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Background: The development of artificial intelligence (AI)-based algorithms and 
advances in medical domains rely on large datasets. A recent advancement in 
text-to-image generative AI is GLIDE (Guided Language to Image Diffusion for 
Generation and Editing). There are a number of representations available in the 
GLIDE model, but it has not been refined for medical applications.

Methods: For text-conditional image synthesis with classifier-free guidance, 
we have fine-tuned GLIDE using 10,015 dermoscopic images of seven diagnostic 
entities, including melanoma and melanocytic nevi. Photorealistic synthetic 
samples of each diagnostic entity were created by the algorithm. Following this, 
an experienced dermatologist reviewed 140 images (20 of each entity), with 10 
samples originating from artificial intelligence and 10 from original images from 
the dataset. The dermatologist classified the provided images according to the 
seven diagnostic entities. Additionally, the dermatologist was asked to indicate 
whether or not a particular image was created by AI. Further, we  trained a 
deep learning model to compare the diagnostic results of dermatologist versus 
machine for entity classification.

Results: The results indicate that the generated images possess varying degrees of 
quality and realism, with melanocytic nevi and melanoma having higher similarity 
to real images than other classes. The integration of synthetic images improved 
the classification performance of the model, resulting in higher accuracy and 
precision. The AI assessment showed superior classification performance 
compared to dermatologist.

Conclusion: Overall, the results highlight the potential of synthetic images for 
training and improving AI models in dermatology to overcome data scarcity.
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1. Introduction

In recent years, artificial intelligence (AI) has rapidly transformed 
various fields of medicine, bringing significant improvements to 
diagnostics, treatment, and patient care (1). With advances in machine 
learning and deep learning techniques, AI-based algorithms have 
shown great promise in revolutionizing medical practices, including 
the analysis of complex multimodal data and the automation of 
routine tasks (2).

Dermatology, in particular, has witnessed substantial benefits 
from AI applications. The development of AI algorithms for the 
analysis of dermoscopic images has led to improved diagnosis of 
various skin conditions, including skin cancer (3). These algorithms 
can analyze large volumes of dermoscopic images with a high degree 
of accuracy, enhancing the diagnostic capabilities of dermatologists 
and ultimately leading to better patient outcomes (4).

One of the key challenges in the development of AI algorithms for 
medical applications is the need for large, high-quality datasets. 
However, obtaining such datasets can be problematic due to privacy 
concerns, limited access to data, and the time-consuming nature of 
data acquisition (5). This data scarcity hinders the progress and 
effectiveness of AI algorithms, especially in fields like dermatology, 
where high-quality image data is crucial for accurate diagnosis 
and treatment.

To address the issue of data scarcity, recent research has focused 
on the development of stable diffusion models, such as GLIDE 
(Guided Language to Image Diffusion for Generation and Editing), 
for generating high-quality synthetic images (6, 7). Kather et  al. 
recently proposed to apply these algorithms to the medical field (8). 
These models can produce diverse and realistic images that can 
be  used to augment existing datasets, effectively overcoming the 
limitations imposed by data scarcity. The application of diffusion 
models like GLIDE has the potential to significantly advance the field 
of AI-based medical image analysis, particularly in dermatology.

The primary aim of this study is to explore the potential of the 
GLIDE model in generating synthetic dermoscopic images for use in 
AI algorithm development and dermatological education. By fine-
tuning the GLIDE model for medical applications, we  seek to 
contribute to the ongoing efforts to overcome data scarcity challenges 
and enhance the capabilities of AI algorithms in the field 
of dermatology.

2. Methods

2.1. GLIDE model fine-tuning

In this study, we fine-tuned the GLIDE model recently developed 
by Nichol et al. (6). This baseline framework serves as a foundation for 
guided language-to-image diffusion, which is optimized for generating 
high-quality synthetic images based on textual descriptions. We used 
the dermoscopic image dataset available through the Harvard 
Dataverse repository for the fine-tuning of the GLIDE model (9). This 
dataset consists of 10,015 dermoscopic images representing seven 
different diagnostic entities, i.e., Actinic Keratoses (Solar Keratoses) 
and Intraepithelial Carcinoma (Bowen’s disease), Basal cell carcinoma, 
Benign keratosis, Dermatofibroma, Melanocytic nevi, Melanoma, and 
Vascular skin lesions. Each image in the dataset is annotated with the 

corresponding diagnostic entity. Prior to fine-tuning the model, 
we preprocessed the dataset to ensure compatibility with the GLIDE 
model’s input requirements (image and text pairs). All parameters 
used can be found in the code provided in the data availability section. 
In summary, we used 128 × 128 images as input and trained the base 
model with a learning rate of 1e−5, Adam weight decay and 
unconditional probability set as zero, half-precision training set as 
false, batch size = 4, group sampling set as 8 for a total of 60 epochs.

We began the fine-tuning process by initializing the GLIDE model 
with the pre-trained weights provided by the original authors. As part 
of the GLIDE model fine-tuning, we also trained the upsampler, a 
neural network designed to increase the resolution of the generated 
images, with an upsampling factor of 4 to a maximum of 256 × 256 
output image size that is capable by the upsampler. The upsampler 
uses a combination of convolutional layers and residual connections 
to upscale the low-resolution images produced by the GLIDE model 
to a higher resolution while maintaining the quality and fidelity of the 
generated images. We initialized the upsampler with the pre-trained 
weights provided by the original authors.

2.2. Model evaluation

The evaluation of generated images was based on a combination 
of image quality metrics, including Structural Similarity Index (SSIM), 
Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), 
Frechet Inception Distance (FID), and Inception Score (IS). Ground 
truth images and their corresponding synthetic images were loaded. 
The images were paired and sorted into different categories (entities) 
based on the information stored in text files.

The InceptionV3 model, pre-trained on ImageNet, was initialized 
with average pooling and without the top layer. The model was used 
to calculate FID and IS scores. For each category, the following metrics 
were calculated for the image pairs:

 • SSIM: calculated separately for each color channel and averaged. 
This metric quantifies the structural similarity between the real 
and synthetic images.

 • PSNR: a metric that measures the ratio between the maximum 
possible pixel value and the mean squared error (MSE) of the real 
and synthetic images.

 • MSE: the average squared difference between the corresponding 
pixels of the real and synthetic images.

 • FID: calculated using the InceptionV3 model to obtain feature 
activations for both real and synthetic images. FID quantifies the 
similarity between the distributions of the real and synthetic 
image features.

 • IS: based on the feature activations obtained from the 
InceptionV3 model, IS measures the quality and diversity of the 
synthetic images.

The SSIM, PSNR, MSE, FID, and IS scores were then averaged 
over all the image pairs within a category. The results were obtained 
for each category. Further, the average metrics for each category were 
combined to obtain the overall SSIM, PSNR, MSE, FID, and IS scores, 
providing a comprehensive assessment of the generated images’ 
quality. This evaluation approach ensures a thorough assessment of 
the generated images’ quality and similarity to the ground truth, 
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considering various aspects such as structural similarity, pixel-level 
differences, feature distributions, and the diversity of the 
generated images.

2.3. Dermatologist assessment

After completing the fine-tuning process for the GLIDE model 
and the upsampler and generation of the synthetic images, an 
experienced dermatologist (>10 years of dermoscopy experience) 
assessed the synthetic and ground truth images (blinded evaluation). 
For each of the seven diagnostic entities, we randomly selected 10 
synthetic images based on textual descriptions, resulting in a total of 
70 generated images. Additionally, we randomly selected 70 original 
(ground truth) images from the dataset for a total of 140 images to 
be evaluated (10 per entity).

To assess the quality and realism of the generated images, 
we conducted a blinded evaluation with a board-certified dermatologist. 
Each image was resized to a uniform size of 256 × 256 pixels to maintain 
comparability. The dermatologist was provided with the 140 images (70 
synthetic and 70 original) in a randomized order and asked to perform 
two tasks. First, the dermatologist was asked to classify each image 
according to the seven diagnostic entities represented in the dataset. 
Second, the dermatologist was asked to identify whether the image was 
generated by the AI model or was an original image from the dataset. 
This evaluation aimed to determine the ability of the dermatologist to 
distinguish between synthetic and original images and assess the 
diagnostic accuracy of the generated images.

To evaluate the dermatologist’s assessment of AI-generated images 
and original images, we conducted a comprehensive analysis using 
various performance metrics, including confusion matrices, 
classification reports, and receiver operating characteristic (ROC) 
curves. The dermatologist’s assessments were extracted from an Excel 
file, which contains the true entity labels and their respective 
predictions. In addition, the file also contains a column indicating 
whether the image assessed was classified as AI-generated or original. 
We  then computed the classification report for AI-generated vs. 
original images, followed by the entity classification report for the 
entire dataset. Moreover, we performed an ablation study to compare 
the performance of the GLIDE model on the original, the synthetic 
and the combined dataset. To further explore the performance of the 
dermatologist’s assessment in different subsets, we divided the dataset 
into AI-generated and original subsets and computed the classification 
reports for each. Confusion matrices were generated for both entity 
classification and AI-generated vs. original image classification, 
providing a visual representation of the performance of the 
dermatologist’s assessment. These matrices were plotted with the 
x-axis representing the predicted labels and the y-axis representing the 
true labels. To assess the discriminative ability of the dermatologist’s 
assessment, we computed the ROC curves and area under the curve 
(AUC) values for each entity. The true and predicted labels were 
binarized, and the ROC curves were plotted for each class, with the 
false-positive rate on the x-axis and the true-positive rate on the 
y-axis. Additionally, the ROC curve for AI-generated vs. original 
images was computed and plotted to compare the performance of the 
dermatologist’s assessment in distinguishing between the two types 
of images.

2.4. Deep learning assessment

To assess the deep learning model’s performance in adequately 
classifying the dermoscopic images to their respective entities, 
we  designed a Convolutional Neural Network (CNN) for the 
classification. We loaded the dataset of images and their respective 
labels (10,015 original and 10,015 synthetic images). The images were 
then normalized by dividing the pixel values by 255, and the labels 
were encoded using a LabelEncoder. We  divided the dataset into 
training and testing sets with an 80–20% ratio. We created a sequential 
CNN model with three convolutional layers, each followed by a 
max-pooling layer. After the convolutional layers, we added a flatten 
layer, a dense layer with 64 units and a ReLU activation function, and 
a dropout layer with a rate of 0.5. The output layer consisted of a dense 
layer with 7 units (assuming there are 7 classes) and a softmax 
activation function. The model was compiled using the Adam 
optimizer, sparse categorical cross-entropy loss, and accuracy as the 
performance metric. We applied data augmentation to the training 
images using the ImageDataGenerator class. The augmentation 
techniques included rotation, width and height shift, zoom, and 
horizontal flip. We  then trained the model using the augmented 
training images and their respective labels. We  also employed an 
EarlyStopping callback with a validation loss monitor, a patience of 5, 
and restoring the best weights. The model was trained for a maximum 
of 100 epochs with a batch size of 32. For performance visualization, 
we plotted the training and validation loss curves to visualize the 
model’s performance during the training process. The x-axis 
represents the epochs, while the y-axis represents the loss values. 
We evaluated the model’s performance using the test set. We computed 
the classification report and plotted the confusion matrix, with the 
x-axis representing the predicted labels and the y-axis representing the 
true labels.

2.5. Metrics calculation, programming 
framework, and web application

All analyses were performed in Python. The following metrics 
were calculated for the assessment of the dermatologist and AI for 
classifying the entities:

Precision: The proportion of true positive predictions among all 
positive predictions made by the classifier.

 • Recall: the proportion of true positive predictions among all 
actual positive instances in the dataset.

 • F1-score: the harmonic mean of precision and recall, providing 
a single metric that balances both aspects of the 
classifier’s performance.

 • Accuracy: the proportion of correct predictions made by the 
classifier among all predictions.

 • Macro avg.: the average of a particular metric (e.g., precision, 
recall, or f1-score) calculated separately for each class and then 
averaged without considering class imbalances.

 • Weighted avg.: the average of a particular metric calculated 
separately for each class and then averaged, with each class’s 
contribution to the average weighted by its support (i.e., number 
of occurrences).
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In addition, we developed a free web application for dermoscopic 
image generation of the 7 entities.1 The web application uses a CPU 
for image generation, which can take up to 20 min per image. With a 
high-end GPU, image generation could be significantly reduced to 
under 1 min, resulting in a large set of synthetic images generated per 
day. Further, we uploaded the weights of the finetuned model and the 
upsampler for other work groups to allow them to proceed with 
training utilizing more extensive and diverse datasets (see data 
availability section).

3. Results

3.1. Evaluation metrics for synthetic images

The synthetic image generation model demonstrated varying 
degrees of performance across different skin lesion types. For 
melanoma and melanocytic nevi lesions, the model seemed to 
perform better, while other lesion types such as dermatofibroma and 
vascular lesions require further improvements.

Specifically, the synthetic images for melanoma and melanocytic 
nevi lesions exhibited a reasonable degree of similarity to the original 
images. On the other hand, actinic keratoses and intraepithelial 
carcinoma/Bowen’s disease lesions demonstrated a lower structural 
similarity between the synthetic and original images. The synthetic 
images for benign keratosis-like lesions, basal cell carcinoma, and 
dermatofibroma lesions showed moderate to low similarity.

The average metrics for all lesion types suggest that the model can 
generally reproduce the structural and visual features of the original 

1 https://huggingface.co/spaces/Freiburg-AI-Research/

dermoscopic_image_generation

lesions to a fair extent, albeit with room for further refinement. For a 
more detailed examination of the performance metrics such as SSIM, 
PSNR, MSE, FID, and IS, please refer to Table 1, which compiles the 
specific values for each lesion type, providing a comprehensive 
overview of the synthetic image generation model’s performance 
across various skin lesion types.

It is worth noting that the quality of the generated images varied 
across different categories of dermatological lesions. For instance, 
synthetic melanoma images had a higher SSIM and lower FID compared 
to dermatofibroma images, indicating better structural similarity and 
distributional similarity for melanoma images. Conversely, synthetic 
basal cell carcinoma images showed the highest PSNR, indicating a 
higher image quality in terms of noise. Table  1 shows the metrics 
obtained for the evaluation. Figure 1 illustrates a random set of original 
and synthetic images. In the visual analysis of a random subset of the 7 
entities (7 original and 7 synthetic images), certain patterns and 
differences become apparent. Dermatofibroma synthetic images exhibit 
„science fiction-like “structures, which could be attributed to the fact that 
original dermatofibroma lesions occasionally present with similar 
appearances, and the baseline model was trained on such structures. This 
observation suggests that the synthetic image generation model might 
have captured certain unique features of dermatofibroma lesions, 
resulting in these unusual structures. Also, color-intense images, such as 
those depicting vascular lesions, appear to have an artificial quality. This 
could be due to the challenges faced by the synthetic image generation 
model in accurately reproducing the intricate color patterns and textures 
found in vascular lesions. In contrast, the synthetic images of the other 
entities exhibit a higher degree of realism. This observation might 
be indicative of the model’s better performance in capturing the essential 
features of these lesions, such as color, texture, and shape. The more 
realistic appearance of melanocytic nevi, melanoma, and basal carcinoma 
images could potentially be  beneficial in the context of clinical 
applications considering their high incidence. In conclusion, the deep 
learning model used to generate synthetic medical images demonstrated 
varying performance across different categories of dermatological lesions.

3.2. Dermatologist’s assessment

The dermatologist demonstrated a high level of accuracy in 
distinguishing AI-generated images from original images. The overall 
accuracy in this classification task reached 96%. A balanced 
performance with a precision of 0.99 and 0.95, and recall of 0.94 and 
0.99 was reached for original images and AI-generated images, 
respectively. The macro-average and weighted average f1-scores were 
0.96 for both.

In the task of classifying skin lesions, the dermatologist achieved 
an overall accuracy of 64% in the combined dataset. The performance 
varied across the different classes, with class 7 (precision: 0.82, recall: 
0.90) achieving the highest f1-score of 0.86, and class 2 (precision: 
0.62, recall: 0.50) exhibiting the lowest f1-score of 0.56. The macro-
average and weighted average f1-scores were both 0.64.

When evaluating the AI-generated and original subsets separately, 
the dermatologist showed a markedly higher performance in the 
AI-generated subset. The overall accuracy for the AI-generated subset 
was 89%, with macro-average and weighted average f1-scores of 0.88 
and 0.89, respectively. In contrast, the overall accuracy for the original 
subset was 40%, with macro-average and weighted average f1-scores of 

TABLE 1 Evaluation metrics for the fine-tuned GLIDE model.

Dermatological 
lesion category

SSIM PSNR MSE FID IS

Melanoma 0.2186 60.1854 0.0698 115.1804 1.3630

Melanocytic nevi 0.2229 61.0407 0.0604 99.2504 1.4739

Actinic keratoses and 

intraepithelial 

carcinoma/Bowen’s 

disease

0.0612 62.2664 0.0435 174.9675 1.2991

Benign keratosis-like 

lesions (solar lentigines/

seborrheic keratoses 

and lichen-planus like 

keratoses)

0.1174 61.7934 0.0506 203.4957 1.3379

Basal cell carcinoma 0.1347 64.2892 0.0289 189.7611 1.3193

Dermatofibroma 0.0873 63.0862 0.0358 275.1849 1.2379

Vascular lesions 

(angiomas)

0.1589 60.1402 0.0785 252.0546 1.3672

Overall Metrics 0.1430 61.8288 0.0525 187.1278 1.3426

SSIM, structural similarity index (SSIM); PSNR, peak signal-to-noise ratio; MSE, mean 
squared error; FID, Fréchet inception distance; IS, inception score.
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0.37 and 0.40, respectively. The results indicate that the dermatologist 
was highly accurate in distinguishing between AI-generated and 
original images. The performance in entity classification was moderate, 
with a notable difference in accuracy between the AI-generated and 
original subsets. The ROC curves for the dermatologist assessment of 
entities and AI versus the original are shown in Figure 2.

3.3. Comparison AI versus dermatologist 
for dermoscopic entity classification

Table 2 shows the performance metrics of AI and dermatologist 
for classifying the dermoscopic entities. The AI model achieved an 
overall accuracy of 0.86, with varying performance across different 

lesion types. The model demonstrated high precision and recall scores 
for some lesion classes, such as “benign keratosis-like lesions (solar 
lentigines/seborrheic keratoses and lichen-planus like keratoses)” 
(precision = 0.87, recall = 0.97), while lower scores were observed for 
classes such as “Actinic keratoses and intraepithelial carcinoma/Bowen 
disease” (precision = 0.91, recall = 0.55).

The dermatologist achieved an overall accuracy of 0.64, with 
precision and recall scores also varying across lesion classes. The 
highest precision and recall scores were observed for “vascular lesions” 
(precision = 0.82, recall = 0.90), while the lowest scores were seen for 
“benign keratosis-like lesions (solar lentigines/seborrheic keratoses 
and lichen-planus like keratoses)” (precision = 0.46, recall = 0.85).

Comparing the AI model assessment to the dermatologist 
assessment, the AI model demonstrated a higher overall accuracy 

FIGURE 1

Illustration of 7 random original and AI-generated images for the entities. Class 1: melanoma; Class 2: melanocytic nevi; Class 3: Actinic keratoses and 
intraepithelial carcinoma/Bowen disease; Class 4: benign keratosis-like lesions (solar lentigines/seborrheic keratoses and lichen-planus like keratoses); 
Class 5: basal cell carcinoma; Class 6: dermatofibroma; Class 7: vascular lesions.

FIGURE 2

Receiver operating characteristic curves (ROC) for the dermatologist assessment of entities (A) and AI versus original (B). Class 1: melanoma; Class 2: 
melanocytic nevi; Class 3: Actinic keratoses and intraepithelial carcinoma/Bowen disease; Class 4: benign keratosis-like lesions (solar lentigines/
seborrheic keratoses and lichen-planus like keratoses); Class 5: basal cell carcinoma; Class 6: dermatofibroma; Class 7: vascular lesions.
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(0.86) compared to the dermatologist (0.64). This suggests that the AI 
model can provide a reliable alternative for the classification of skin 
lesion entities, potentially assisting dermatologists in their clinical 
practice. However, it is important to note that the performance of both 
the AI model and dermatologist varied across different lesion types. 
The confusion matrices for the classification of entities for AI and 
dermatologist are presented in Supplementary Figures S1, S2.

3.4. Ablation study on GLIDE model 
utilizing original, synthetic, and combined 
data

Table  3 showcases an ablation study that compares the 
classification performance between models utilizing original images, 
synthetic images, and a combination of both for classifying 
dermoscopic entities. The specific effects on different lesion types are 
detailed below:

The model employing only original images achieved an overall 
accuracy of 0.65. Performance varied significantly across lesion 
classes, with relatively lower scores for “benign keratosis-like lesions” 
(Class 4, precision = 0.30, recall = 0.23) and higher scores for “basal cell 
carcinoma” (Class 5, precision = 0.70, recall = 0.75).

The synthetic-only approach yielded an overall accuracy of 0.80. 
Notable improvements were observed in classes such as “melanoma” 
(Class 1, precision = 0.75, recall = 0.65) and “vascular lesions” (Class 7, 
precision = 0.70, recall = 0.60).

By integrating synthetic and original images, the model reached an 
overall accuracy of 0.86. This combined approach enhanced precision 
and recall across all classes, with remarkable performance in “melanoma” 
(Class 1, precision = 0.81, recall = 0.60), and “vascular lesions” (Class 7, 
precision = 0.96, recall = 0.76). “Benign keratosis-like lesions” (Class 4) 
also saw a considerable boost (precision = 0.91, recall = 0.55).

4. Discussion

This study demonstrated the successful fine-tuning of GLIDE on 
10,015 dermoscopic images to generate synthetic dermoscopic images, 
addressing data scarcity in dermatology research and AI applications. 

The results indicate that the generated images possess varying degrees of 
quality and realism, with melanocytic nevi and melanoma having higher 
similarity to real images than other classes. The AI assessment showed 
superior classification performance compared to the dermatologist, 
highlighting the potential of synthetic images for training and improving 
AI models in dermatology to overcome data scarcity. Additionally, the 
ablation study conducted on the GLIDE model revealed that combining 
original and synthetic data provided enhanced performance across all 
classes, with particularly notable improvements in precision and recall 
for challenging classes such as Actinic keratoses and intraepithelial 
carcinoma/Bowen disease. The combined approach yielded an accuracy 
of 0.86, outperforming the original-only and synthetic-only models, 
reinforcing the value of leveraging both original and synthetic data in 
AI-driven dermatology applications.

The generation of synthetic dermoscopic images has the potential 
to revolutionize dermatology research and AI applications by 
providing a large, diverse dataset for training AI models (8). The 
results of this study indicate that the fine-tuning of GLIDE can 
produce images with varying degrees of realism, which could 
be further improved through iterative optimization, diverse datasets, 
and by incorporating domain-specific knowledge (8, 10). The 
improved realism in the generated images could contribute to the 
development of more accurate and robust AI models for skin lesion 
classification, diagnosis, and treatment planning. Furthermore, the use 
of synthetic images can facilitate the development of AI models that 
are less susceptible to overfitting, given the increased dataset size and 
diversity. This could lead to AI models with better generalization 
capabilities, translating to improved performance in real-world 
clinical settings (11). Synthetic dermoscopic images could also enable 
researchers to explore rare or underrepresented skin conditions, 
enhancing the understanding and management of these conditions. 
Additionally, the generated synthetic images could be  used for 
education and training purposes in dermatology. Medical students, 
residents, and dermatologists could benefit from exposure to a diverse 
range of images for various skin conditions, improving their diagnostic 
skills and knowledge.

Recent advancements in text-conditional image models have 
enabled the synthesis of images based on free-form textual prompts, 
generating semantically plausible compositions with unrelated objects 
(12–14). However, these models have not yet reached the capability of 

TABLE 2 Classification metrics for AI assessment and dermatologist (“Derm.”) Assessment.

Class AI Precision AI Recall AI F1-Score Derm. Precision Derm. Recall Derm.  
F1-Score

1 0.81 0.60 0.69 0.67 0.70 0.68

2 0.83 0.70 0.76 0.62 0.50 0.56

3 0.80 0.63 0.71 0.60 0.60 0.60

4 0.91 0.55 0.69 0.46 0.85 0.60

5 0.87 0.97 0.92 0.62 0.40 0.48

6 0.82 0.61 0.70 1.00 0.55 0.71

7 0.96 0.76 0.85 0.82 0.90 0.86

Accuracy 0.86 0.64

Macro Avg 0.86 0.69 0.76 0.68 0.64 0.64

Weighted Avg 0.86 0.86 0.85 0.68 0.64 0.64

The table compares the performance of the AI assessment and the dermatologist assessment in classifying the entities. The metrics presented include precision, recall, f1-score, accuracy, macro 
average (macro avg), and weighted average (weighted avg). Class 1: melanoma; Class 2: melanocytic nevi; Class 3: Actinic keratoses and intraepithelial carcinoma/Bowen disease; Class 4: 
benign keratosis-like lesions (solar lentigines/seborrheic keratoses and lichen-planus like keratoses); Class 5: basal cell carcinoma; Class 6: dermatofibroma; Class 7: vascular lesions.
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generating images with full photorealism that accurately represent all 
aspects of the corresponding textual descriptions. In contrast, 
unconditional image models have shown success in synthesizing 
photorealistic images (15, 16), occasionally producing images 
indistinguishable from real ones by humans (17). Diffusion models 
(18) have emerged as a promising subset of generative models, 
achieving state-of-the-art sample quality in various image generation 
benchmarks (6, 19). Dhariwal and Nichol introduced classifier 
guidance to diffusion models for photorealistic class-conditional 
image generation (19). The technique involves training a classifier on 
noised images and using its gradients during the diffusion sampling 
process to guide the sample toward the desired label. Ho and Salimans 
achieved comparable results using classifier-free guidance, which 
interpolates between predictions from a diffusion model with and 
without labels (20).

Inspired by the photorealistic sample generation capabilities of 
guided diffusion models and the versatility of text-to-image models 
in handling free-form prompts, we applied guided diffusion to text-
conditional image synthesis in the medical field for the first time. 
Nichols et  al. trained a 3.5 billion parameter diffusion model 
conditioned on natural language descriptions using a text encoder 
which we used as the baseline model. The text-to-image model, 
which employs classifier-free guidance, generates photorealistic 
samples demonstrating a broad spectrum of world knowledge. 
Human judges preferred the GLIDE samples to those from DALL-E 
87% of the time when evaluating photorealism and 69% of the time 
when assessing caption similarity (12). When further trained based 
on our finetuned model and considering a larger subset for selected 
entities, this approach holds great promise to advance the field of 
AI-based dermatology.

Despite the promising results, this study has some limitations. 
First, the quality of synthetic images varies across different skin 
conditions, with some classes exhibiting lower similarity to real 
images. This could potentially affect the AI model’s performance when 
trained on these synthetic images. Future research should aim to 
refine the image generation process for some entities and include a 

larger subset for these entities to ensure more consistent quality across 
all classes. Second, the AI assessment results were obtained using a 
single deep learning model that was compared to the dermatologist’s 
assessment, which might not represent the full potential of AI models 
in dermatology. Evaluating the performance of multiple AI models on 
the synthetic dataset could provide a more comprehensive 
understanding of the applicability of synthetic images in AI-based 
dermatology research. Moreover, the current study only incorporated 
a single dermatologist for image evaluations. Future research should 
involve a greater number of dermatologists with diverse expertise in 
dermoscopic image assessments. Lastly, the study only considered the 
use of synthetic images for skin lesion classification. The potential 
applications of synthetic images extend to other dermatology-related 
tasks, such as segmentation, detection, and treatment planning, which 
were not explored in this study. Furthermore, our study, though 
meticulous, presents a number of limitations inherent to the use of the 
HAM10000 dataset. First, it is noteworthy that all images in this 
dataset are captured through dermatoscopy, which does not exactly 
replicate the visual conditions under which dermatologists typically 
examine skin lesions. Dermatologists conventionally use 
dermatoscopy primarily for the differential diagnosis of melanocytic 
naevi and malignant melanoma, whereas the other types of lesions are 
generally examined without such technical aids. Consequently, the 
dataset, to some extent, offers an artificial advantage to our AI model 
that might not entirely correspond to real-world clinical settings. 
Second, while more than half of the lesions in the HAM10000 dataset 
are confirmed via histopathology, the remaining cases’ diagnoses are 
established through follow-up examinations, expert consensus, or 
in-vivo confocal microscopy. Although these are recognized and valid 
methods for diagnosing skin lesions, the absence of histopathological 
confirmation in a proportion of the cases introduces a certain level of 
uncertainty. As histopathology is considered the gold standard for 
diagnosing skin conditions, this gap between the diagnosis methods 
could potentially influence the generalizability of our findings. In light 
of these considerations, while the HAM10000 dataset presents a 
valuable resource for developing and testing AI models for diagnosing 

TABLE 3 Classification metrics for the ablation study comparing GLIDE’s model performance on original data, synthetic data, and the combined 
dataset.

Class Combined Original only Synthetic only

AI Precision AI Recall AI F1-
Score

AI Precision AI Recall AI F1-
Score

AI Precision AI Recall AI F1-
Score

1 0.81 0.60 0.69 0.40 0.35 0.37 0.75 0.65 0.70

2 0.83 0.70 0.76 0.60 0.55 0.57 0.78 0.70 0.74

3 0.80 0.63 0.71 0.58 0.50 0.54 0.80 0.75 0.77

4 0.91 0.55 0.69 0.30 0.23 0.26 0.70 0.60 0.65

5 0.87 0.97 0.92 0.70 0.75 0.73 0.85 0.87 0.86

6 0.82 0.61 0.70 0.50 0.40 0.44 0.76 0.68 0.72

7 0.96 0.76 0.85 0.60 0.50 0.55 0.70 0.60 0.65

Accuracy 0.86 0.65 0.80

Macro Avg 0.86 0.69 0.76 0.49 0.73

Weighted 

Avg
0.86 0.86 0.85 0.64 0.80

The metrics presented include precision, recall, f1-score, accuracy, macro average (macro avg), and weighted average (weighted avg). Class 1: melanoma; Class 2: melanocytic nevi; Class 3: 
Actinic keratoses and intraepithelial carcinoma/Bowen disease; Class 4: benign keratosis-like lesions (solar lentigines/seborrheic keratoses and lichen-planus like keratoses); Class 5: basal cell 
carcinoma; Class 6: dermatofibroma; Class 7: vascular lesions.
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skin lesions, future studies might benefit from incorporating natural 
lesion images and increasing the proportion of lesions confirmed 
through histopathology to further enhance the model’s real-world 
applicability and reliability.

In conclusion, this study demonstrates the potential of fine-tuning 
GLIDE to generate synthetic dermoscopic images for addressing data 
scarcity in dermatology research and AI applications. The results show 
promise for the use of synthetic images in the training and evaluation 
of AI models, with implications for improving diagnosis, treatment 
planning, and education in dermatology. This work highlights the 
potential of combining text-to-image and guided diffusion techniques 
to generate high-quality synthetic dermoscopic images, providing an 
innovative approach to addressing data scarcity in dermatology 
research and AI applications. Further research is necessary to refine 
the image generation process, evaluate the performance of multiple AI 
models, and explore additional applications of synthetic images 
in dermatology.
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