. 
Numerous growth factor receptors, including the insulin receptor and the epidermal growth 
factor receptor (EGFR), activate tyrosine kinase adapter molecules at the cell membrane, which 
attract class I  PI3K to the receptor complex. Phosphatidylinositol-3,4,5-trisphosphate 
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(PI [3,4,5] P3), which attracts and stimulates the serine–threonine 
kinase Akt by phosphorylation on threonine 308, is the pathway 
through which PI3K activates mTORC1. A major target of Akt is 
tuberous sclerosis syndrome 2 (TSC2). By phosphorylating TSC2 at 
threonine 1,462 (Thr1462), Akt prevents the small GTPase RAS 
homolog enriched in the brain (Rheb) from acting as a GTPase-
activating protein (GAP), keeping it in a GTP-bound state and 
activating mTORC1. The activation of class I PI3K ultimately leads to 
the activation of mTORC1 by inhibiting TSC2. mTORC1 is activated 
in organelles like peroxisomes and lysosomes (14). Full activation of 
mTORC1 requires many nutrients and energy sources, such as 
glucose, lipids, oxygen, leucine, arginine, and a high ATP/AMP ratio 
(15, 16) (Figure 1A).

The functions of mTORC1 include mRNA translation, 
metabolism, protein turnover, etc. mRNA translation includes 
translation of the multi-protein exon junction complex (EJC)-
associated transcripts and 5′ cap-dependent translation (17, 18). 
Metabolism includes nucleotide synthesis, lipid synthesis, and glucose 
metabolism (19). Protein turnover includes autophagy, lysosome 
biogenesis, and proteasome assembly (20, 21). Activated mTORC1 can 
activate s6k, promote protein synthesis, inhibit 4E-BP, regulate 
translation initiation, phosphorylate ULK1 and ATG, and inhibit the 
occurrence and development of autophagy. Additionally, mTORC1 
inhibition increases ULK1 kinase activity to encourage autophagy (22) 
(Figures 1B–D).

Rapamycin-insensitive mTOR companion (RICTOR) and 
mammalian stress-activated Map kinase interacting 1 (mSIN1) are 
both found in mTORC2. Additionally, PI3K through PI (3–5) p3 
activates mTORC2, which phosphorylates Akt on serine 473. The 
functions of mTORC2 include ion transport, cell migration, apoptosis, 
glucose metabolism, and cytoskeleton reorganization (23–26). 
mTORC2 acts downstream of growth factor signaling, activates Akt, 
PKC, and Sgk1, and stimulates cell growth, proliferation, survival, and 
cytoskeletal remodeling (27–29). In certain cells and in living animals, 
chronic rapamycin administration reduces mTORC2 signaling (30, 
31) (Figure 1E).

3. Roles of mTOR signaling in hair 
follicle development and hair 
regeneration

Hair is a fiber of amazing tensile strength composed primarily of 
terminally differentiated, dead keratinocytes. The hair follicle is an 
important structure supporting hair growth, and its periodic 
structural changes are the basis of hair cycles. The disease and aging 
of hair follicles will lead to an imbalance of hair cycles, and eventually 
cause hair loss and other hair diseases. Hair follicles generally go 
through cycles of growth (anagen), regression (catagen), and rest 
(telogen) (32). The most active stage of hair follicle development is 
known as the anagen stage, during which the hair grows quickly and 
completely forms a hair shaft. Hair follicles typically enter catagen 
when the hair shaft stops developing, the capacity of cells to proliferate 
and differentiate starts to wane, cells start to experience apoptosis, and 
the hair follicles disintegrate quickly. The hair follicle enters telogen 
after the catagen stage, which is characterized by the lowest biological 
activity of the hair follicle and the loss of the hair shaft. The 
development of new hair shafts, the loss of old hair, and changes in 

dermal papillae structure and morphology are the key changes that 
take place during the hair cycle (33). Hair follicle stem cells (HFSCs) 
in the bulge control these transitions of growth cycles (34). HFSCs are 
mostly in a quiescent state, but they also periodically undergo 
activities such as cell migration, proliferation, and differentiation 
(35, 36).

3.1. mTOR signaling in hair follicle cycles 
and hair follicle stem cells

The regulation mechanism of HFSCs and HF cycles involves the 
mTOR pathway, the BMP pathway, and the Wnt pathway (37–39). 
Accumulating evidence suggests mTOR signaling is vitally involved in 
hair follicle cycles and the stabilization of hair follicle stem cells. Hair 
cycle beginning was delayed in a pharmacological test in vivo using 
the particular mTORC1 inhibitor, rapamycin, demonstrating that 
mTORC1 has a role in anagen entrance. The timing of the anagen 
beginning phase of the hair cycle may be regulated by mTORC1 (39). 
The balance between HFSC quiescence and activation during hair 
regeneration is controlled by mTOR signaling, which is a key regulator 
in this process. When HFSCs are active at the telogen-to-anagen 
transition, mTORC1 signaling is also stimulated in these cells. The 
activation of the HFSC is noticeably delayed and the telogen phase is 
prolonged in HFs that are unable to react to mTOR signaling. The 
mTORC1 signaling pathway negatively affects BMP signaling and 
balances BMP-mediated inhibition of anagen initiation, ultimately 
promoting HFSC activation and hair growth (40). Interfering with 
miR-27a causes PIK3R3 to express more, which in turn causes AKT 
and MTOR to express and be activated more. The proliferation and 
decreased apoptosis of HFSCs were both boosted by the activation of 
mTOR signaling (41).

The excessive activation of mTOR was specifically linked to both 
HF hyperproliferation and HFSC exhaustion. As import signaling 
pathways, TGF-β adjusts the Akt/mTOR pathways through the 
Smad2/3 (42). A significant downstream element of the pathway via 
which Wnt1 stimulation can cause cell proliferation and tissue aging 
is the mTOR protein. By blocking GSK3, Wnt lessens TSC2’s 
inhibitory impact on mTOR, enhancing mTOR activity. Wnt1 
expression causes HF cells to hyper proliferate and rapidly exhaust 
their CD34+ stem cells, as shown by the ablation of HF stem cells, 
which also occurs at the same time as the activation of cell senescence 
pathways. Rapamycin prevented Wnt1-expressing mice from losing 
CD34+ stem cells in the bulge area of their hair follicles (43).

A remarkable characteristic of healthy anagen stage hair follicles 
is the relative immune privilege (IP) that their epithelium displays 
from the bulge area, the habitat for HF stem cells, downstream to the 
hair bulb (44). Alopecia areata (AA) and primary cicatricial alopecia 
(PCA) are the results of an immune attack on the HF when this IP 
collapses, which is caused by inflammatory infiltrates that collect 
around the bulge and bulb (45). In the lower follicle ORS and bulb of 
the hair follicles in the lesional scalps of PCA patients, p-mTOR and 
p-p70S6K expression rose, whereas p-4EBP1 expression dropped (12). 
The immunogenicity of differentiated stem cells was markedly 
reduced by the suppression of mTOR signal pathways (46). These 
imply that IP collapse may be  associated with aberrant mTOR 
activation in the bulb of the hair follicle. Isolated immune cells are 
sometimes seen in and around the bulb of an anagen stage HF during 
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the pathological hair development cycle. Dendritic cells, mast cells, 
NK cells, CD4+T and CD8+T cells, and other inflammatory cells are 
present in the perifollicular infiltration. Dendritic cells and 
macrophages are frequently the second kind of cell to enter intra-
follicular sites after CD8+T cells. IFN-γ and Substance P, the two 
known HF IP collapse inducers, are active in both animal and people 
(44). Inhibition of mTOR signaling reduces the function of many 
immune cells and may contribute to the maintenance of IP in the hair 
follicle. mTOR inhibition caused immunosuppression. Damage to the 
PI3K intracellular signal-transmitting enzymes led to phenotypic 
abnormalities, a substantial decrease in the number of NK cells in 

peripheral organs, and decreased cytokine release in other cells (47). 
Both TGF-β and the mTOR inhibitor rapamycin decreased NK cells’ 
metabolic activity, proliferation, and abundance of several NK cell 
receptors, as well as their capacity to carry out cytotoxic action (48). 
Rapamycin can decrease the proportion and cytotoxic function of 
CD4+ cytotoxic T lymphocytes (CTLs) in Graves’ orbitopathy (49). 
When the AKT/mTOR pathway was suppressed, the increases in 
cytotoxic molecules caused by VEGF-A were considerably decreased. 
VEGF-A treatment activated the AKT/mTOR pathway in CD4+ CTLs 
(50). To maintain glucose absorption and glycolysis in CD8+ T cells, 
mTORC1 activity is essential. The mTORC1-HIF1 pathway, which 

FIGURE 1

The mTOR Signaling Network (A) Overview of the mTOR signaling pathway (B–D) mTORC1 signaling in mRNA translation, metabolism, and protein 
turnover (E) mTORC2 signaling function.

https://doi.org/10.3389/fmed.2023.1209439
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Tu et al. 10.3389/fmed.2023.1209439

Frontiers in Medicine 04 frontiersin.org

effectively connects mTORC1 to a multitude of transcriptional 
processes, is required for effector CTLs to sustain glycolysis and 
glucose metabolism (51).

Inhibition of mTOR signaling can increase regulatory T cells 
(Tregs) number, induce immune tolerance, and reduce inflammation, 
which may help reduce the number of local inflammatory cells 
around the bulge and bulb and maintain relative IP. As a distinct 
marker for Tregs, the fork head transcription factor (Foxp3) was 
discovered. Only T cells expressing Foxp3 were able to prevent 
transplant rejection in vivo after being exposed to antigen in the 
presence of TGF-β in vitro, in contrast to their Foxp3-negative 
counterparts (52). The ratio of Treg to T effector cells (Teff) and the 
response of mTOR to a variety of microenvironmental stimuli 
determine whether an individual is tolerant of something or 
inflammatory. The balance between the quantity of Tregs and Teff is 
increasingly thought to determine whether the result of an immune 
response is one of tolerance or inflammation. Activating the GCN2 
pathway had no effect on the activation of Foxp3 in naïve CD4+ T 
cells in the presence of modest doses of TGF-β, while inhibiting the 
mTOR pathway with rapamycin increased Foxp3 expression. 
Metabolism and Foxp3 expression are regulated by nutrient and 
environmental sensing via mTOR. For controlling cell metabolism 
and Foxp3 expression, mTOR functions as an integrator of signals 
that come from a variety of cell surface receptors and nutrient-
sensing pathways (53).

Inhibition of glutamine metabolism by mTORC2 signaling 
contributes to progenitor reversibility and reestablishes HFSC niche 
function (6). Oxidative phosphorylation is activated, and glutamine 
enters the TCA cycles during the shift from HFSCs to the ORS 
progenitor state. The HFSC niche is hypoxic, and low pO2 (the 
partial pressure of oxygen) promotes a stem cell state. Low pO2 
inhibits the expression of glutaminase in a way that is reliant on 
mTORC2-Akt, thereby reducing glutamine hydroxylation to stop the 
glutamate from entering the Krebs cycles and promoting the return 
of progenitor cells to the HFSC state, thereby allowing progenitor 
cells to return to the low oxygen niche, restore stem cell status, and 
restore bulge to maintain hair follicle stem cells throughout the long 
run. Loss of mTORC2 impairs niche regeneration of progenitor cells 
and triggers hair follicle stem cell failure, and for HFSC destiny 
reversibility and long-term maintenance in vivo, mTORC2 is 
necessary (Figure 2).

3.2. Factors affecting hair growth by 
regulating mTOR signaling

Autophagy, heat stress, and Vitamin D are three factors associated 
with mTOR signaling that play a role in alopecia. Autophagy refers 
to the starvation-induced degradation of cytoplasmic components 
under catabolic conditions with limited nutrient supply and is critical 
for providing substrates for energy production and clearing damaged 
organelles (54). mTOR signaling is necessary for the activation of hair 
follicle stem cells and their entry into anagen (39, 40, 43). However, 
research has also reported that inhibiting mTOR signaling in 
quiescent telogen hair follicles can activate autophagy and stimulate 
telogen hair follicles to initiate the anagen phase and accelerate hair 
regrowth. The metabolites a-ketoglutarate (a-KG) and rapamycin are 
examples of small compounds that may inhibit mTOR and activate 

autophagy. Autophagy is also boosted during the anagen phase of the 
natural hair follicle cycle (55). Activation of autophagy may help to 
rescue alopecia caused by a shortened anagen phase, a prolonged 
dormant phase, and/or blocked anagen induction (55). Autophagic 
activity is inhibited in the HF of AA mice. Compared to untreated 
AA animals, autophagy induction reduced the severity of AA, but 
autophagy blocker therapy increased illness (56). Intrafollicular 
autophagy is crucial for HF growth and plays a fundamental role in 
HF anagen maintenance (57). Hair matrix keratinocytes of organ-
cultured HFs exhibit an active autophagic flux in anagen, but it 
changes once catagen begins, according to analysis of endogenous 
lipidated Light Chain 3B and sequestosome 1 proteins as well as 
ultrastructural visualization of autophagosomes at all stages of the 
autophagy process. The anagen hair matrix exhibits early catagen and 
increased keratinocyte death when follicular autophagy is genetically 
inhibited, suggesting that autophagic flux in this matrix is essential 
for sustaining this state. Moreover, a hair loss therapy greatly boosts 
intrafollicular autophagy, which lengthens the anagen phase of 
human hair development. Intrafollicular autophagy is eminently 
targetable for therapeutic regulation of human hair growth (57).

The effect of heat stress on phosphorylated mammalian target of 
rapamycin (p-mTOR) expression occurs in a tissue-specific manner. 
Heat stress stimulates the mTOR signaling pathway in skeletal 
muscle, but significantly inhibits the expression of the p-mTOR 
protein in hair follicle cells and regulates the development of hair 
follicle cells. By increasing the expression of BMP2 and BMP4, 
decreasing the mRNA levels of noggin, IGF1, and IGF1R, and 
increasing the protein level of p-mTOR, heat stress decreased the 
number of hair follicles (58). Hair follicle mTORC1 signaling can 
be activated after radiation injury to promote hair follicle regeneration 
and hair growth (59). By facilitating the activity of the Akt/mTOR 
signaling pathway and mediating the activation of HFSCs, LGR4 
governs the advancement of the hair cycle. The absence of LGR4 
prevents the activation of the Akt/mTOR signaling pathway in the HF 
cycle. In Lgr4 mutant mice, reactivation of Akt signaling reversed its 
delayed HF cycle, suggesting that Lgr4-regulated HF homeostasis and 
HFSC activation depend on the activity of the mTOR signaling 
pathway (60). Micro-current electrical stimulation can increase 
various growth factors in human hair follicle papilla cells and mouse 
hair follicles, activate the PI3K/AKT/mTOR pathway, and Wnt/β-
catenin pathway significantly, and promote hair growth (61).

Hair follicle damage and degeneration may have a great 
correlation with mTOR signaling in Vitamin D receptor (VDR) 
knockout mice. The follicular epithelium of VDR−/− mice is 
defective in the regression-to-rest morphogenetic stage. VDR−/− 
hair follicles exhibit DNA damage-inducible transcript 4 (Ddit4) 
stress compartments with increased Ddit4 during morphogenesis. In 
VDR−/− mice, abnormalities in Ddit4 signaling impact follicular 
integrity by disrupting follicular energy balance. In epidermal 
keratinocytes, the mTOR inhibitor Ddit4 is a direct transcriptional 
target of the VDR. Ddit4 suppresses mTOR signaling by activating 
TSC2, a GTP hydrolase activating protein, which subsequently 
prompts Rheb to inactivate mTOR in a GDP-bound form. In 
VDR-deficient hair follicles, mTOR signaling is reduced, BMP 
signaling is increased, the transition from catagen to telogen phase is 
advanced and prolonged, hair follicle cell differentiation is reduced, 
and eventually the hair follicle degenerates, which can cause various 
hair loss diseases (Figure 3) (62).
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4. Role of VDR in hair disease

mTOR signaling is an important component of maintaining hair 
follicle circulation and hair follicle stem cell stability. Once mTOR 
signaling is out of balance or missing, it can lead to the occurrence of 
various hair follicle and hair diseases. In addition, 1,25D3 affects 
mTOR function in the cytoplasm in multiple ways (63), The vitamin 
D receptor and Ddit4 are important regulators of mTOR signaling and 
play crucial roles in hair loss diseases.

Alopecia areata is a frequent kind of hair loss that is characterized 
by well-defined, skin-colored, round to oval, non-scarring patches. 
Many studies have reported that serum 1,25D3 levels in patients with 
alopecia areata are lower than those in healthy subjects, some of which 
are accompanied by compensatory increases in parathyroid hormone 
levels, and that serum 1,25D3 levels less than 30 ng/ml are associated 
with the occurrence of alopecia areata (64, 65). In individuals with 
alopecia areata, vitamin D insufficiency is adversely correlated with 
the severity and duration of the condition. The tissue and serum VDR 
levels of patients with alopecia areata were significantly lower than 
those in the control group. In comparison to healthy skin, alopecia 
lesions had considerably reduced levels of VDR expression in the hair 
follicles and epidermis, and the degree of alopecia areata was 
significantly negatively correlated with VDR in tissues (66). However, 
another study revealed that reduced VDR expression in alopecia 
areata was inversely correlated with hair follicle histological 
inflammation but not with serum vitamin D levels, disease severity, 
pattern, or duration (10). By modulating mTOR signaling, vitamin D 
and VDR deficiency may exacerbate alopecia areata and cause severe 

hair loss. Downregulation of VDR in hair follicles is related to lower 
hair development.

The most prevalent kind of progressive hair loss is androgenetic 
alopecia (AGA), which is also known as androgen-related 
progressive hair thinning. AGA is further classified into male-and 
female-pattern hair loss. Many studies have confirmed that the 
serum vitamin D level of AGA patients is lower than that of the 
control group and that vitamin D deficiency exists (67, 68). AGA 
patients with high levels of dihydrotestosterone are deficient in all 
vitamins and trace minerals, including vitamin D, zinc, copper, 
magnesium, selenium, and vitamin B12 (69). Serum vitamin D levels 
can be  used as an index to judge the incidence and severity of 
AGA. In addition, the levels of VDR in the scalp and blood of AGA 
patients were also significantly lower than normal (70). Hair loss 
occurs in patients with an inherited VDR deficiency, and VDR 
knockout mice are unable to initiate a new hair cycle. Many studies 
have found that the serum 1,25D3 concentration in female pattern 
hair loss patients is lower than that in the control group (71, 72). The 
average serum 1,25D3 concentration has nothing to do with 
the course of disease or age, but there is a certain correlation with 
the severity of the disease. Some studies believe that women with a 
family history of female pattern hair loss and vitamin D lacking or 
insufficiency are more likely to suffer from female pattern hair loss, 
but some studies do not support this view (71). The serum and tissue 
VDR levels of female patients were higher than those of male 
patients. Compared with healthy controls, the serum and tissue VDR 
concentrations of female pattern hair loss patients were significantly 
lower, but they were not related to the severity of the disease (70). In 

FIGURE 2

Roles of mTOR signaling in hair follicle development and regeneration.
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the study of the correlation between VDR gene polymorphisms 
(Cdx-1 and Taq-1) and female pattern hair loss, it was found that 
Taq-1 and Cdx-1 may be risk factors and play a role in the duration 
of female pattern hair loss (73). Vitamin D and VDR are so closely 
related to AGA that they may regulate the process of AGA through 
the Ddit4/mTOR pathway.

5. Roles of mTOR signaling in hair 
disease

Alopecia areata (AA) and primary cicatricial alopecia (PCA) are 
the results of an immune attack on the HF when this IP collapses. The 
relationship between the PI3K/Akt/mTOR pathways and the 
molecular markers that are specific to AA, such as NK cells, CD4+ and 
CD8+, MHC classes I and II cells, and migration inhibitory factor 
(MIF), is indicative of the function that these pathways play in the 
disease. Immunological mediators such macrophages, Langerhans’ 
cells, and cytokines, as well as CD4+, CD8+, and other immunological 
mediators, have all been linked to the onset and progression of AA 
(74–76). CD8+ T cells, NKG2D+ cells, IFN-γ, and IL-15 have a 
significant role in the etiology of AA. Since both IFN-γ and IL-15 
signal via the Janus kinase (JAK) pathway, JAK inhibitors are 
promising drugs for managing AA in vivo (77). JAK1 and JAK3 
selective inhibitors effectively stimulated hair growth and reduced 
AA-related inflammation. But a number of JAK2-selective inhibitors 
failed to reinstate hair growth. The effectiveness of this therapy in 

reversing autoimmune illnesses like AA may be  explained 
mechanistically by the targeted production of T cell exhaustion 
utilizing a JAK1/3 inhibitor (78, 79). By promoting the growth of 
alopecic T cells, exogenous IL-7 hastened the start of AA. In contrast, 
IL-7 inhibition prevented AA from progressing and reversed early AA 
in C3H/HeJ mice. The overall number of most T cell subsets was 
significantly decreased by IL-7R blockage, while regulatory T cells 
(Tregs) were somewhat spared (80). It was confirmed that the AA risk 
genes IL2RA, STX17, and TNXB are regulated by miR-30b at 
particular sites. This study suggests that microRNAs have a role in the 
development of AA (81). CXCR3-blocking antibodies can stop the 
development of AA in the graft model and prevent the buildup of 
CD8+T cells in the skin (82). The care of HF diseases linked to redox 
imbalance, such as HF graying and HF ageing, androgenetic alopecia 
and alopecia areata, may benefit from small molecule NRF2 activators. 
The reduction in early catagen and hair growth inhibition brought on 
by oxidative stress was decreased by Nrf2 pre-activation, which also 
reversed the reduction in hair matrix proliferation brought on by 
reactive oxygen species (83, 84). γδT-cells can cause early catagen, 
dystrophy, and HF immune privilege breakdown, which become the 
main reasons for AA (Table 1) (85, 86).

As a type of PCA, Lichen planopilaris (LPP) includes the classical 
form, frontal fibrosing alopecia (FFA), and Graham-Little syndrome. 
LPP and FFA can lead to permanent alopecia, which is considered to 
be related to hair follicle stem cell damage and the mTOR signaling 
pathway. The mTOR signaling pathway protein is found in all regions 
of healthy hair follicles, but it has abnormal expression in those of 

FIGURE 3

Vitamin D receptor deficiency may induce alopecia through the Ddit4/mTOR signaling pathway.
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lichen planopilaris and frontal fibrosing alopecia patients. The 
expression of p-mTOR decreased in the interfollicular epidermis of 
the patients’ skin lesions, and increased in the lower part of the hair 
follicle in the ORS and the hair follicle bulb (12). It has been 
demonstrated that JAK inhibitors are useful for treating LPP (87). In 
PCA lesions, immune-histological investigations found that the 
number of mast cells (MC) was elevated. Gene expression analysis 
identified common PCA-related pathways, particularly those strongly 
connected with MC (88). Peroxisome proliferator-activated receptor 
(PPAR)-γ-mediated signaling plays an important role in the LPP/FFA 
associated with IP collapse (89). Due to its ability to reduce 
T-lymphocyte activation, proliferation, and antibody generation, 
sirolimus is another possible therapy for FFA (90).

AGA is distinguished by androgen-related, progressive hair loss 
in a specific pattern. By reducing the activity of the enzymes 17, 
20-lyase of cytochrome P450c17, and 3-hydroxysteroid 
dehydrogenase, PPAR-γ signaling impacts androgen production, 
which lowers androgen levels. These results warrant investigating 
PPAR-γ antagonist therapy for the management of AGA (91). Small 
molecule NRF2 activators may be helpful in the treatment of HF 
illnesses including androgenetic alopecia and alopecia areata that are 
connected to redox imbalance (84). Dihydrotestosterone (DHT) 
interacts with the dermal papilla cells (DPCs), which line the base of 
the hair follicle, to cause AGA. The suppression of the hair 
development cycle in immortalized DPCs may be lessened by DHT’s 
stimulation of mTOR (92). By triggering the TGF-β signaling pathway, 
Serenoa repens extracts encourage hair growth and repair in AGA 
mice models (93). Regenerative stem cell treatment for androgenic 
alopecia may occur through the Wnt/β-catenin pathway (94).

The mTOR pathway is crucial for treating hair disorders and 
issues. In rat dermal papilla cells, limonin can promote anagen 
signaling by activating autophagy by targeting the Wnt/β-catenin 
and/or PI3K/AKT pathways, suggesting a possible nutrient for hair 

loss therapy (95). The effect of Eclipta prostrata on promoting hair 
follicle and hair growth is achieved by increasing the expression of 
FGF-7 and FGF-5 in human dermal papilla cells and activating the 
mTOR signaling pathway (96). The molecular mechanism of 
adenosine promoting hair growth includes regulating the activity of 
Gsk3β to activate adenosine receptors to mimic the Wnt/β-catenin 
signaling pathway, Nevertheless, PKA and mTOR activity are 
necessary for the route to be activated. The Wnt/β-catenin pathway is 
activated by adenosine mostly through the Gas/cAMP/PKA/mTOR 
cascade (97). Myristoleic acid induces autophagosome formation by 
reducing the levels of p-mTOR, Atg7, and LC3II, promoting anagen 
phase signaling through autophagy and cell cycle progression, which 
may be useful for alleviating hair loss (98). kin barrier integrity and 
T cell homeostasis are compromised by RNA stress brought on by 
SKIV2L loss, which promotes mTORC1 signaling in keratinocytes 
and T cells. Epidermal hyperplasia and abnormalities in hair 
formation are caused by the skin-specific deletion of Skiv2l, including 
skin lesions and hair fragility with nodular alopecia in the hair-
hepatic syndrome. Using the mTOR inhibitor rapamycin to treat 
skiv2l-deficient mice alleviated the cutaneous symptoms that were 
present (99). Two-pore channels are a class of non-selective cation 
channels in the lysosome system. ATP can block the activation of 
two-pore channels (TPCs) through mTOR, resulting in the loss of 
TPCs, which can affect angiogenesis, autophagy, and human hair 
pigmentation (100). FLCN is required for the recruitment of 
mTORC1 to lysosomes upon amino acid stimulation. FLCN gene 
deficiency can lead to Birt-Hogg-Dubé syndrome, including 
fibrofolliculoma, lung disease, and kidney disease. Fibrofolliculoma 
is related to FLCN and mTOR signaling (101). Cronkhite-Canada 
syndrome can induce alopecia, which may be  benefited by the 
incorporation of sirolimus (102).

6. Summary and remaining problems

The transition of hair follicles between different phases of the hair 
cycle is regulated by the balance between growth-stimulatory and 
inhibitory signals, mainly through the mTOR pathway. mTORC1 and 
mTORC2 exhibit corresponding functions in controlling hair follicle 
cycles and maintaining the HFSC pool. The activation of mTORC1 is 
necessary for the activation and entry of hair follicle stem cells into 
anagen, while the activation of mTORC2 is very important for the 
maintenance of HFSC and helps the progenitor cells return to the 
quiescent HFSC state. The mTORC1 signaling pathway balances 
BMP-mediated inhibition of anagen initiation, ultimately promoting 
HFSC activation and hair growth. Inhibition of mTOR signaling in 
quiescent telogen hair follicles can activate autophagy and stimulate 
telogen hair follicles to initiate the anagen phase and accelerate hair 
regrowth. VDR−/− hair follicles can up-regulate Ddit4 signaling and 
down-regulate mTORC1 signaling, then prolong the transition from 
catagen to telogen, reduce hair follicle cell differentiation, and 
eventually induce hair follicle degeneration and hair loss. mTOR 
signaling may be a critical cog signaling in VDR deficiency-mediated 
hair follicle damage and degeneration and related alopecia disorders 
such as alopecia areata, androgenetic alopecia, lichen planopilaris, 
frontal fibrosing alopecia, and even hair repigmentation. The precise 
interaction between mTOR and other regulating pathways such as 
BMP and Wnt in hair follicles requires further study. Inhibition of 

TABLE 1 Summary of the treatment of hair diseases.

Hair 
diseases

Routine treatment Future treatment 
strategies

AA Corticosteroids, Minoxidil, 

etc.

VDR, Ddit4/mTOR pathway

Physical therapies: JAK1/3 inhibitors (IFN-γ, 

and IL-15)

Laser therapy γδT-cells, CD8+T cells

Micro-needling IL-7 inhibitors

miR-30b

CXCR3 blockade

NRF2 activators

PCA (LPP, FFA) Corticosteroids, Minoxidil mTOR inhibitors

Tacrolimus, etc. JAK inhibitors

Laser therapy mast cells, CD8+T cells

PPAR-γ

AGA Finasteride, Minoxidil, etc. VDR, Ddit4/mTOR pathway

Physical therapies: PPAR-γ

Micro-needling NRF2 activators

Laser therapy mTOR signaling
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mTOR signaling in quiescent telogen hair follicles can initiate hair 
growth, but mTOR signaling is vital in anagen and catagen hair 
follicles for hair follicle cycles and HFSC pool maintenance. How to 
rationally utilize mTOR signaling to promote hair growth at different 
growth stages seems worthy of further study.

The etiology of alopecia areata and primary immune alopecia is 
related to the destruction of immune privilege in the hair follicle bulb 
and bulge, which leads to the up-regulation of local MHC classes I and 
II receptors and the accumulation of CD8+ T cells, NK cells, and other 
immune cells, eventually leading to the occurrence of alopecia. 
Inhibition of mTOR can induce immunosuppression and immune 
tolerance, reduce the immunogenicity of hair follicle stem cells, reduce 
the number of local immune cells, and reduce the function of immune 
cells, which may help to maintain immune privilege in hair follicles 
and relieve the clinical symptoms of AA and PCA etiologically. As 
import signaling pathways of mTOR, Wnt and TGF-β pathways play 
a critical role in AGA. Therefore, mTOR targeting would be  an 
improvement to the current treatment regimen.
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