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One of the most important statistical analyses when designing animal and human

studies is the calculation of the required sample size. In this review, we define

central terms in the context of sample size determination, including mean,

standard deviation, statistical hypothesis testing, type I/II error, power, direction

of e�ect, e�ect size, expected attrition, corrected sample size, and allocation

ratio. We also provide practical examples of sample size calculations for animal

and human studies based on pilot studies, larger studies similar to the proposed

study—or if no previous studies are available—estimated magnitudes of the e�ect

size per Cohen and Sawilowsky.
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Introduction

The sample size refers to the number of patients or animals included in a study, and

it is one of the first and foremost questions to be answered when designing a human or

animal study. It is easy to understand that a sample size smaller than necessary would

result in insufficient statistical power to answer the research question and reduce the

chance of reaching statistical significance. However, the choice of the sample size also does

not necessarily mean the bigger the better. A large sample size will better represent the

population and will hence provide more accurate results. However, the increase in accuracy

will be small and clinically irrelevant after a certain point and hence not worth the effort and

cost. In some studies, an excessively large sample size would expose a more than necessary

number of patients/animals to potentially toxic procedures, which would be unethical.

Sample size determination depends on the study design and study aim. For most cases,

sample size can be determined by hypothesis testing, so that we can reject the null hypothesis

with both statistical significance and practical relevance with reasonable statistical power.

These procedures must consider the size of type I and type II errors as well as population

variance and the effect size of the outcome of interest. There also exist cases, such as opinion

surveys, in which sample size calculation usually targets an acceptably small margin of error

irrespective of statistical power, type I/II error, and effect size. We focus on the former in

this study.

Definitions

In this study, we use x1, x2, . . . ., xn to denote the n data points for a given variable, and

we mostly consider the case of a continuous variable.
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Mean and standard deviation (SD)

The mean, or the average of all values of a specific

group, x̄ =
∑n

i=1 xi/n, is a summary of location. The

SD describes the dispersion and variability of the variable

s =
√

∑n
i=1 (xi − x̄)2/(n− 1); specifically, it measures the average

deviation of the data points from the mean.

Statistical hypothesis testing

Statistical hypothesis testing is a statistical inference tool that

makes use of the data collected to determine whether there is

strong evidence to reject a certain hypothesis, which we term the

null hypothesis. Generally, the null hypothesis is a statement of

no relevant association or effect. With a null hypothesis set up, we

also have an alternative hypothesis, which supports the existence

of a relevant association or effect. In this review, we focus mainly

on the case of comparing the means of two groups. Then, the

null hypothesis is that the means of a continuous variable in two

groups are the same (µ1 = µ2). The alternative hypothesis is

that there is a non-zero difference between the group means of

the continuous variable. Depending on the null hypothesis, a test

statistic is calculated and compared to the critical value (at a given

significance level, say α = 0.05) under the null hypothesis. The test

statistic is a measure of how unlikely we observe the current data

given the null hypothesis being true. Usually, a larger test statistic

(larger in absolute value than the critical value) means that we are

more unlikely to observe the current data. Thus, we tend to accept

the alternative hypothesis.

Type I error

In statistical hypothesis testing, a type I error is the probability

of rejecting a true null hypothesis, i.e., this is a “false positive”

conclusion. This is the significance level (α) we choose to use in

statistical hypothesis testing. Common choices of α are 0.05 or 0.01.

It is worth noting that a type I error is determined prior to sample

size calculation.

Type II error and power

In contrast to the type I error, the type II error, denoted

as β , in statistical hypothesis testing refers to the probability of

failure to reject a false null hypothesis, i.e., this is a “false negative”

conclusion. The power of a statistical test (=1 – Type II error) is

the probability to detect a true association, i.e., to reject a false null

hypothesis. Common choices of β are either 0.2, 0.1, or 0.05.

Abbreviations: α, type I error; β, type II error; d, e�ect size; SD,

standard deviation.

Direction of e�ect

This refers to when to reject the null hypothesis. It is rejected in

a two-tailed test if the mean of one group is different (either higher

or lower; µ1 6= µ2) relative to the mean of another group. In a one-

tailed test, the null hypothesis is rejected if the mean of one specific

group is higher than that of the other (µ1 > µ2) but not if it is

lower. If we use a one-sided test, the critical value in the hypothesis

testing is based on the top α percentile from the distribution of the

test statistics; if we use a two-sided test, the critical value is the top α
2

percentile. Practically, a one-sided test requires a smaller required

sample size than a two-sided test (see below).

E�ect size

The effect size is a value that measures the strength of an

association that is being claimed. Thus, the effect size is closely

related to the statistical test used. For example, if we hypothesize

that there is a group difference between the means of a certain

biomarker of the disease group and the healthy group, then

Cohen’s d is a commonly used effect size defined as the difference

between two means divided by the pooled standard deviation for

the data, i.e., d =
xdisease−xhealthy

s , where s is the pooled SD s =
√

(ndisease−1)SD2
disease

+
(

nhealthy−1
)

SD2
healthy

ndisease+nhealthy−2 or in the case of equal sample

size d =
xdisease−xhealthy

√

SD2
disease

+SD2
healthy

2

. The most critical feature of effect size

is that it is not influenced by the sample size. The effect size can

usually be calculated using preliminary data observed in a smaller-

scale study or in the literature for similar studies. In practice, if

practitioners have experience with the biomarker, then it is helpful

to define a clinically relevant effect size based on experience. If there

is no historical data or experience with the biomarker at hand,

Cohen and Sawilowsky (1, 2) laid out a general rule of thumb on

the magnitudes of d = 0.01 to 2.0, with small (d = 0.2), medium

(d = 0.5), large (d = 0.8), and huge (d = 2) effect sizes (see

Supplementary material 1). When we compare the proportions in

two groups, which can also be considered as comparing means of

binary outcomes in two groups, the effect size and hence sample

size can be calculated by similar metrics designed specifically for

proportions, such as Cohen’s h or Cohen’s ω (1).

If there is another type of association or hypothesis to be used,

e.g., for comparing the means of multiple groups, a different type

of effect size should be chosen, which we will briefly discuss in a

later section.

Relating the statistical testing and sample
size calculation

In a simplified setting of ndisease = nhealthy = n, we could

roughly write the required sample size as n ≈

(

Z1− α
2
+Z1−β

d

)2

∗2

for a two-sample two-sided t-test at the significance level of α with

power 1 − β , where Z1− α
2
and Z1−β are the (1 − α

2 )-th and

(1 − β)-th percentile of a standard normal distribution (for more
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detailed calculations, see Supplementary material 2). Here, we use

approximation, so this formula may slightly underestimate the

required sample size. Then, we round up the n to the next smallest

integer. Using this simplified formula, we note a few generally true

and useful relationships: (1) The required sample size is negatively

related to the effect size, i.e., in order to detect a smaller effect size,

we need a larger sample size; (2) if we decrease the pre-set tolerated

type I (α) and type II error (β), or increase the intended power

(1− β), then the required sample size is also larger; (3) in practice,

we usually set up α, β , and effect size d and calculate the required

sample size n; however, it is also possible to set up α, β , and the

available sample size n, calculate the detectable effect size d, and

compare this detectable effect size to the clinically or practically

relevant effect size.

Expected attrition and corrected sample
size

The calculated required sample size is the minimum number

needed to achieve the pre-set parameters. In practice, there is

oftentimes dropout throughout the study period. For example, if

we expect a 10% dropout or attrition rate, then our final corrected

sample size will be the minimum required sample size divided by

0.9= 90% (=100%−10%).

Allocation ratio

Although random assignment to experimental groups in

animals or treatment arms in humans on a 1:1 basis has long

been the standard (3), alternative allocation ratios such as 2:1 or

3:1 might be employed, where two or three individuals receive

a drug for each individual enrolled receiving a placebo. This

is usually done in humans to improve overall enrollment given

patient demand to increase their likelihood to receive a study drug,

or these alternative allocation ratios might be employed to learn

more about the pharmacokinetics and adverse effects of a drug (4).

However, a 2:1 allocation ratio requires 12% more subjects, and a

3:1 allocation ratio requires 33%more subjects than a 1:1 allocation

ratio to detect the same size effect with equivalent power (3) (also

see Supplementary material 2 for justification).

Other types of tests and power calculation

For the discussions above, we mainly focused on comparing

the means of the two groups. If we have other scientific questions,

e.g., comparing the means of a continuous variable in more

than two groups, investigating the association between two

continuous variables, and exploring the explained variance in

multiple regression, then the corresponding tests we use are the

F test for analysis of variance (ANOVA), the Z test for Pearson

correlation coefficient, and the F test based on the R2 of a multiple

regression model. The corresponding effect sizes for the F test

and Pearson correlation coefficient are Cohen’s f2 and the Pearson

correlation coefficient R, respectively (5). We can develop similar

formulas for calculating the required sample size to detect the given

effect sizes.

Software

There is a multitude of appropriate programs to calculate

sample sizes, including G∗Power (6), R statistical software (7),

Epitools (8), OpenEpi (9), and Biomath (10). A simple and intuitive

program is G∗Power (6), which we will use below to illustrate

our animal and human examples of sample size calculation. As an

alternative, we will provide the R codes (7) for the same calculations

in Supplementary material 3.

Animal studies

In this section, we will provide practical examples of sample

size calculation for animal studies. In order to estimate the sample

size for an animal study, one of the more difficult components

is to determine the effect size. The effect size depends on the

respective outcome the researcher wants to examine. For example,

in a mouse model of Western diet-induced liver disease, one of the

more important outcomes is the liver triglyceride concentration

(11). If a researcher aims to investigate the effect of a drug, e.g., a

bile acid binder, on diet-induced liver disease, he/she can attempt

to extrapolate outcomes—and hence the expected effect size—

from a study similar to his/her proposed project. The bile acid

binder colesevelam decreases the hepatic triglyceride concentration

to 143.26 mg/g liver weight (standard deviation [SD] 54.50 mg/g)

in mice after Western diet feeding compared with 192.84 mg/g

(SD 48.90 mg/g) in the Western diet-fed group not treated with

the bile acid sequestrant (11). The effect size can be calculated

with G∗Power (6), other software, or manually (1): Cohen’s d =
xwestern diet − xwestern diet plus colesevelam

√

SD2
western diet

+ SD2
western diet plus colesevelam

2

= 192.84 − 143.26
√

48.92+54.52

2

= 0.96

(Figure 1A). With a two-tailed calculation and an effect size of

0.96, type I error of 0.05, power of 0.8, and an allocation ratio

of 1:1, the raw sample size per group of the proposed new bile

acid binder experiment is 19, and—with an attrition of 10%—the

corrected sample size per group is 22 (19/0.9=21.11) (Figure 1A).

However, if another outcome is being chosen, such as markers for

liver inflammation, e.g., gene expression of tumor necrosis factor

(TNF), with 1.65 relative units (SD 0.85) in the colesevelam-treated

group vs. the untreated group with 3.37 (SD 1.59), the effect size is

much higher at 1.35, resulting in a lower sample size of 10 per group

(Figure 1B) and a corrected sample size of 12 per group to account

for 10% expected attrition (10/0.9 = 11.11). This shows that the

calculated sample size depends markedly on the selected outcome

variable. Furthermore, decreasing the tolerated type I error (e.g.,

from 0.05 to 0.01) or increasing the power (e.g., from 0.8 to 0.95)

increases the required sample size per group (e.g., from 10 to 15 or

from 10 to 16, respectively, Figures 1C, D).

In addition to extrapolating expected results to similar

experimental environments, calculating the sample for a larger

experiment based on a pilot experiment with a small sample size

can also be done. If a pilot experiment over 9 months showed that a

certain drug decreased the tumor growth in five rats (4, 3, 6, 4, and
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FIGURE 1

Sample size calculations for select animal studies using G*Power. (A) Sample size calculation based on hepatic triglyceride concentration in

colesevelam-treated and Western diet-fed mice with type I error of 0.05 and power of 0.8. (B–D) Sample size calculation based on gene expression

of inflammatory marker tumor necrosis factor (TNF) in the liver in colesevelam-treated and Western diet-fed mice with (B) type I error of 0.05 and

power of 0.8, (C) type I error of 0.01 and power of 0.8, or (D) type I error of 0.05 and power of 0.95.

4 tumors/rat respectively; mean 4.2 tumors/rat, SD 1.10) versus five

control rats (6, 5, 4, 7, 5 tumors/rat, respectively; mean 5.4, SD 1.14,

p = 0.13 Student’s t-test), the effect size is 1.07, and the calculated

total sample size for a larger experiment is 15 rats per group using

a two-tailed analysis. In this case, a one-tailed analysis could also

be used, since the pilot experiment suggests that the drug might

be protective against tumor growth and the follow-up experiment

would focus rather on whether the drug truly significantly reduces
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FIGURE 2

Sample size calculations for select human studies using G*Power. (A) Sample size calculations based on expected proportions of response for

rifaximin vs. placebo in irritable bowel syndrome with type I error of 0.05 and power of 0.95. (B) Sample size calculations based on the expected

incidence of postoperative acute kidney injury with dexmedetomidine infusion vs. placebo with type I error of 0.05 and power of 0.8.

the tumor burden relative to controls and not as well whether

controls will have a significantly lower tumor burden than the drug

group. The calculated sample size per group would be 12 rats per

one-tailed analysis, potentially markedly decreasing the costs for

maintenance of the rodents over long experimental periods such as

9 months compared with 15 rats per group per two-tailed analysis

(prior to correcting for attrition).

Animal models oftentimes include four groups (12–14), two of

which might be on a special diet (or have a specific genotype), and

the other two groups are on a control diet (or are wild-type mice,

etc.). Furthermore, one group of the special diet groups and one

group of the control diet groups might then be treated with a drug,

and the other two groups are not. It is of major interest to know

if the drug improves a certain disease induced by the special diet

compared with the other group fed the special diet but not treated

with the drug. However, the question might sometimes be posed

by reviewers of submitted manuscripts or grants what the most

appropriate sample size of the control animals is, that is, the two

groups on the control diet, which are not of primary interest. Many

articles commonly use five rodents only or even fewer for those

control groups, in particular in those rodent models that cause a

stark disease phenotype due to a special diet or genotype or similar

conditions (13, 15–18). A mouse model of high-fat diet-induced

obesity might serve as an example, in which mice gained 15.75 g on

average over 16 weeks on a high-fat diet (SD 7.63) vs. 2.5 g (SD 2.65)

in control mice on a control diet (17). The estimated uncorrected

sample size in the control group would be 3 and 9 in the high-fat

diet group using a 3:1 allocation ratio and a two-tailed analysis.

A one-tailed analysis would provide an uncorrected sample size

of 2 in the control group and 6 in the high-fat diet group using a

3:1 allocation ratio. Clear phenotypes can be achieved with rodent

models of diet-inducedmetabolic diseases including type 2 diabetes

(19) or non-alcoholic steatohepatitis (20) as well as chemically

induced diseases [e.g., dextran sulfate sodium-induced colitis (21)]

or (at least partially) genetic diseases [such as Alzheimer’s disease

(18) or autism (22)]. In instances like these with established rodent

models and distinct phenotypes, untreated control groups of five or

fewer rodents are acceptable with or without power calculations as

it is rather of primary interest if an intervention (such as a drug)

changes the phenotype in the experimental group compared with

an experimental group without the drug. On the other hand, it is of

utmost importance that a power calculation be carried out for these

experimental groups, as described above.

Human studies

The sample size can be calculated for human studies

analogous to mouse studies. For example, drug A may decrease

the inflammatory marker fecal calprotectin in humans with

inflammatory bowel disease by 170 mcg/g (standard deviation 150

mcg/g) vs. 90 mcg/g (SD 100 mcg/g) in the placebo group in a small

pilot. The effect size will be 0.63 with 0.05 type I error, 95% power,

and 1:1 allocation ratio, and this will require 67 subjects per group

(or 75 subjects after accounting for 10% attrition) for the larger

randomized controlled trial. However, it can be difficult to calculate

the effect size in human studies if no pilot studies have been done.

In those cases, one can usually estimate effect sizes as small (d =

0.2), medium (d = 0.5), or large (d = 0.8), as suggested by Cohen

and Sawilowsky (1, 2). This also highlights that the effect sizes in

human studies are usually much smaller, and the sample sizes are

usually much larger than in animal studies (the aim for effect sizes

in animal studies is generally >1.0, see above).
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However, proportions are more commonly used to calculate

sample sizes in human studies (23–25). In a human trial

of rifaximin in irritable bowel syndrome, the sample size

was calculated using the difference between two independent

proportions (23). An improvement was estimated a priori in 55%

of the rifaximin group and in 40% of the placebo group, which

with 95% power and a significance level of 0.05 would require

∼300 subjects per group (23), or more accurately 286 subjects per

group per z test (Figure 2A), plus 16 or 32 subjects per group

corrected for 5% or 10% attrition (286/0.95 = 301.05 or 286/0.9

= 317.78), respectively. Effect sizes and proposed sample sizes

can be arbitrary in human studies (26). However, as described

above, it is recommended to base estimates on smaller pilot studies

investigating the same drug or larger randomized controlled trials

scrutinizing a similar drug in the same clinical context or the

same drug in a slightly different clinical context. For example, a

human study examined the effect of dexmedetomidine on acute

kidney injury after aortic surgery (25), basing the estimated 54%

incidence of postoperative acute kidney injury on a prior study (27)

and estimating that the dexmedetomidine infusion would decrease

the incidence of postoperative acute kidney injury by half to 27%

similar to a study on acute kidney injury following valvular heart

surgery (28). These proportions with a statistical power of 80%

and type I error of 0.05 provide a sample size of 51 subjects per

group (Figure 2B) or 54 subjects per group after correcting for 5%

attrition (25).

Conclusion

In conclusion, the appropriate calculation of the required

sample size is central when designing animal or human studies for a

variety of reasons, such as ethical considerations, decreasing costs,

time, effort, and the use of other resources.
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