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Chronic airway diseases, such as wheezing and asthma, remain significant sources 
of morbidity and mortality in the pediatric population. This is especially true for 
preterm infants who are impacted both by immature pulmonary development as 
well as disproportionate exposure to perinatal insults that may increase the risk 
of developing airway disease. Chronic pediatric airway disease is characterized 
by alterations in airway structure (remodeling) and function (increased airway 
hyperresponsiveness), similar to adult asthma. One of the most common perinatal 
risk factors for development of airway disease is respiratory support in the form 
of supplemental oxygen, mechanical ventilation, and/or CPAP. While clinical 
practice currently seeks to minimize oxygen exposure to decrease the risk of 
bronchopulmonary dysplasia (BPD), there is mounting evidence that lower levels 
of oxygen may carry risk for development of chronic airway, rather than alveolar 
disease. In addition, stretch exposure due to mechanical ventilation or CPAP may 
also play a role in development of chronic airway disease. Here, we summarize the 
current knowledge of the impact of perinatal oxygen and mechanical respiratory 
support on the development of chronic pediatric lung disease, with particular 
focus on pediatric airway disease. We  further highlight mechanisms that could 
be explored as potential targets for novel therapies in the pediatric population.
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Introduction

Preterm birth (<37 weeks gestation) remains a significant problem with rates of preterm 
birth in the US increasing by 0.4% from 10.1% in 2020 to 10.5% in 2021 (1). Thanks to 
advances in healthcare, the overall mortality for preterm infants has decreased over the past 
decades and now more than 90% of former premature infants survive into adulthood (2–4). 
However, prematurity continues to contribute to significant morbidity and chronic health 
conditions in former preterm infants (4–6). It is therefore increasingly important to 
investigate and better understand the long-term impacts of premature birth and how early 
perinatal interventions and insults may contribute to an increased risk of chronic diseases 
in this vulnerable population.

Chronic respiratory disease remains one of the most significant long-term sequelae of 
preterm birth. The impact of premature birth on the lung is long-reaching, with increasing 
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evidence that prematurity has a role in development of chronic lung 
diseases such as asthma and chronic obstructive pulmonary disease 
(COPD) in adults (7–10). There are numerous innate and extrinsic 
factors related to prematurity that may impact lung development as 
well as many perinatal factors such as perinatal infections 
(chorioamnionitis, postnatal respiratory infections), maternal factors 
(obesity, diabetes), nutritional deficits, and environmental exposures 
that may predispose former preterm infants to respiratory disease 
(11). While all of these factors may play important roles in the 
development of lung disease, here we will focus specifically on one 
area of these many factors: the intersection of prematurity and 
postnatal respiratory support. Preterm infants commonly require 
respiratory interventions after birth such as oxygen (hyperoxia), 
mechanical ventilation (MV), or continuous positive airway pressure 
(CPAP). Unfortunately, these necessary interventions may become 
contributing factors in development of chronic respiratory disease and 
its life-long effects.

It is now well-recognized that infants born extremely preterm 
(<28 weeks gestation) during the late canalicular or early saccular 
stage of lung development, have the greatest burden of respiratory 
disease such as bronchopulmonary dysplasia (BPD) (12). However, 
even children born moderately preterm (32–34 weeks gestation, 
~3.6% of births) (13–17) may require interventions such as 
supplemental oxygen (hyperoxia; typically <60% O2) with or without 
additional mechanical respiratory support which is now most 
commonly provided in the form of non-invasive nasal CPAP rather 
than conventional MV (18–25).

While hyperoxia, MV and/or CPAP are necessary for many 
premature babies (18–27), oxygen and MV are known to contribute 
to development of BPD (9, 21, 28–33). Antenatal steroids, surfactant, 
minimizing oxygen exposure, and gentler MV have altered the BPD 
landscape in recent decades (3, 28, 34–38). However, a major short- 
and long-term problem for former premies remains chronic bronchial 
airway disease manifesting as chronic wheezing or asthma (31, 33, 
39–47). Here, mild to moderate hyperoxia (<60% O2) is most 
clinically relevant (20, 48–50). And with the now well-established use 
of nasal CPAP in lieu of conventional MV, it becomes imperative to 
investigate the intersection of CPAP and supplemental oxygen. Since 
premature airways are highly compliant and do not undergo 
additional post-natal development (unlike continued postnatal 
alveolar development), the effects of CPAP on bronchial airways 
becomes particularly important. CPAP aids alveolar development 
and thus BPD may be less of a concern in neonates exposed to CPAP 
(36, 37, 51–54), but premies without BPD who get oxygen with or 
without CPAP are still at high risk for airway hyperreactivity (AHR) 
and associated airway remodeling later in life (45, 55–61).

In this narrative review, we summarize what is known about the 
impact of perinatal oxygen and mechanical stretch and the 
development of neonatal and pediatric airway disease from a 
mechanistic viewpoint (Figure 1). We also highlight potential future 
directions for research that may lead to a better understanding of the 
mechanisms that contribute to development of chronic airway disease, 
with the hope that new targets may be discovered for novel therapies 
in the pediatric population.

FIGURE 1

Preterm birth, supplemental oxygen, and mechanical respiratory support all represent potential perinatal “hits” in the developing lung which may result 
in long-term pulmonary disease. Both hyperoxia and mechanical stretch can cause airway remodeling (increased airway smooth muscle proliferation, 
increased extracellular matrix deposition/remodeling) and airway hyperreactivity which may contribute to reactive airway disease, wheezing, and 
asthma in former preterm infants.
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Preterm birth and pediatric lung 
disease

Lung development during the perinatal 
period

Chronic lung disease is one of the most common long-term 
sequelae of preterm birth. Understanding normal perinatal lung 
development demonstrates why this population has such a high rate 
of chronic pulmonary disease. Extremely preterm infants [<28 weeks 
gestational age (GA)] have the highest pulmonary morbidity due to 
being born during the late canalicular to early saccular stage of fetal 
lung development (62, 63). During this time, terminal airway 
branching and formation is completed and the early development of 
the acinar, gas-exchange regions begins. Type I and II pneumocytes 
begin to mature and differentiate, distinguishing the surface of alveoli 
gas-exchange and the surfactant-secreting alveolar cells. Early 
surfactant formation begins around 24 weeks gestation (62, 63). 
During the saccular stage (28–36 weeks gestation), the surface area of 
the lungs starts to expand, laying the foundation for where 
gas-exchange will eventually take place. Surfactant production does 
not reach sufficient levels to prevent atelectasis until 32 weeks GA, 
making very premature infants (28–32 weeks GA) particularly 
challenged with adaptation to ex utero life (62, 63).

During the alveolar stage of lung development (beginning around 
36 weeks GA), immature alveoli start to emerge from the sacculi when 
primary septa elongate into longer and thinner secondary septa. 
Establishing sacculi into alveoli is the final division of the respiratory 
tree. Irrespective of whether a baby is born prematurely or at term, the 
alveolar stage of lung development continues postnatally. Up until 
approximately 3 years of age, rapid alveolar division and septation is 
accompanied by an overall increase in lung size (the majority 
occurring within the first 6 months after birth). This growth, both in 
alveolar number and size, continues until around 8 years of age. Thus, 
preterm infants (<36 weeks GA) and very premature infants 
(<32 weeks GA with insufficient surfactant) have a markedly abrupt 
interruption in lung development during a period of alveolar septation 
and multiplicity that now must occur in an ex utero environment that 
these premature infants are ill-equipped to handle (42, 62, 63).

Preterm birth is therefore a significant risk factor for development 
of chronic lung diseases including BPD, chronic wheezing, and 
asthma. The risk for developing these lung diseases varies with the 
degree of prematurity. Extremely preterm infants (<28 weeks GA) are 
at the highest risk of developing BPD while late preterm infants 
(33–36 weeks GA) are unlikely to develop BPD but are at increased 
risk of developing airway diseases such as chronic wheezing and 
asthma (41, 43, 64, 65).

Bronchopulmonary dysplasia

Bronchopulmonary dysplasia (BPD) is the respiratory disease 
most commonly associated with lung diseases of prematurity and has 
had an evolving pathophysiology and definition as clinical practice has 
evolved with better understanding of the impact of respiratory support 
on development of pulmonary disease (66). Due to treatment 
improvements including incorporation of antenatal steroids, 
surfactant therapies, less aggressive ventilation, and changes in oxygen 

exposure, survival of premature infants has increased (67). The 
incidence of BPD, however, remains the same affecting 10,000–15,000 
infants per year in the United States, now predominantly impacting 
the extremely preterm portion of the population (68).

First reported by Northway et al. (69), the original definition of 
BPD was based on findings of pulmonary injury, inflammation, and 
fibrosis due to mechanical ventilation and toxic levels of oxygen 
supplementation in infants with respiratory distress syndrome. As a 
result of improved care, younger and very low birth weight infants 
(<1,500 g) became the predominant population impacted by BPD, 
with approximately 40% of infants born less than 28 weeks gestation 
(70) and more than 40% of extremely low birth weight infants 
affected (71). Severe lung disease now seldomly affects infants 
>30 weeks GA and > 1,200 g birth weight (72). A “new” BPD 
definition was developed in 2000 that introduced classifications of 
none, mild, moderate, or severe BPD based on gestational age and 
usage of oxygen and other respiratory support (72). This new BPD 
has a milder clinical manifestation with generally less inflammation, 
scarring, and damage from ventilation than old BPD (73). New BPD 
also shows reduced alveolar development that may result from 
disrupted angiogenesis and alveolar formation in preterm infants 
born during canalicular or saccular stages when true alveolar 
formation has yet to occur (73, 74).

Reactive airway disease

Reactive airway disease, such as wheezing and asthma, is 
increasingly recognized as an important source of morbidity in former 
preterm infants. For survivors of BPD, reactive airway disease is a 
common long-term consequence. Long-term follow-up of extremely 
premature infants (<26 week GA) diagnosed with BPD showed that 
about 56% had abnormal spirometry at 11 years of age and 25% were 
formally diagnosed with asthma (75).

Several studies clearly demonstrate that premature birth is a risk 
factor for developing life-long chronic diseases of the airway, such as 
increased airway reactivity, wheezing, and asthma (11, 43, 45, 76, 77). 
A meta-analysis associated a 30–90% increased incidence of childhood 
wheezing disorders with preterm birth, with more extreme 
prematurity aligned with the highest risk of wheezing disorders (45). 
In one study, children who were born moderately to late premature 
(32–37 weeks gestational age), continued to have increased wheezing 
and coughing at 5 years of age (76). Late preterm (33–36 weeks GA) 
and even term infants with decreased lung function at birth have also 
been found to have an increased risk of developing reactive airway 
diseases (78–83).

The pathophysiology of pediatric and neonatal reactive airway 
disease includes airway remodeling, hyperreactivity, increased airway 
contractility, and inflammation (11). Airway smooth muscle (ASM) 
cells and airway epithelial cells are typically most involved in the 
structural and functional changes of reactive airway disease. 
Functional changes include loss of airway epithelial barrier function, 
increased mucous production, and increase in airway smooth muscle 
cell reactivity. Structural changes involve increased airway smooth 
muscle cell proliferation and increased extracellular matrix 
deposition which lead to airway wall thickening and can cause fixed 
obstruction in addition to the dynamic obstruction caused by 
ASM hyperreactivity.
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Oxygen and pediatric airway disease

Perinatal oxygen- transition from in utero 
to ex utero life

To understand the impact of oxygen exposure on the preterm lung 
during the perinatal period, it is important to note the normal 
physiologic oxygen tension experienced by the fetus during in utero 
lung development. Fetal PaO2 (partial pressure of oxygen in the 
arterial blood) is roughly 25–50 mmHg, whereas maternal PaO2 is 
80–90 mmHg. The oxygen tension experienced by the fetus changes 
slightly during various stages of development: embryonic development 
requires lower PaO2 than fetal development later in gestation (84). 
Physiologic systems monitoring and adjusting for change in in utero 
oxygen tension is critical for normal lung branching morphogenesis, 
angiogenesis, and extracellular matrix deposition during the 
pseudoglandular and canalicular stages (85). This tight regulation of 
oxygen exposure during fetal development is most likely to prevent 
oxidative stress resulting from too much oxygen exposure during this 
critical period in development.

During the immediate fetal-to-neonatal transition, there is a sharp 
increase in fetal PaO2 to 70–80 mmHg as the neonate transitions to the 
21% oxygen of the ex utero environment (86). For full-term healthy 
infants, arterial oxygen saturation (SpO2) typically reaches 95% within 
10 min after birth (87). Adjustment to postnatal life comes with 
challenges in respect to this sudden change in oxygen availability, and 
there are many factors that can influence this adaptation (e.g., genetics, 
perinatal inflammation, environmental toxins, maternal diet, and NICU 
interventions). Importantly, adaptation to postnatal life for a premature 
infant presents additional challenges due to the underdeveloped nature 
of the developing lung and immature antioxidant systems.

Because the lungs are underdeveloped in premature infants, the 
ability to adequately oxygenate and ventilate is seriously impacted. 
Premature infants in the NICU are frequently administered 
supplemental oxygen, but the dose and duration of oxygen therapy has 
been under debate for many years. One reason for this debate is due 
to the difference in relative oxygen tension experienced by the fetus in 
utero compared to the ex utero environment: room air is already a 
relatively hyperoxic environment for preterm lungs. A second reason 
oxygen dose and timing has been under debate is due to the known 
detrimental effects of high O2 supplementation on the premature 
infant (discussed in subsequent sections).

Hyperoxia and the developing lung

Oxygen and BPD
While multiple factors contribute to the pathogenesis of BPD, the 

role of supplemental oxygen in alveolar simplification and subsequent 
impaired gas exchange has commanded particular attention. In 
animal models, hyperoxia exposure alone is sufficient to induce a BPD 
phenotype (compromised alveolar development and pulmonary 
vascular remodeling) (88). Animal models of BPD expose neonatal 
mice to 85–100% O2 immediately after birth, resulting in alveolar 
simplification (89, 90). Additionally, brief exposures of hyperoxia are 
sufficient to cause long-term structure/function changes in the lung, 
highlighting the importance of timing O2 exposure in accordance with 
the developmental timeline of the lung such that impact of oxidative 
stress from a brief O2 exposure can be attenuated (91).

Clinically, high levels of oxygen supplementation (80–90%) are 
now known to be hazardous during prematurity, especially in extreme 
prematurity, promoting BPD and increasing the likelihood of 
subsequent interventions. For example, high levels of supplemental 
oxygen after birth are associated with greater need for ventilatory 
support (72, 92–95). This concern was initially raised through work 
done by Saugstad and Vento (92, 96). Studies have shown that 
newborns receiving even a brief exposure to “supraphysiologic” 
oxygen during resuscitation have an increased risk of developing BPD, 
whereas resuscitation with moderate levels of oxygen (30%) resulted 
in less oxidative stress, inflammation, and incidence of BPD (67, 92). 
Furthermore, restricting the overall use of supplemental oxygen or 
implementing lower oxygen saturation targets in preterm infants has 
been found to result in less inflammation and lower rates of BPD (97).

Growing evidence of the effects of high levels of oxygen during the 
perinatal period led to modification of supplemental oxygen 
administration and clinical practice has transitioned to using 
moderate levels of oxygen in the NICU (30–60% O2) (96, 98). 
However, more recent studies have shown that even moderate levels 
of oxygen increase the risk for bronchial disease with airway 
hyperreactivity and remodeling, undoubtedly having long-lasting 
effects on airway structure and function (22, 43, 45, 99, 100). These 
changes ultimately lead to the development of asthma and reactive 
airway disease later in life. We  can consider BPD as one of the 
important risk factors during the perinatal period that contributes to 
wheezing and chronic airway diseases throughout the lifespan of 
former preterm infants.

Oxygen and reactive airway disease
Due to the established detrimental effects of high concentrations 

of supplemental oxygen, moderate levels of oxygen are more 
frequently used in practice. However, even with moderate hyperoxia, 
there are long-term effects such as increased wheezing and asthma 
and susceptibility to respiratory infections (22, 43, 45, 99, 100). 
Chronic airway diseases are characterized by airway remodeling 
(increased extracellular matrix deposition, ASM proliferation and 
hypertrophy) and airway smooth muscle hyperreactivity (101). 
Together, thickened and narrowed hypercontractile airways ultimately 
cause both fixed and dynamic airway obstruction, leading to the 
typical clinical symptoms of wheezing and bronchospasm. While 
studies of BPD have focused primarily on alveoli and the goal of 
reducing postnatal hyperoxic exposures, there remains a need to 
better understand the effects of moderate oxygen on bronchial 
airways, including the impact on airway smooth muscle 
hyperreactivity and airway remodeling.

There are notable studies demonstrating oxygen-induced effects 
on airway hyperreactivity that are independent of alveolar injury and 
show changes that vary with severity (dose and time) of oxygen 
exposure. For example, neonatal mice exposed to moderate hyperoxia 
(50%) for 4–7 days immediately after birth followed by 14–16 days of 
room air ‘recovery’ showed altered lung function (increased airway 
resistance and decreased airway compliance) during methacholine 
challenge compared to neonatal mice maintained in room air 
consistently following birth (42, 100). Importantly, in vivo mouse 
studies comparing 21, 40, and 70% hyperoxia exposures during the 
first 7 days of life followed by 14 days at room air showed a significant 
difference in airway hyperreactivity in response to methacholine 
challenge between the 40 and 70% hyperoxia groups. Neonatal mice 
exposed to moderate, 40% oxygen from birth to P7 had markedly 
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increased airway resistance (Rrs) and decreased airway compliance 
(Crs) compared to the control neonates, while neonatal mice exposed 
to 70% oxygen from birth to P7 exhibited lung function more in-line 
with the control animals (100). Furthermore, the airways of neonatal 
mice exposed to 40% oxygen from birth to P7 showed an increased 
ASM layer compared to both 21 and 70% oxygen exposure groups, 
implying a particular role for moderate hyperoxia in the pathogenesis 
of airway remodeling and hyperreactivity (100). This dose dependent 
variation in ASM proliferation has also been shown in in vitro models 
of hyperoxia exposure, with moderate (40–50%) levels of oxygen 
resulting in proliferation of developing human ASM cells while high 
levels (80–90%) of oxygen led to increased apoptosis and cell 
death (102).

Mechanisms of hyperoxic injury
Hyperoxic induced injury in the premature lung is due to ‘oxygen 

toxicity’ mediated through reactive oxygen species (ROS). 
Mechanistically, hyperoxic exposures increase ROS and have a myriad 
of downstream effects including transcriptome changes, insufficient 
antioxidant defense, mitochondrial overload and dysfunction, and 
pro-inflammatory responses (103). Each of these processes, detailed 
below, are interconnected and together contribute to hyperoxia-
induced lung injury.

Reactive oxygen species
The fetal-to-neonatal transition is naturally a period of physiologic 

oxidative stress due to the sudden increase in oxygen tension. 
Imbalanced redox environments pose a challenge for antioxidant 
systems to regain homeostasis, especially if these systems are 
underdeveloped such as in the premature infant. Increased levels of 
ROS become unmanageable and have wide-ranging downstream 
effects, including mitochondrial dysfunction, changes in gene 
expression, and inflammatory response. Notably, multiple studies 
assessing ROS in preterm infants have correlated levels of oxygen 
exposure with various oxidative stress biomarkers and development 
of airway disease. Such biomarkers include lipid peroxidation 
byproducts (92, 104), reduced glutathione (GSH)/oxidative 
glutathione (GSSG) ratio (92, 105), and protein oxidation ratio of 
o-tyrosine/phenylalanine (92). Furthermore, hyperoxia-driven ROS 
can lead to altered expression of genes involved in antioxidant systems, 
inflammation, proliferation, and cell death by regulating transcription 
factor nuclear translocation, such as HIF, Nrf2, and AP-1 (37, 93, 101, 
106–108). ROS can also more directly contribute to oxidative stress by 
driving oxidation of DNA, proteins, and lipids.

Key factors relevant to the developing lung that are activated in 
response to oxidative stress include mitogen activated pathway kinases 
(MAPK), p38, and JNK. Downstream of MAPK signaling is AP-1, a 
transcription factor involved in regulating cytokine expression, ER 
stress response, cell proliferation, and apoptosis (107, 109). A recent 
interest in ferroptosis – iron-mediated programmed cell death – is 
likely linked to oxidative stress in the developing lung, as downstream 
effects of ROS include lipid peroxidation. In fact, hyperoxia exposure 
has been shown to induce ferroptosis in a neonatal mouse model of 
hyperoxia-induced lung injury (110). In vivo studies investigating 
ferroptosis in hyperoxia-induced lung injury during the perinatal 
period are relevant to humans. Studies have shown that when mothers 
receive oxygen supplementation during labor or during elective 
cesarean section, both the infants and mothers have increased plasma 

lipid peroxidation byproducts, with neonates having higher arterial 
and venous umbilical partial pressures of oxygen (86, 111, 112). These 
emerging studies emphasize the sensitive nature of heightened O2 
exposure on oxidative stress in the developing fetus.

Antioxidant deficiencies and immature defenses
In the mature and healthy lung, antioxidant mechanisms enable 

adaptation to changes in ROS to regain redox homeostasis under 
instances of oxidative stress. However, the underdeveloped lung of the 
premature infant does not have fully mature antioxidant systems. 
Therefore, premature infants are uniquely susceptible to oxidative 
stress resulting from hyperoxia-induced lung injury due to deficiencies 
in antioxidant defenses (67, 113, 114).

The importance of established endogenous antioxidant systems 
during the neonatal period can be demonstrated in a mouse model of 
Nrf2 deficiency, in which these mice fared far worse during neonatal 
hyperoxic lung injury compared to their counterparts with Nrf2 
activation (106, 115). In fact, another study showed that adolescents 
who were born very preterm continue to exhibit markers of oxidative 
stress (8-isoprostane) in exhaled breath condensate (116), suggesting 
that effects of prematurity on antioxidant systems last long past the 
perinatal period.

In a logical therapeutic approach, antioxidant therapies have 
been tried and tested in the context of prematurity and hyperoxia 
exposure. Unfortunately, targeting antioxidant systems to decrease 
ROS overload and oxidative stress in premature infants has been 
generally unsuccessful. This has been true for studies including either 
enzymatic or non-enzymatic antioxidant approaches (e.g., targeting 
N-acetylcysteine as a precursor for de novo GSH synthesis) (117–
119), targeting superoxide dismutase (SOD) (120, 121), or 
supplementing antioxidant vitamins such as vitamins A, C, and E 
(122–125). While these failed attempts at enhancing antioxidant 
systems in prematurity are perplexing, understanding how these 
defenses develop during gestation may provide insight. During fetal 
development, expression of antioxidant enzymes (superoxide 
dismutase, catalase, glutathione peroxidase) increase dramatically 
toward the end of gestation (86, 126, 127). A similar pattern is seen 
for non-enzymatic antioxidant systems: reduced GSH, thioredoxin 
(TRx), heme-oxygenases, vitamin C, vitamine E, beta carotene, and 
transition metal chelators all increase in expression and availability 
toward the end of gestation (86, 126, 127).

The expression and upregulation of these antioxidant systems so 
close to full-term gestation puts premature infants in a particularly 
disadvantageous position. It is only days before a fetus reaches full 
gestation that these enzymatic antioxidants are upregulated and 
non-enzymatic antioxidants start crossing the placenta (128, 129). In 
preparation for the transition to a higher oxygen environment, the fetus 
begins producing its own antioxidants only immediately prior to birth, 
with another increase in these endogenous systems immediately after 
postnatal exposure to room air (128–130). The premature infant is 
therefore hit from three directions: the reliance on maternal antioxidants 
prior to birth is halted, their ability to preemptively produce antioxidants 
prior to birth is blunted, and their capacity to induce endogenous 
antioxidant responses postnatally is inhibited (128, 131).

Inflammation
It is important to note that hyperoxia-induced lung injury induces 

a profound inflammatory response (93, 132–134). This increased 
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inflammatory response is another critical contributor to ROS, airway 
remodeling, and reduced airway function caused by hyperoxia 
induced injury (101). Studies have shown that hyperoxia exposure 
drives pro-inflammatory cytokines and chemokines induced by TLR4 
agonists (135). Human studies have shown that bronchoalveolar 
lavage (BAL) specimens from preterm infants have increased 
pro-inflammatory mediators (136), and those with BPD also 
demonstrate increased mast cell and eosinophil levels (101, 137, 138).

As noted previously, perinatal infections have also been implicated 
in the development of chronic lung diseases. This raises the question 
of whether synergistic effects may occur between hyperoxia-induced 
and infection-induced inflammatory cascades. Intriguingly, findings 
have been mixed and vary with the specific model, timing, and dose 
of infectious or hyperoxia exposure. In regard to BPD models, 
multiple animal studies have demonstrated that pulmonary 
inflammation and alveolar damage are increased with the combination 
of high levels of oxygen exposure (>85%) and lipopolysaccharide 
(LPS) or other infectious exposure (95, 139, 140).

The impact of the combination of oxygen and perinatal infectious 
insults on airway disease has been more mixed. In a mouse model of 
chorioamnionitis, induced by maternal antenatal lipopolysaccharide 
(LPS) injection, pups demonstrated increased airway resistance and 
decreased compliance on pulmonary function testing at 3 weeks of age 
(132). In the control group not exposed to antenatal LPS, postnatal 
exposure of pups to 50% O2 for the first week of life also resulted in 
increased airway resistance and decreased compliance. Intriguingly, 
in a subgroup exposed to both antenatal LPS and postnatal hyperoxia, 
no synergistic effects were observed (132). Similar results were found 
in a subsequent mouse study using precision cut lung slices (PCLS) to 
assess the effects of antenatal LPS and postnatal hyperoxia (141). In 
this study, both exposures independently increased airway reactivity 
but there were again no synergistic effects noted.

Cell-type effects
Similar to the earlier note regarding effects of hyperoxia being 

dose-dependent, oxygen effects also vary based on cell type. For 
example, studies using human fetal airway smooth muscle have shown 
dose-dependent effects with moderate oxygen increasing proliferation 
and higher levels (>60%) driving apoptosis (102). Furthermore, 
studies on human fetal airway smooth muscle have shown moderate 
hyperoxia increases airway hyperreactivity via intracellular calcium 
response to bronchoconstrictor agonists (102, 142, 143). In vivo 
studies using moderate hyperoxia in a neonatal mouse model have 
demonstrated structural and functional changes similar to those seen 
in asthma and reactive airway disease: increased airway hyperreactivity 
in response to methacholine challenge as well as increased ASM 
thickness and collagen deposition in the airway (100, 132). In airway 
epithelial cells, studies have also shown negative effects of hyperoxia 
including disruption of the airway epithelial barrier and increased 
epithelial permeability as well as inflammatory infiltration and fluid 
accumulation in the lung (135).

Intermittent hypoxia and the developing 
lung

While hyperoxia has historically been associated with 
development of chronic lung diseases of prematurity, an increasing 

focus has been placed on the role of intermittent hypoxia and 
hyperoxia in recent years. Intermittent hypoxia occurs commonly in 
preterm infants due to their immature respiratory control systems that 
can lead to apnea of prematurity. Apneic episodes in preterm infants 
typically increase in frequency over the first 2–4 weeks of life, then 
stabilize and gradually decrease with increasing postnatal age (144–
146). During periods of apnea or respiratory pause, hypoxia occurs 
and may be  exacerbated by poor oxygenation due to poor gas 
exchange in the setting of lung diseases of prematurity (147–149). 
These hypoxic episodes are typically treated with supplemental 
oxygen, leading to cycles of hypoxia followed by overshoot hyperoxia. 
These cycles result in increased oxidative stress and may activate 
inflammatory cascades, leading to further compromise in alveolar and 
airway development and increasing risk for development of chronic 
lung disease.

Intermittent hypoxia and BPD
Rodent models of intermittent hypoxia have demonstrated a long-

term, deleterious impact on pulmonary function and development of 
phenotypes similar to those seen in chronic lung diseases of 
prematurity, particularly mimicking the alveolar simplification seen 
in BPD. In a preterm rat model of intermittent hypoxia, preterm rats 
were maintained on 40% oxygen with cycles of 10% oxygen (hypoxia) 
occurring four times per day (150). Rats exposed to intermittent 
hypoxia demonstrated decreased maximum expiratory flow rate and 
decreased lung compliance compared to control or constant 40% 
hyperoxia exposed mice. Pulmonary epithelial thickening and 
decreased alveoli and septi branching were noted on histology. HIF-1α 
and VEGF mRNA and protein levels were found to be increased with 
intermittent hypoxia (150). An additional study of intermittent 
hypoxia-hyperoxia in newborn mice found decreased levels of 
HIF-1α, VEGF, and angiogenic gene expression with intermittent 
hypoxia-hyperoxia as well as alveolar simplification (151). Finally, a 
rat model of intermittent hypoxia occurring during recovery from 
exposure to 60% hyperoxia resulted in decreased alveologenesis as 
well as pulmonary vascular changes similar to those seen in 
contemporary BPD (152). Indeed, clinical studies have also found that 
neonatal intermittent hypoxemia events are associated with 
development of BPD (153, 154).

Intermittent hypoxia and reactive airway disease
Fewer studies have evaluated the impact of intermittent 

hypoxia-hyperoxia on the developing airway, but initial studies 
suggest that it may result in persistent changes in airway function 
similar to those seen in reactive airway diseases. In a rat model of 
intermittent hypoxia-hyperoxia with preterm rats maintained on 
40% oxygen with intermittent hypoxia to 10% oxygen for 7–14 days, 
maximum expiratory flow rate was decreased compared to room air 
and straight hyperoxia controls. In another model, neonatal mice 
were exposed to 10-min repeating cycles of 10% oxygen for 1 min 
followed by transient exposure to 50% oxygen for 7 days. Following 
2 weeks of recovery, the intermittent hypoxia-hyperoxia mice 
demonstrated increased airway resistance with methacholine 
challenge as well as decreased baseline compliance compared with 
normoxic mice (99). Of note, no changes in alveolar or airway 
structure were found in histologic examination of this model 
implying that the effects of intermittent hypoxia-hyperoxia may also 
vary with the dose/duration of exposure.
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Mechanisms of intermittent hypoxia-hyperoxia
Most studies of intermittent hypoxia-hyperoxia focus particularly 

on changes in transcription factors termed hypoxia-inducible factors 
(HIFs, particularly HIF1-α) and vascular endothelial growth factor 
(VEGF). HIFs are integral to controlling cellular responses to hypoxia 
or low oxygen tension through modulation of hundreds of 
downstream pathways involved proliferation, cellular metabolism, 
angiogenesis, apoptosis, and extracellular matrix formation (155–
157). VEGF expression is regulated by HIF1-α. Under hypoxic 
conditions, VEGF expression increases. Prenatally, VEGF expression 
is upregulated in the hypoxic in utero environment and helps control 
normal branching morphogenesis and angiogenesis during the 
pseudoglandular and canalicular stages of fetal development (158, 
159). Postnatal disruption of VEGF signaling due to increased oxygen 
tension has been found to result in decreased alveolar growth and lead 
to alveolar simplification similar to that found in BPD (160, 161). 
Lastly, it’s important to consider length of exposure to chronic hypoxia 
or chronic hyperoxia, and intermittent hypoxia-hyperoxia transitions. 
In vitro studies have shown that there are differential effects of various 
oxygen exposures on mitochondrial structure and function in 
developing airway smooth muscle (162). Together, these findings 
emphasize that the developing lung is rather sensitive to changes in 
oxygen availability as well as the duration of these exposures.

Mechanical stretch and the 
developing lung

In addition to supplemental oxygen, preterm infants commonly 
require additional respiratory support in the form of mechanical 
ventilation or CPAP. The mechanical stretch these necessary 
interventions impose on the compliant and underdeveloped airway and 
lung may influence lung development and can result in increased risk 
of both alveolar and airway disease. The lung is an inherently 
mechanosensitive organ due to the cyclic stretch it undergoes at baseline 
during normal patterns of breathing. Also, in utero, mechanical forces 
are critical to the normal formation of the developing lung during 
embryogenesis (163). Peristaltic waves and fetal breathing movements 
provide the necessary stimuli for normal airway branching and early 
alveolar development (63, 164–167). It is therefore logical that changes 
in the mechanical forces the developing lung is exposed to would have 
bearing on long-term pulmonary health and disease.

Preterm airways have been shown to have greater compliance than 
the adult and therefore have higher susceptibility to stretch forces and 
undergo greater distention when exposed to externally imposed strain 
(168–171). While stretching of the airway is a normal process of fetal 
breathing and growth, an excessive amount may have damaging effects, 
leading to inflammatory cascades, alveolar simplification, and even 
airway hyperresponsiveness (172, 173). Both mechanical ventilation 
and CPAP impose mechanical stress on the developing lung that may 
carry implications for development of chronic lung disease.

Mechanical ventilation

Mechanical ventilation has played a critical role in improving the 
survival of preterm infants and continues to be an important form of 
respiratory support, particularly for those born extremely preterm 

(174, 175). Although a beneficial and life-saving intervention, MV 
carries risk as well. Inappropriately high tidal volumes or high levels 
of pressure support can lead to barotrauma or volutrauma and 
development of ventilator-induced lung injury (VILI) or BPD (176). 
Even short durations of high-pressure ventilation may result in the 
initiation of inflammatory cascades and increased cytokine production 
(173). Alveolar and small airway epithelium development may 
be  disrupted which can lead to acute edema and activation of 
macrophages (biotrauma) (177). Bronchopulmonary dysplasia 
development is particularly associated with need for MV. A model 
with fetal sheep showed lung inflammation characteristic of BPD after 
only 1 h and alterations in smooth muscle and epithelium at high tidal 
volume ventilation of 15 mL/kg (173). Furthermore, in a large cohort 
study of infants weighing less than 1,000 g who were intubated at birth 
it was found that the severity of BPD increased with the duration of 
mechanical ventilation (178).

Continuous positive airway pressure

In light of the known risks associated with conventional MV, 
current care has shifted toward use of non-invasive interventions such 
as nasal CPAP when possible (179). CPAP has been associated with 
reduced need for surfactant administration, decreased need for 
conventional MV, and decreased risk of BPD and death in preterm 
infants with respiratory distress syndrome (RDS) (18, 180). When 
compared to surfactant treatments, need for postnatal corticosteroids 
or intubation were also lessened with CPAP, while the rate of BPD 
stayed constant (181, 182). Despite potential improvements compared 
to conventional MV, CPAP still results in increased pressure and 
potential distention in the compliant, developing airway and the long-
term effects of this mechanical stimulus on the developing airway 
require further investigation. Initial data in animal models suggest 
that CPAP is not a completely benign therapy and may also result in 
long-term changes in airway structure and function consistent with 
reactive airway disease.

In a mouse model of neonatal CPAP, neonatal mice were exposed 
to 3-h cycles of CPAP for the first 7 days of life followed by 2 weeks of 
recovery. Lung slices taken from 8-day old mice immediately after a 
week of CPAP exposure demonstrated increased airway reactivity in 
small airways of male, but not female, mice. Both male and female 
mice demonstrated increased airway hyperreactivity to methacholine 
challenge after 2 weeks of recovery, implying a persistent impact of 
neonatal CPAP exposure on the developing airway (183). In a 
subsequent mouse study, neonatal CPAP exposure was found to 
increase expression of the extracellular calcium-sensing receptor 
(CaSR) and inhibition or knockdown of CaSR was found to blunt 
CPAP effects on airway contractility, implying one potential 
mechanism for CPAP effects on ASM (172).

The consequences of stretch have also been investigated in vitro 
through examination of the impact of stretch on ASM and fibroblast 
cells. Multiple studies have demonstrated that mature human ASM 
cells proliferate and increase migration in response to cyclic 
mechanical stretch (184–186) and cyclic mechanical stretch of 5–10% 
has also been shown to increase proliferation of human embryonic 
lung fibroblasts (187). Intriguingly, in the embryonic fibroblasts, a 
higher amplitude stretch of 15–20% decreased cell proliferation but 
increased extracellular matrix (ECM) collagen production implying a 
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potential dose–response (187). Other studies have also found that 
stretch impacts ECM deposition, remodeling, and composition. 
Mature human ASM expression and activation of matrix 
metalloproteases 1, 2, and 3 (MMPs, regulators of ECM remodeling) 
were found to be increased by mechanical stretch (184). Exposure to 
10 or 30% compressive strain increased deposition of collage II and 
collagen IV in a 3D airway model consisting of bronchial epithelial 
cells seated on a collagen matrix embedded with fibroblasts (188). In 
this model, expression and activity of MMPs 2 and 9 were also 
increased (188). While these in vitro models predominantly use cyclic 
stretch, they demonstrate the impact of changes in mechanical 
stimulation on remodeling behavior in airway cells and the 
airway ECM.

Mechanisms of stretch-induced responses

Multiple pathways have been implicated in stretch-induced 
remodeling responses in airway smooth muscle. Transforming 
growth factor-β1 (TGF-β1) has been shown to contribute to both 
airway smooth muscle hypertrophy and proliferation, potentially 
contributing to airway remodeling changes prominent in asthma 
(189, 190). Adult human airway smooth muscle cells exposed to 
12% strain for 1–24 h demonstrated increased TGF-β1 mRNA 
expression (190). This stretch-induced increase was mitigated by 
blockade of PTK, PI3K, and MEK1/2 mediated pathways. Rho/
Rho-kinase pathways have also been implicated in ASM 
hyperresponsiveness and remodeling, mediated in part through 
unidentified stretch-sensitive ion channels (190–192). In a neonatal 
mouse model of CPAP-induced airway hyperreactivity, the 
extracellular calcium-sensing receptor was found to be a potential 
mediator of CPAP-stretch induced airway hyperreactivity (172). 
CPAP exposure of neonatal mice increased CASR expression as well 
as airway reactivity to bronchoconstrictor agonists while blockade 
of CASR blunted the CPAP-induced increased in airway reactivity. 
Finally, interactions between ASM and the ECM have been shown 
to be important, with particular focus on stretch-induced changes 
in actin polymerization and cytoskeletal remodeling and 
communication with the ECM (193, 194).

While numerous pathways have been shown to contribute to 
stretch-induced remodeling and ASM hyperreactivity, the 
upstream, stretch-sensitive mechanisms underlying these stretch-
induced changes have yet to be well-elucidated. Here, increasing 
our understanding of some of the mechanosensitive channels 
present in the lung may provide new possibilities for therapeutic 
targets. Because of the intrinsic mechanosensitivity of the lung, it 
contains numerous types of mechanosensitive channels, each with 
different roles and function. A few key families of channels have 
begun to emerge as potentially relevant to reactive airway disease 
and response to stretch. Here, two families of mechanosensitive 
channels have emerged with particular relevance: transient receptor 
potential vanilloid-type channels (particularly TRPV4) and piezo 
(PZ) channels.

TRPV4 channels
TRPV4 is a mechanosensitive channel that has been found in 

airway epithelium and airway smooth muscle and has been shown to 
regulate embryonic lung development and airway tone (195–198). 

During lung development, TRPV4 helps regulate branching 
morphogenesis as well as contractility (197). TRPV4 activation causes 
Ca2+ influx that can activate pathways involved in cell proliferation and 
migration (199) and is also involved in regulation of smooth muscle 
contraction (200–202). Given the importance of TRPV4 for in utero 
lung development as well as its role in regulation of Ca2+ influx and 
mature smooth muscle cell contraction and migration, TRPV4 could 
be a potential regulator of immature, postnatal airway response to 
mechanical stretch, such as occurs with CPAP.

Piezo channels
The second family of mechanosensitive channels that warrant 

further investigation are piezo (PZ) channels. PZ channels were first 
described about a decade ago and are non-selective cation channels 
that are conserved across species and present in multiple organ 
systems (203–205). Little is known about the role of PZ channels in 
the lungs but, similar to TRPV4, both PZ1 and PZ2 have been 
found to play important roles in lung development. PZ1 is critical 
for development of normal vascular architecture with deletion of 
PZ1 disrupting pulmonary vascular development and proving 
lethal in mice (205, 206). PZ1 has also been found to play an 
important role in triggering surfactant secretion in ATI cells in 
response to stretch, triggering ATII cells through paracrine 
stimulation (207). PZ2 has also been found to be important in the 
developing lung and is crucial for adequate respiratory function and 
proper lung expansion in neonatal mice (208). Newborn mice with 
Piezo2 deficiency develop respiratory distress and death without 
respiratory support, implying an important role for PZ2 in sensing 
stretch in the immature airway (208). Better understanding of the 
role PZ channels in the developing lung is needed and could 
potentially lead to discovery of new therapeutic targets to prevent 
the long-term impact of mechanical stretch in the development of 
chronic pediatric pulmonary disease.

The intersection of oxygen and stretch

There is surprisingly little that is known about the intersection of 
supplemental oxygen and mechanical respiratory support, even 
though they are commonly administered in tandem for preterm 
infants with respiratory distress in the NICU. This is in part due to the 
independent complexity of the impact of these two therapies. As 
evidenced by the studies presented previously, both oxygen and 
stretch have differential impacts on the developing airway that vary 
greatly with the “dose” and duration of exposure. But the question that 
logically arises is whether the combination of CPAP and hyperoxia has 
a synergistic impact on the developing lung. Are their effects additive- 
or is it possible that one somehow mitigates the impact of the other? 
One study in neonatal mice found that when CPAP or moderate 
hyperoxia (40%) were administered alone to neonatal mice (P1-7) 
they developed increased airway reactivity (209). But when moderate 
hyperoxia and CPAP were administered together, this increase in 
airway reactivity no longer occurred. However, airway wall thickness 
was still increased in all three groups (209). Further investigation is 
needed to better understand how the combination of oxygen and 
mechanical stretch intersect in the developing lung and what the long-
term ramifications are for preterm infants exposed to these necessary 
and common therapies.
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Summary and conclusion

Despite numerous advances in care, preterm infants remain at 
significantly increased risk of developing chronic pulmonary diseases 
including BPD and reactive airway diseases such as wheezing and 
asthma. This increased risk stems from the fact that preterm lungs are 
underdeveloped, with poor baseline gas-exchange due to interrupted 
alveolar development. They are further ill-equipped to adapt to the 
redox stress of a hyperoxic ex utero environment due to immature 
antioxidant systems. Finally, they are also disproportionately exposed to 
additional perinatal insults including supplemental oxygen and 
mechanical respiratory support that further increase the risk of 
developing chronic lung disease. While numerous studies have shown 
the deleterious impact of high levels of oxygen on alveolar development, 
data continue to emerge on the differential impact of more moderate 
levels of oxygen exposure, particularly in regard to the risk of developing 
chronic bronchial airway disease. Similarly, little is known about the 
impact of CPAP-induced stretch on the developing lung and airway. A 
better understanding of the impact of these evolving therapies on the 
developing lung may open new avenues for novel therapies to treat or 
prevent the development of chronic pediatric lung diseases.
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