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Background: Acute kidney injury (AKI) is a common and important complication

in patients with gastrointestinal bleeding who are admitted to the intensive care

unit. The present study proposes an artificial intelligence solution for acute kidney

injury prediction in patients with gastrointestinal bleeding admitted to the intensive

care unit.

Methods: Data were collected from the eICU Collaborative Research Database

(eICU-CRD) and Medical Information Mart for Intensive Care-IV (MIMIC-IV)

database. The prediction model was developed using the extreme gradient

boosting (XGBoost) model. The area under the receiver operating characteristic

curve, accuracy, precision, area under the precision–recall curve (AUC-PR), and

F1 score were used to evaluate the predictive performance of each model.

Results: Logistic regression, XGBoost, and XGBoost with severity scores were

used to predict acute kidney injury risk using all features. The XGBoost-based

acute kidney injury predictive models including XGBoost and XGBoost+severity

scores model showed greater accuracy, recall, precision AUC, AUC-PR, and F1

score compared to logistic regression.

Conclusion: The XGBoost model obtained better risk prediction for acute kidney

injury in patients with gastrointestinal bleeding admitted to the intensive care unit

than the traditional logistic regression model, suggesting that machine learning

(ML) techniques have the potential to improve the development and validation

of predictive models in patients with gastrointestinal bleeding admitted to the

intensive care unit.
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Introduction

Acute kidney injury (AKI) is a common morbidity with a high incidence in patients

admitted to the intensive care unit (ICU). It is associated with significant mortality, and a

considerable proportion of patients develop AKI that progresses to chronic kidney disease

(1–3). AKI has often been reported to occur in patients with gastrointestinal bleeding

(GIB), especially those admitted to the ICU due to massive blood loss, leading to renal

hypoperfusion secondary to intravascular volume depletion and eventually AKI (4, 5). AKI

has been reported to develop in 1–11.4% of patients with acute GIB (6, 7). A systematic
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review aimed to explore the incidence and mortality of renal

dysfunction in cirrhotic patients with acute GIB revealed that the

pooled incidence of AKI was 25% (8).

For critically ill patients with GIB concomitant with AKI,

hospitalization times may be prolonged, and costs will greatly

increase, bringing a heavy burden to the medical system (9–

11). Approximately 20% of patients with severe GIB and new-

onset AKI can restore normal renal function if appropriate and

effective interventions are performed on time (12). However,

the lack of early prediction tools for AKI is a major challenge

for ICU clinicians. Early recognition, risk assessment, and care

for AKI can improve clinical outcomes and reduce the high

healthcare costs of these patients. To assist physicians with

risk assessment of AKI, various prediction models have been

developed across various patient populations with varying degrees

of predictive accuracy.

Models being built using machine learning (ML), which are

mathematical models to make decisions and predictions based

on datasets, have become popular, and ML techniques have been

widely used clinically for prognosis prediction, including AKI

(13). ML has shown better performance and low error rates in

predicting clinical outcomes compared to traditional prediction

tools such as logistic regression and Cox regression analysis.

Moreover, ML has been widely used clinically to predict survival

(14). Extreme gradient boosting (XGBoost) is recognized as a more

advanced ML algorithm with much higher prediction accuracy and

operation efficiency and has been widely applied for diagnosis and

prognostic prediction (15). Recently, the use of ML models for AKI

prediction has been rapidly growing in different clinical settings.

Yue et al. reported that the XGBoost model had the best predictive

performance for AKI in critically ill patients with sepsis (16). Zhang

et al. evaluated five machine learning methods including XGBoost,

adaptive boosting, random forest, logistic regression, and multi-

layer perception to develop AKI risk prediction models in critical

care patients with acute cerebrovascular disease and found that the

XGBoost model was better at predicting AKI risk in patients with

acute cerebrovascular disease than other models (17). However, the

efficacy of XGBoost in predicting AKI in critically ill patients with

GIB remains unclear.

This study aimed to use XGBoost to construct a predictive

model to evaluate AKI risk in critically ill patients with GIB and

use the publicly available eICU Collaborative Research Database

(eICU-CRD) as a data source for the training cohort and the

Medical Information Mart for Intensive Care-IV (MIMIC-IV)

database as a data source for the validation cohort. This study

Abbreviations: AKI, acute kidney injury; ICU, intensive care unit; GIB,

gastrointestinal bleeding; ML, machine learning; eICU-CRD, eICU

Collaborative Research Database; MIMIC-IV, Medical Information Mart

for Intensive Care-IV; SOFA, sequential organ failure assessment; OASIS,

Oxford Acute Severity of Illness Score; APSIII, acute physiology score

III; AUC, area under the receiver operating characteristic; SHAP, shapely

additive explanation; DCA, decision curve analysis; NB, Naïve Bayes; RF,

random forest; SVM, support vector machine; LR, logistic regression; CNN,

convolutional neural network; GB, gradient boosting; MLP, multi-layer

perceptron; SBP, systolic blood pressure; DBP, diastolic blood pressure; INR,

international normalized ratio.

explored the accuracy of XGBoost for the construction of AKI

prediction models and the extraction of important features.

Furthermore, a shapely additive explanation (SHAP) analysis was

used to reveal the influence of the major factors and provide

comprehensive explanations of their quantitative impacts on

output. In addition, the XGBoost model was compared with the

traditional logistic model and score systems commonly used in the

ICU, including the Oxford Acute Severity of Illness Score (OASIS),

sequential organ failure assessment (SOFA), and acute physiology

score III (APS III). The present study would provide a reference

for an XGBoost-based clinical decision support system to aid the

early prediction of AKI in patients with GIB admitted to the

ICU setting.

Methods

Data source

All data were extracted from the eICU-CRD (18) and

MIMIC-IV version 1.0 databases (19). The MIMIC-IV contains

comprehensive and high-quality data of 524,520 admissions

(including 257,366 patients) admitted to intensive care units

(ICUs) at the Beth Israel Deaconess Medical Center during 2008–

2019. The eICU-CRD covered 200,859 ICU admissions (including

139,367 patients) between 2014 and 2015 at 208 hospitals in the

United States. The research use of these databases was approved

by the institutional review board of the Massachusetts Institute

of Technology. All procedures were performed in accordance

with the ethical standards of the Declaration of Helsinki and its

later amendments or comparable ethical standards. We obtained

permission to extract data from theMIMIC-IV database and eICU-

CRD database.

Cohort selection

GIB was defined according to the European Society of

Gastrointestinal Endoscopy guideline (20, 21); AKI was diagnosed

according to the KDIGO-AKI criteria based on serum creatinine in

the first 48 h of ICU admission (22).

Patients with one of the following conditions were excluded:

(1) an age of <18 years at first admission to the ICU, (2) a

hospital stay of <48 h, (3) >70% of personal data missing, (4)

repeated ICU admissions, and (5) a history of end-stage renal

disease (ESRD). Finally, 6,679 patients with eICU-CRD and 2,968

patients with MIMIC-IV were included in this study. Moreover,

patients from the eICU-CRD were randomly divided into training

(n = 5,679) and internal validation cohorts (n = 1,000) at a

ratio of 7:3. Patients from MIMIC-IV (n = 2,968) were used

as an external validation set. A detailed flowchart is shown in

Figure 1.

Data collection and outcomes

Baseline characteristics and admission information, including

age, sex, body mass index, bleeding site, comorbidities, severity
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FIGURE 1

The flow chart of this study.

score, and drug usage, were recorded. Initial vital signs and

laboratory results were also measured during the first 24 h of ICU

admission (19).

The primary outcome was AKI based on the KDIGO guidelines

for serum creatinine within 48 h.

Statistical analysis

For all continuous covariates, the mean values and standard

deviations were reported, and categorical data were expressed

as frequency (percentage). The chi-square test or Fisher’s

exact test was performed to compare differences between

groups. Baseline characteristics were reported as training and

validation cohorts. Baseline characteristics were compared

using R software version 4.1.0. A P-value of <0.05 was

considered statistically significant. Modeling was performed

using Python 3.6.4.

AKI prediction model

Logistic regression, XGBoost, and XGBoost+severity scores

(SOFA, OASIS, and APS III) were applied to build the prediction

models. The XGBoost model was used as previously reported

(23, 24). Moreover, all the machine-learning algorithms were

implemented using the “sklearn” machine-learning library of

Python programming software. The detailed XGBoost parameters

are shown in Supplementary Table 1. The framework of the

prediction models is illustrated in Figure 2.

Performance evaluation

To assess and compare the predictive accuracy of XGBoost,

XGBoost+severity scores, and logistic regression models, each

model was assessed according to precision, recall, accuracy,

F1 score, area under the receiver operating characteristic
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FIGURE 2

Framework of the prediction models.

(AUC) curve, and area under precision–recall curve (AUC-

PR) (25).

Shapely additive explanation (SHAP)
analysis

To further analyze the positive and negative effects of the

important features identified for AKI prediction and investigate the

relationship between them, a SHAP analysis was performed using

Python 3.7.0. The SHAP value is the assigned predicted value for

each feature of the data (26).

Results

Baseline characteristics

The incidence rate of AKI was 15.0% in the training cohort,

13.7% in the internal validation cohort, and 30.7% in the external

validation cohort. Table 1 shows the baseline characteristics of all

patients in the training, internal validation, and external validation

cohorts, as classified by NAKI and AKI.

Variable selection

The importance matrix plot for the XGBoost model is

shown in Figure 3, revealing the top 15 most important

variables that contribute to the model. Bilirubin (max) was

the most important predictor variable for all prediction

horizons, followed closely by bicarbonate (min), renal

replacement therapy (RRT), mechanical ventilation, and bilirubin

(first time).

Model performance

Three models, logistic regression, XGBoost, and

XGBoost+severity scores, were used to predict AKI risk using all

features. The accuracy, recall, precision, F1 score, AUC-PR, and

AUC of XGBoost were higher than those of the logistic regression

model. When XGBoost+severity scores (SOFA, OASIS, and APS

III) were used, this model exhibited the best predictive ability

compared to the XGBoost model only, as well as the logistic

regression model with the highest accuracy, recall, precision, F1

score, AUC-PR, and AUC in the training cohort. The results in

the internal and external validation cohorts were similar to the

Frontiers inMedicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2023.1221602
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Shi et al. 10.3389/fmed.2023.1221602

TABLE 1 Comparisons of baseline characteristics in all cohorts.

Characteristics Training cohort Internal validation cohort External validation cohort

NAKI AKI P-value NAKI AKI P-value NAKI AKI P-value

N 5,679 1,000 - 2,471 393 - 2,056 912 -

Age, years old 67.0± 15.4 66.4± 15.0 0.260 67.2± 14.9 65.7± 14.5 0.065 65.7± 16.3 63.2± 15.7 <0.001

Gender, male, n (%) 2,516 (44.3) 356 (35.6) <0.001 1,071 (43.3) 152 (38.7) 0.093 816 (39.7) 348 (38.0) 0.431

BMI, kg/m2 28.1± 7.9 28.7± 8.2 0.487 28.6± 7.6 29.1± 8.2 0.303 27.3± 8.1 28.7± 8.6 <0.001

Bleeding site, n (%) 0.028 0.629 0.183

Upper 2,110 (37.2) 374 (37.4) 920 (37.2) 153 (38.9) 867 (42.2) 384 (42.1)

Lower 1,398 (24.6) 210 (21.0) 613 (24.8) 89 (22.6) 475 (23.1) 236 (25.9)

Unspecified 2,171 (38.2) 416 (41.6) 938 (38.0) 151 (38.4) 714 (34.7) 292 (32.0)

Interventions, n (%)

MV 1,400 (24.7) 539 (53.9) <0.001 656 (26.5) 220 (56.0) <0.001 626 (30.4) 585 (64.1) <0.001

RRT 104 (1.8) 165 (16.5) <0.001 34 (1.4) 68 (17.3) <0.001 29 (1.4) 167 (18.3) <0.001

Vasopressors 634 (11.2) 308 (30.8) <0.001 299 (12.1) 120 (30.5) <0.001 407 (19.8) 515 (56.5) <0.001

Comorbidities, n (%)

Hypertension 3,014 (53.1) 548 (54.8) 0.329 1,350 (54.6) 213 (54.2) 0.915 667 (32.4) 200 (21.9) <0.001

Diabetes 1,540 (27.1) 321 (32.1) 0.001 653 (26.4) 128 (32.6) 0.013 607 (29.5) 287 (31.5) 0.306

Chronic kidney disease 599 (10.5) 252 (25.2) <0.001 267 (10.8) 96 (24.4) <0.001 420 (20.4) 239 (26.2) <0.001

Coronary artery disease 661 (11.6) 143 (14.3) 0.020 305 (12.3) 51 (13.0) 0.786 497 (24.2) 235 (25.8) 0.377

Congestive heart failure 782 (13.8) 188 (18.8) <0.001 349 (14.1) 65 (16.5) 0.235 561 (27.3) 308 (33.8) <0.001

Atrial fibrillation 854 (15.4) 146 (14.6) 0.757 339 (13.7) 55 (14.0) 0.945 506 (24.6) 265 (29.1) 0.012

Valvular disease 302 (5.3) 53 (5.3) 1.000 121 (4.9) 26 (6.6) 0.190 283 (13.8) 143 (15.7) 0.188

Arrhythmias 895 (15.8) 153 (15.3) 0.748 358 (14.5) 58 (14.8) 0.949 746 (36.3) 384 (42.1) 0.003

Liver disease 747 (13.2) 158 (15.8) 0.027 328 (13.3) 56 (14.2) 0.655 768 (37.4) 485 (53.2) <0.001

CCI, points 4.4± 0.7 4.8± 0.9 <0.001 4.4±0.9 4.6±1.0 0.154 6.3± 2.9 6.9± 2.9 <0.001

Drugs usage, n (%)

ACEI/ARB 553 (9.7) 103 (10.3) 0.622 273 (11.0) 44 (11.2) 1.000 431 (21.0) 179 (19.6) 0.434

β blockers 1,724 (30.4) 354 (35.4) 0.002 763 (30.9) 141 (35.9) 0.055 1,145 (55.7) 557 (61.1) 0.007

CCB 406 (7.1) 89 (8.9) 0.060 171 (6.9) 35 (8.9) 0.190 237 (11.5) 120 (13.2) 0.231

Diuretic 1,660 (29.2) 423 (42.3) <0.001 773 (31.3) 150 (38.2) 0.008 1,057 (51.4) 691 (75.8) <0.001

Statin 775 (13.6) 154 (15.4) 0.153 378 (15.3) 57 (14.5) 0.754 703 (34.2) 289 (31.7) 0.196

Aspirin 778 (13.7) 202 (20.2) <0.001 358 (14.5) 90 (22.9) <0.001 595 (28.9) 316 (34.6) 0.002

PPI 3,750 (66.0) 652 (65.2) 0.634 1,644 (66.5) 254 (64.6) 0.495 1,963 (95.5) 886 (97.1) 0.041

Score system, points

SOFA 3.2± 0.7 6.6± 1.9 <0.001 3.3± 0.8 6.6± 1.0 <0.001 4.8± 1.5 9.4± 2.8 <0.001

OASIS 21.5± 9.1 29.1± 11.6 <0.001 21.5± 9.0 28.9± 11.9 <0.001 30.6± 8.5 37.6± 9.6 <0.001

APSIII 35.7± 13.4 49.7± 12.7 <0.001 35.8± 13.9 49.5± 14.5 <0.001 46.6± 20.0 72.9± 28.2 <0.001

Laboratory values

MAP_first (mmHg) 80.6± 17.7 78.6± 20.0 0.001 81.0 (17.8) 77.9 (18.4) 0.001 82.3± 17.1 78.7± 18.9 <0.001

MAP_min (mmHg) 61.8± 13.3 56.2± 14.2 <0.001 62.1± 13.5 60.0± 14.7 <0.001 59.5± 13.3 54.1± 13.6 <0.001

(Continued)
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TABLE 1 (Continued)

Characteristics Training cohort Internal validation cohort External validation cohort

NAKI AKI P-value NAKI AKI P-value NAKI AKI P-value

MAP_max (mmHg) 108.8± 18.8 109.3± 21.2 0.410 108.0± 18.6 109.5± 21.6 0.135 103.5± 22.2 104.5± 29.3 0.358

WBC_first (109/L) 11.7± 4.5 13.2± 4.9 <0.001 11.8± 4.1 12.8± 5.4 0.220 10.5± 4.3 12.9± 5.7 <0.001

WBC_min (109/L) 9.7± 4.5 11.0± 4.8 <0.001 9.7± 3.8 10.3± 4.2 0.168 8.9± 4.4 11.8± 4.6 <0.001

WBC_max (109/L) 12.9± 4.9 17.4± 5.8 <0.001 13.0± 5.7 16.5± 6.6 <0.001 12.3± 4.6 17.4± 5.0 <0.001

HGB_first (mg/dL) 9.3± 2.9 9.7± 2.8 <0.001 9.2± 2.8 10.0± 2.9 <0.001 9.5± 2.2 9.8± 2.3 0.002

HGB_min (mg/dL) 8.1± 2.3 8.1± 2.3 0.991 8.1± 2.2 8.2± 2.4 0.155 8.5± 2.1 8.4± 2.1 0.092

HGB_max (mg/dL) 10.3± 2.2 10.9± 2.3 <0.001 10.2± 2.1 11.0± 2.3 <0.001 10.1± 2.0 10.3± 2.1 0.053

HCT_first (%) 28.4± 8.4 29.6± 8.4 <0.001 28.1± 8.1 30.4± 8.6 <0.001 28.8± 6.5 29.8± 6.9 <0.001

HCT_min (%) 24.7± 6.7 24.7± 7.0 0.854 24.6± 6.5 25.1± 7.2 0.148 25.5± 5.8 25.2± 6.1 0.229

HCT_max (%) 31.2± 6.5 32.8± 6.9 <0.001 30.8± 6.3 33.2± 6.9 <0.001 31.1± 5.8 31.4± 6.2 0.219

PLT_first (109/L) 220.6± 83.8 211.4± 70.8 0.032 218.7± 80.1 207.8± 78.7 0.096 191.3± 72.2 179.3± 71.8 0.013

PLT_min (109/L) 176.5± 70.3 158.7± 73.4 <0.001 177.9± 69.1 158.4± 67.0 <0.001 168.4± 71.4 151.7± 72.0 <0.001

PLT_max (109/L) 225.3± 83.6 229.7± 88.9 0.312 224.2± 89.2 225.0± 89.4 0.904 214.4± 83.6 207.9± 88.1 0.256

Albumin_first (g/dL) 3.1± 0.6 2.7± 0.6 <0.001 3.0± 0.7 2.7± 0.7 <0.001 3.0± 0.6 2.9± 0.6 <0.001

Albumin_min (g/dL) 2.7± 0.6 2.4± 0.5 <0.001 2.7± 0.6 2.4± 0.7 <0.001 3.0± 0.6 2.8± 0.7 <0.001

Albumin_max (g/dL) 3.1± 0.7 2.8± 0.6 <0.001 3.1± 0.7 2.8± 0.7 <0.001 3.1± 0.6 3.0± 0.7 <0.001

Bilirubin_first (mg/dL) 1.3± 0.5 2.4± 0.6 <0.001 1.4± 0.5 2.8± 0.7 <0.001 2.2± 0.8 5.2± 2.4 <0.001

Bilirubin_min (mg/dL) 1.2± 0.4 2.2± 0.6 <0.001 1.3± 0.4 2.6± 0.6 <0.001 2.1± 0.9 5.5± 1.6 <0.001

Bilirubin_max (mg/dL) 1.5± 0.5 2.9± 0.7 <0.001 1.6± 0.5 3.3± 1.0 <0.001 2.4± 0.9 6.4± 2.6 <0.001

Bicarbonate_first

(mEq/dL)

23.6± 5.0 22.4± 6.0 <0.001 23.7± 4.7 22.4± 6.1 <0.001 22.9± 4.6 21.5± 5.3 <0.001

Bicarbonate_min

(mEq/dL)

22.5± 4.8 19.4± 6.0 <0.001 22.6± 4.6 19.6± 5.9 <0.001 21.8± 4.7 19.1± 5.7 <0.001

Bicarbonate_max

(mEq/dL)

25.0± 4.4 24.7± 5.1 0.033 25.0± 4.2 24.8± 5.6 0.500 24.4± 4.2 23.0± 5.1 <0.001

Anion gap_first, mEq/L 11.6± 5.0 13.1± 6.0 <0.001 11.3± 4.1 12.9± 4.9 <0.001 14.4± 4.7 16.3± 5.5 <0.001

Anion gap_min, mEq/L 9.1± 3.7 10.2± 4.3 <0.001 9.0± 3.6 10.0± 4.6 <0.001 12.3± 3.2 14.3± 4.6 <0.001

Anion gap_max, mEq/L 12.2± 5.0 15.2± 6.3 <0.001 11.9± 4.9 14.7± 5.7 <0.001 15.9± 5.4 19.1± 6.2 <0.001

BUN_first (mg/dL) 35.7± 9.6 40.5± 9.8 <0.001 35.4± 9.1 39.7± 10.7 0.005 31.6± 9.3 36.6± 9.5 <0.001

BUN_min (mg/dL) 30.5± 9.2 35.5± 10.2 <0.001 30.3± 8.8 33.9± 10.7 0.006 27.9± 9.5 39.4± 9.3 <0.001

BUN_max (mg/dL) 37.2± 10.3 49.6± 12.2 <0.001 36.6± 9.4 49.1± 14.5 <0.001 33.3± 9.2 47.1± 9.7 <0.001

SCr_first (mg/dL) 1.4± 0.3 2.3± 0.7 <0.001 1.4± 0.4 2.3± 0.6 <0.001 1.3± 0.4 1.9± 0.6 0.005

SCr_min (mg/dL) 1.2± 0.3 2.0± 0.6 <0.001 1.2± 0.3 2.0± 0.5 <0.001 1.1± 0.4 1.8± 0.5 <0.001

SCr_max (mg/dL) 1.4± 0.4 2.8± 0.9 <0.001 1.4± 0.4 2.8± 1.0 <0.001 1.3± 0.3 2.2± 0.7 <0.001

GLU_first (mg/dL) 152.9± 65.4 166.5± 68.7 <0.001 153.9± 66.1 158.5± 68.2 0.422 139.1± 67.0 147.2± 69.1 0.009

GLU_min (mg/dL) 118.6± 45.5 114.4± 45.5 0.006 118.3± 34.4 115.8± 39.5 0.316 114.1± 39.2 117.6± 45.0 0.045

(Continued)
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TABLE 1 (Continued)

Characteristics Training cohort Internal validation cohort External validation cohort

NAKI AKI P-value NAKI AKI P-value NAKI AKI P-value

GLU_max (mg/dL) 164.3± 88.2 204.2± 93.8 <0.001 164.6± 78.4 194.6± 93.5 <0.001 166.7± 72.9 199.2± 73.0 <0.001

Potassium_first

(mmol/L)

4.2± 0.7 4.4± 0.9 <0.001 4.2± 0.7 4.4± 1.0 <0.001 4.2± 0.8 4.3± 0.9 <0.001

Potassium_min

(mmol/L)

3.8± 0.6 3.9± 0.7 0.867 3.9± 0.6 3.9± 0.7 0.763 3.9± 0.6 4.0± 0.7 <0.001

Potassium_max

(mmol/L)

4.4± 0.7 4.9± 0.9 <0.001 4.3± 0.7 4.9± 1.0 <0.001 4.5± 0.8 4.8± 1.0 <0.001

Sodium_first (mmol/L) 137.8± 5.4 137.0± 6.4 <0.001 138.0± 5.2 137.3± 6.4 0.015 138.6± 5.3 136.8± 6.6 <0.001

Sodium_min (mmol/L) 137.3± 5.4 135.6± 6.1 <0.001 137.4± 5.1 135.6± 6.2 <0.001 137.3± 5.1 135.5± 6.2 <0.001

Sodium_max (mmol/L) 140.1± 4.9 140.7± 6.2 0.002 140.2± 4.8 140.8± 6.2 0.020 140.3± 4.9 139.6± 6.1 0.001

NAKI, no acute kidney injury, MV, mechanical ventilation, RRT, renal replacement therapy, CCI, Charlson comorbidity index, ACEI/ARB, Angiotensin-converting enzyme

inhibitors/Angiotensin receptor blockers, CCB, Calcium calcium blockers, PPI, proton pump inhibitor, SOFA, sequential organ failure assessment, OASIS, Oxford Acute Severity of Illness

score, APSIII, acute physiology score III, MAP, mean arterial pressure, WBC, white blood cell, HGB, hemoglobin, HCT, hematocrit, PLT, platelets, BUN, blood urea nitrogen, SCr, serum

creatinine, GLU, Glucose.

FIGURE 3

The top 15 features derived from the XGBoost model. Bilirubin_max, maximum serum bilirubin; bicarbonate_min, minimum bicarbonate;

bilirubin_min, minimum bilirubin; RRT, renal replacement therapy; mechvent, mechanical ventilation; MAP, mean arterial pressure; CKD, chronic

kidney disease.
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results in the training cohort (Table 2). Furthermore, ROC analysis

was also performed to further check the performance of the three

models, as shown in Figures 4A–C. The XGBoost+severity score

model exhibited the largest AUC, followed by the XGBoost model,

in all training, internal validation, and external validation cohorts.

The calibration curves for the predictive models (logistic

regression model, XGBoost model, and XGBoost+severity scores

model) all showed high agreement between the actual probability

and predicted probability in the training, internal validation, and

external validation sets (Figures 5A–C). Subsequently, a decision

curve analysis (DCA) was performed to determine the net benefit

and clinical utility of the predictive models. The DCA curve also

indicated that the three predictive models were all clinically useful

and that the benefit of using the XGBoost+severity score model

was superior to that of using the XGBoost and logistic regression

models in all sets (Figures 5D–F).

SHAP analysis

To examine the influence of characteristics on the prediction

results in more samples and analyze the similarities and differences

in the important characteristics of patients with varying severities of

AKI with different severities, a SHAP summary chart was used. As

shown in Figure 6, bilirubin (max) ranked first in importance; the

larger the bilirubin (max) in patients, the higher the probability of

AKI development, suggesting that this indicator should be observed

first in early prediction.

Using all features as an example in the XGBoost model, which

has excellent performance for predicting AKI, as well as the SHAP

analysis method, representative non-AKI and AKI patients were

selected to illustrate the effect of features on prediction ability. As

shown in Figure 7, for predicting non-AKI patients, mechanical

ventilation (mechvent) played a major positive role in prediction

results, sodium (min) played a major negative role in predicting

outcomes, and the SHAP value of the final model predicted for

this patient was −0.25, which is <0 and, therefore, considered to

have successfully predicted the absence of AKI. For predicting AKI

patients, the bicarbonate plays a major positive role in prediction

results, the bilirubin (max) plays a major negative role in predicting

outcomes, and the SHAP value of the final model predicted for

this patient was 1.23, which is considered to have successfully

predicted AKI.

Discussion

Few studies have explored AKI-prediction models based on

machine-learning techniques in critically ill GIB settings. The

present study compared the predictive accuracy of the prediction

of AKI in patients with GIB admitted to the ICU using

the machine learning technique XGBoost, traditional statistical

approach logistic regression analysis, and previous risk scoring

models (SOFA, OASIS, and APS III). The results have shown that

the XGBoost model had the largest AUC, accuracy, precision, and

recall among all the techniques and risk scores. Moreover, the

XGBoost+severity scores (SOFA, OASIS, and APS III) exhibited

better AKI prediction performance than XGBoost. The XGBoost

model-based prediction may induce a significant improvement in

the prediction of AKI in patients with GIB admitted to the ICU.

A risk estimator based on the XGBoost model was developed to

determine the risk of AKI in high-risk patients with GIB.

Acute GIB is very common in patients in ICU (27). Mortality

in patients with acute GIB is very high, approaching 48.5–65%

(28, 29). According to previous reports, AKI occurs in ∼25% of

patients with acute GIB. AlthoughAKI accounts for a small number

of complications in critically ill patients with GIB, the mortality

rate of critically ill patients with AKI is higher than that of patients

with severe GIB without AKI. Xie et al. found that AKI occurred in

30% of patients with cirrhosis and that patients with cirrhosis and

AKI had a worse prognosis (37 vs. 3%) (30). Moreover, a study by

Kim et al. also showed that the 6-week mortality rate of cirrhotic

patients with new-onset AKI was significantly higher than that

of patients without AKI (31). The early identification of AKI can

effectively prevent disease progression. However, there is currently

a lack of reliable and effective predictive models for such patients,

warranting researchers to develop a reliable AKI predictive model

to identify high-risk critically ill patients with GIB.

With the advent of big data, ML has great potential in the

field of AKI research owing to its unparalleled ability in data

processing. Therefore, machine learning models may be powerful

tools for AKI risk stratification and prediction (32). Several ML

techniques have been used to predict AKI in different disease

settings (33–35). However, the use of ML techniques to predict

AKI in critically ill patients with GIB has not been investigated. As

an ML technique, XGBoost is a highly efficient boosting ensemble

learning model that originated in the decision tree model, using

a tree classifier for better prediction results and higher operation

efficiency (36). Several studies have found that XGBoost is superior

to other machine learning techniques. Liu et al. reported that

XGBoost exhibited the best performance in predicting mortality

in patients with AKI in the ICU, with the highest AUC, F1 score,

and accuracy compared with logistic regression, support vector

machines, and random forest (37). Yue et al. aimed to establish

and validate predictive models based on novel machine learning

algorithms for AKI in critically ill patients with sepsis and found

that the XGBoost model had the best predictive performance in

terms of discrimination, calibration, and clinical application among

all models, including logistic regression, SOFA, and the customized

Simplified Acute Physiology Score (SAPS) II model (16). Qu et al.

used support vector machine, random forest, classification and

regression tree, and XGBoost models to predict AKI prediction,

and compared to the predictive performance of the classic model

using logistic regression, the results demonstrated that XGBoost

performed best in predicting AKI among the machine learning

models (34). Hence, the XGBoost algorithm was selected to

structured and unstructured patient data from electronic medical

records to develop an AKI prediction model in the present study.

Consistent with previous reports (16, 34, 37), the XGBoost model

was better than the traditional logistic regression model and

previous risk scoring models (SOFA, OASIS, and APS III). The

XGBoost+severity score model exhibited the highest accuracy,

recall, precision, AUC, AUC-PR, and F1 score.

There are several studies in this respect. Although the

studies have been conducted on different data and are not

comparable, studies employed traditional ML techniques to
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TABLE 2 Performance of the prediction models using all features.

Model Accuracy Recall Precision AUC AUC-PR F1 score

Training cohort

Logistic regression 0.80 0.62 0.69 0.74 0.68 0.78

XGBoost 0.84 0.70 0.82 0.81 0.75 0.82

XGBoost+severity scores 0.87 0.72 0.86 0.89 0.85 0.86

Internal validation cohort

Logistic regression 0.82 0.64 0.63 0.73 0.64 0.79

XGBoost 0.87 0.75 0.82 0.80 0.72 0.83

XGBoost+severity scores 0.89 0.79 0.86 0.87 0.83 0.85

External validation cohort

Logistic regression 0.71 0.69 0.68 0.72 0.65 0.70

XGBoost 0.76 0.76 0.70 0.82 0.72 0.75

XGBoost+severity scores 0.79 0.79 0.78 0.84 0.80 0.78

FIGURE 4

ROC curves of the prediction models using all features as well as three common severity scores for predicting AKI in the training set (A) and in the

internal validation set (B) and in the external validation set (C).

predict AKI events, and XGBoost was the most commonly used

algorithm. Using the MIMIC dataset for AKI prediction in

the ICU setting, Zhang et al. (23) reported that XGBoost had

a significantly greater ROC than the logistic regression model

(0.86 vs. 0.728) in differentiating between volume-responsive and

volume-unresponsive AKI. Zimmerman et al. (38) developed ML

models to predict the new onset of AKI in critical care settings

with a mean AUC of 0.783 by our all-feature, logistic-regression

model. Sun et al. (39). used an ensemble learning algorithm for

the early prediction of AKI with AUC 24 h ahead: 0.81, 48 h

ahead: 0.78; MIMIC-III: AUC 24 h ahead: 0.95, and 48 h ahead:

0.95. In addition, Wang et al. (40) reported AUC above 0.83

with SVM as the best performer, and Qian et al. (41) reported

that LightGBM had the best performance, with all evaluation

indicators achieving the highest value (average AUC = 0.905, F1

= 0.897, recall = 0.836). Alfieri et al. (42) showed that AUC

for deep learning is 0.907 and LR is 0.877. Shawwa et al. (43)

indicated that a 30-feature model showed 0.690 in the Mayo Clinic

cohort set and 0.656 in the MIMIC-III cohort. Because of different

datasets (MIMIV-IV in our study and MIMIC-III in previous

studies), comparing our results with other studies is difficult.

However, in general, in comparison with the best results from

previous studies, we also achieved a high AUC (XGBoost+severity

scores: 0.89).

A SHAP analysis was used to determine the quantitative

impact of each feature on AKI prediction based on SHAP

values. The results of our study demonstrated that bilirubin

and albumin were the most influential feature among all other

physiological measurements A UK-wide study in acute medical

units aimed to investigate patients who were at risk of developing

AKI in hospitals and found that elevated serum bilirubin was

independently associated with AKI development (44). Moreover,

Wang et al. indicated that lower serum albumin levels were

independently associated with a greater risk of contrast-induced

AKI among patients who underwent percutaneous coronary

intervention (45). Moreover, mechanical ventilation (mechvent),
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FIGURE 5

The performance of the models of logistic, XGBoost, and XGBoost+severity scores for AKI. The calibration curves of the logistic, XGBoost, and

XGBoost+severity scores for AKI in the training set (A), in the internal validation set (B), and in the external validation set (C). The decision curve

analysis of the logistic, XGBoost, and XGBoost+severity scores for AKI in the training set (D), in the internal validation set (E), and in the external

validation set (F).

FIGURE 6

SHAP summary plot of the features of the XGBoost model. The higher the SHAP value of a feature, the higher the probability of AKI development. A

dot is created for each feature attribution value for the model of each patient, and thus one patient is allocated one dot on the line for each feature.

Dots are colored according to the values of features for the respective patient and accumulate vertically to depict density. Red represents higher

feature values, and blue represents lower feature values. Creatinine_max, maximum serum creatinine; first_time_creatinine, the first measurement of

serum creatinine after their ICU admission; bilirubin_min, minimum bilirubin; mechvent, mechanical ventilation.

bicarbonate, and RRT also displayed strong predictive powers,

which reflected their roles in AKI prediction in critically ill patients

with GIB.

Nevertheless, this study has some limitations. First, the present

study extracted data from two large public databases, and additional

external clinical datasets may be needed to verify the results of this

study. Second, we collected data during the first 24 h of ICU stay,

and more dynamic time-point data are needed in future studies.

Moreover, the variables we stated indicate that the predictive

model’s utilities are challenging, as they are at different time points

(e.g., patients’ first creatinine and highest bilirubin). Therefore,

in reality, it would not be possible to use them to predict AKI

risk until all time-point data were collected. Finally, the present

study included an imbalanced dataset to check the performance

of the machine learning and the predictive model developed

using the machine learning algorithms could be biased and

inaccurate. The results of this study should be further validated in

the future.
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FIGURE 7

The two representative SHAP force plots of non-AKI and AKI patients in the training set.

Conclusion

This study utilized an XGBoost-based model to predict AKI in

patients with GIB admitted to the ICU. The results demonstrated

that it is feasible to apply the XGBoost-based prediction models

for the management of critically ill patients with GIB and that this

model has better predictive performance than that of classic logistic

regression methods and severity score models. The XGBoost-based

model in this study has not been verified by an external cohort,

and further studies are needed to determine the clinical application

of the XGBoost-based model and to perform prospective and large

sample experiments to verify our conclusion.
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