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Background: Venous thromboembolism (VTE) is a prevalent cardiovascular

disease. Although risk assessment and preventive measures are e�ective, manual

assessment is ine�cient and covers a small population in clinical practice. Hence,

it is necessary to explore intelligent methods for VTE risk assessment.

Methods: The Padua scale has been widely used in VTE risk assessment, and

we divided its assessment into disease category judgment and comprehensive

clinical information judgment according to the characteristics of the Padua scale.

We proposed a dual-branch deep learning (DB-DL) assessment method. First, in

the disease category branch, we propose a deep learning-based Padua disease

classification model (PDCM) for determining patients’ Padua disease categories by

considering patients’ diagnosis, symptoms, and symptomweights. In the branch of

comprehensive clinical information, we use theChinese lexical analysis (LAC)word

separation technique, combined with professional corpus and rules, to extract and

judge the comprehensive clinical factors in the electronic medical record (EMR).

Results: We validated the accuracy of the method with the Padua assessment

results of 7,690 Chinese clinical EMRs. First, our proposedmethod allows for a fully

automated assessment, and the average time to assess one patient is only 0.37 s.

Compared to the gold standard, our method has an Area Under Curve (AUC) value

of 0.883, a specificity value of 0.957, and a sensitivity value of 0.816 for assessing

the Padua risk patient class.

Conclusion: Our DB-DL assessment method automates VTE risk assessment,

thereby addressing the challenges of time-consuming evaluation and limited

population coverage. Thus, this method is highly clinically valuable.

KEYWORDS

venous thromboembolism, deep learning, electronic medical record, intelligent

assessment, Padua

Introduction

Venous thromboembolism (VTE) is a disease with high morbidity and a high risk of

death (1). Reportedly, there are ∼10 million cases of VTE annually worldwide (2), and the

incidence of VTE can be as high as 0.2% per year (3). VTE has become the third leading cause

of cardiovascular disease-related death (4). Effective prevention of VTE can significantly

reduce its incidence, and VTE risk assessment plays a crucial role in clinical practice (5).

However, only a small proportion of patients currently receive VTE prophylaxis in China

(6). Therefore, the prevention and treatment of VTE are quite important in medical practice.
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TABLE 1 Padua scale.

Risk factors Score

Prior VTE 3

Active cancer 3

Heart/respiratory failure 1

Acute MI/ischemic stroke 1

Acute infection/rheumatologic disorder 1

Elderly age (≥70 years) 1

BMI ≥30 kg/m2 1

Ongoing hormonal treatment 1

Thrombophilic 3

Reduced mobility 3

Recent (≤1 month of) trauma and/or surgery 2

The current approach to VTE prevention is to assess the

patient’s risk level for the disease through scales and to take different

preventive approaches according to the different risk levels (7).

Common risk assessment scales include Padua, Caprini, andWells.

Authorities such as the American College of Chest Physicians

recommend the Padua scale as a risk assessment method for VTE

(8, 9). The Padua Risk Assessment Scale is designed to assess a

patient’s disease category and their combined clinical status, which

incorporates elements such as medication use, height and weight,

and surgical status. The Padua Scale utilizes a linear weighting

method to obtain risk assessment scores and risk levels. The

Padua scale is shown in Table 1. Compared with other scales, the

Padua scale is highly accurate, relatively easy to judge, and widely

applicable. However, the current process of intelligently assessing

the Padua risk by doctors is time-consuming. In addition, doctors

may overlook the association between the patient’s disease and

thrombosis, which may lead to risk assessment in which some

risk factors may be neglected, thereby leaving the patient without

the correct prevention protocol (10). Furthermore, assessment

results can be heterogeneous due to differences in the doctors’

understanding of the disease. Therefore, it is important to explore

an intelligent and efficient automated assessment method for

determining the Padua scale to prevent VTE.

Artificial intelligence can learn and extract key features from

medical data to automate the analysis and processing of medical

data (11). Some research has been carried out on VTE assessment

using artificial intelligence techniques. However, most studies

have focused on exploring risk factors for VTE and constructing

various assessment scales to enhance accuracy in different patient

populations (12–15). Few studies have proposed automatic risk

assessment methods for VTE based on causative factors. For

example, Pierre et al. (10) used International Classification of

Diseases, 9th Revision (ICD-9) to match billing codes in a data

warehouse for the purpose of automatically assessing the Padua

scale. This approach requires building a complete enterprise data

warehouse (EDW) and transforming electronic medical record

(EMR) text into structured data to determine risk factors. Similarly,

Qatawneh et al. (16) transformed the 35 assessment items of the

Caprini scale into numerical variables and input them into a

multilayer perceptron (MLP) to achieve an automatic assessment

of patients’ VTE risk. Chen et al. (17) designed medical text

annotation for the scale items of the Wells scale and automatically

assessed the Wells scale by extracting entities and relationships.

Nonetheless, current research has mostly focused on exploring

risk factors for constructing different assessment scales to improve

accuracy in different patient populations. Although several studies

have explored methods for automated VTE risk assessment,

these methods have limitations, such as requiring significant

manual intervention and time investment, focusing only on patient

diagnosis in terms of disease category assessment, and ignoring

the potential influence of clinical patient symptoms on assessment

results. Few studies have examined the intelligent use of the

Padua scale assessment, a widely used method in clinical internal

medicine. The purpose of this study is to explore a whole-process

intelligent risk assessment method based on deep learning for

the Padua scale and to improve the validity and accuracy of

the intelligent assessment method for practical application in

VTE prevention. The study will provide a new direction for the

application of deep learning technology in clinical research.

First, we used each patient’s EMR as the assessment target.

EMR text is an important text resource that includes a variety of

information about a patient’s medical process and is widely used

at all levels of care (18). We can extract the factors associated with

the Padua scale from the EMR and use natural language processing

(NLP) techniques in deep learning for automated risk assessment.

Second, we divided the assessment of the Padua scale into

two branches according to its characteristics: the disease category

branch (Branch A) and the clinical comprehensive factor (Branch

B). In Branch A, we proposed the Padua disease classification

model (PDCM), extracted features of diagnostic and symptom texts

by NLP techniques (where the information of symptoms comes

from Branch B), and designed algorithms to calculate a symptom

weight matrix (SWM) of different importance to increase feature

information. Then, the above information is fused to determine

the patient’s disease category using a deep learning model. In

Branch B, we used Chinese lexical analysis (LAC) (19) technology,

combined with professional corpus and rules, to automatically

extract and judge the comprehensive clinical factors, such as patient

symptoms, surgery, medication, and activity status of the EMR,

thereby solving the problem that the Padua-related factors needed

to be extracted manually. In summary, this study aims to achieve

complete automation of the Padua scale assessment process by

constructing a two-branch method. This approach not only saves

time and reduces labor costs but also considers the influence

of patient symptoms when assessing disease categories, thereby

improving the accuracy and precision of intelligent assessment.

Materials and methods

Data

In this study, we utilized data from International Classification

of Diseases, 10th Revision (ICD-10) (20), ICD-9-CM3, DiseaseKG

(21), and the World Health Organization’s Drug List (22) to

construct the proposed dual-branch deep learning (DB-DL)

assessment method. For the evaluation and testing of our method,
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TABLE 2 Padua category ICD-10 diagnostic text.

Category Count Symptom count

Prior VTE 51 42

Active cancer 1,097 248

Heart/respiratory failure 27 61

Acute MI/ischemic stroke 75 51

Acute infection/

rheumatologic disorder

750 862

Others 20,007 11,726

we used a dataset of EMR data from independent hospitals, which

served as our gold standard. We split these data into three distinct

categories: training data for the PDCM, medical corpus data, and

EMR test data. These categories are elaborated further in the

following sections.

Padua disease classification model training data
(PDCM training data)

ICD-10 (20) is a library of medical terminology and

corresponding codes developed by theWorld Health Organization,

providing an authoritative and widely used classification and

coding system for the medical profession. ICD-10 is widely

recognized by the medical community for its broad scope of

coverage, which can provide a consistent terminology and coding

system for medical practitioners and facilitate information sharing

and exchange between different medical institutions.

We collated the diagnostic texts of the ICD-10 according to the

disease categories of the Padua scale. The number of diagnostic

texts for each category is shown in Table 2. Several methods were

used to process the data to better fit the clinical situation.

Data amplification

In real-life cases, there is uncertainty in the diagnostic

conclusions of doctors due to the complexity of the disease and

the difficulty of diagnosis. VTE risk cannot be assessed without

a clear diagnosis. To identify uncertain diagnoses among doctors,

we randomly selected 10% of the Padua category diagnoses and

combined frequently occurring uncertain diagnostic descriptions

such as “?” and “undecided” as negative samples.

ICD diagnosis and symptom integration

This study used the DiseaseKG (21) data, which were sourced

from an authoritative Chinese medical website. This database

covers 44,656 medical terms generated during medical procedures

in all aspects of medical care and provides a correspondence

between 312,159medical terms. DiseaseKG has broad coverage and

is a reliable data source. We used the database to integrate the

symptoms of the corresponding diagnosis and add characteristic

information. Specifically, the symptoms of the disease are one of

the keys to determining the category of the disease. We integrate

the symptoms of the corresponding diagnosis to add characteristic

information. There are 54,710 triples in DiseaseKG (21), which

represent diseases and symptoms corresponding to diseases. We

used the ICD-10 diagnosis text to match “Disease” in the triples to

TABLE 3 Corpus data.

Category Count

ICD-9-CM3 13,655

World health organization’s drug list for hormonal

treatment

452

Reduced mobility 34

DiseaseKG symptom 5,598

incorporate the corresponding “Symptoms” for the diagnosis. The

number of symptoms corresponding to each category is shown in

“Symptom Count” in Table 2.

Medical corpus data
Medical corpora are an important source of medical text terms

that can be widely used in clinical decision-making, mortality

prediction, and other clinical applications (23). We used four

corpora, which consist of some standard corpora and summaries

of corresponding common terms. The surgical/trauma corpus was

obtained from ICD-9-CM3 (24). The hormonal drug corpus was

obtained from theWorld Health Organization’s Drug List (22). The

reduced mobility corpus was derived primarily from the summary

of clinical terms, such as “deep coma.” The symptom corpus comes

from the symptoms in the DiseaseKG (21). Each corpus and its

corpus quantity are shown in Table 3.

EMR test data
The test data used in this article were collected from the

clinical EMRs of a hospital in Yunnan Province, including the

characteristics of medical records, past history, past diagnosis,

patient symptoms, patient complaints, examination results, doctor

diagnosis, and treatment plan. The test data are used to evaluate

the accuracy of our proposed method under real-world conditions.

We collected 18,698 EMRs with Padua assessment results. EMR

features with missing values were removed. Finally, 7,690 clinical

EMRs and their corresponding Padua risk assessment items were

obtained. The number of Padua scale items assessed by the doctor

for EMR is shown in Table 4.

This study was approved by the Institutional Review Board of

the First People’s Hospital of Anning City. This study complied with

the Declaration of Helsinki (accession number 2017YYLH035).

Proposed method

The doctor’s diagnosis and the patient’s symptoms in the

EMR are key to judging the patient’s Padua disease category. The

combination of tests, medications, treatments, and other factors in

the medical process is critical to deriving a comprehensive Padua

clinical factor judgment. During the model-building phase, we

propose a dual-branch method for automatic Padua assessment. In

the disease category branch (Branch A), we use ICD-10 diagnosis

text combined with symptom text from DiseaseKG to train a

deep learning model. It is used to judge the patient’s disease
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category items in Padua, including “active cancer,” “prior VTE,”

“acute infection/rheumatic disease,” “heart/respiratory failure,” and

“acute Myocardial Infarction (MI)/ischemic stroke.” In the clinical

comprehensive factor branch (Branch B), we used a professional

corpus to judge items including “recent (≤1 month of) trauma

and/or surgery,” “reduced mobility,” and “ongoing hormone

therapy” in Padua, as shown in Figure 1.

In the testing phase of our approach, we evaluate the accuracy

and validity of the proposed method utilizing real EMRs, as

described in Section EMR test data. For Branch A, both the

patient’s diagnosis and symptoms are needed. The diagnosis

TABLE 4 EMR data.

Category Count

Prior VTE 38

Active cancer 140

Heart/respiratory failure 361

Acute MI/ischemic stroke 421

Acute infection/rheumatologic disorder 1,334

Elderly age (≥70 years) 1,099

BMI ≥30 kg/m2 495

Ongoing hormonal treatment 123

Thrombophilic 12

Reduced mobility 108

Recent (≤1 month of) trauma and/or surgery 60

information from the EMR is structured and can be used directly,

while symptoms are extracted by Branch B. We then use the

collected diagnostic and symptom information as a unit for

disease classification prediction using the PDCM. For Branch B,

we utilized the LAC model to segment sentences within EMRs,

and we combined a professional corpus and rules to extract and

determine the information on comprehensive clinical factors, such

as symptoms, activities, and medication. In this article, we further

propose an automatic assessment method for “thrombophilic”,

“age”, and “BMI ≥ 30 kg/m2 (obesity)” items of the Padua scale.

Among them, age and obesity can be determined by simply

extracting the corresponding data and performing calculations with

a computer. According to Manderstedt et al. and Di Minno et al.

(25, 26), we extracted laboratory tests for protein C, protein S,

D-dimer, and antithrombin III to determine “thrombophilia”. In

the following, we elaborate on the details of the methods used in

both branches.

Padua disease category model branch (PDCM,
branch A)

This article proposes a classification model for Padua diseases

related to the Padua scale, as shown in Figure 2. We developed

an algorithm to establish a SWM layer (I) for calculating the

weights of diagnoses and corresponding symptoms. Subsequently,

we employed an ALBERT layer (II) to convert diagnosis and

symptom texts into word vectors. Then, we used the BiLSTM

layer (III) to extract features. Next, we used a concatenate and

output layer (IV) to concatenate the feature information from the

diagnosis and symptom texts and input them into a dropout layer

FIGURE 1

Proposed method and overall process of Padua intelligent assessment.
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FIGURE 2

Structure of the Padua disease classification model. The Roman numerals I–IV in the figure represent the di�erent layers in the PDCM model, which

will be described in detail below.

to enhance our model’s generalization capability. Subsequently, we

concatenated the symptom weights obtained from (I) with the

dropout-processed features, and finally, we predicted the merged

results using a linear layer.

In summary, this study combines the ALBERT layer and the

BiLSTM layer, aiming to better capture the semantic information

of diagnosis and symptom text. Symptoms play a crucial role

in disease diagnosis. Therefore, we incorporated the diagnosis

of corresponding symptoms into our model, aiming to increase

the information of the features, which in turn enhances accuracy

and reliability. In addition, we propose an algorithm to calculate

the SWM of different symptoms for each disease category in

Padua. This SWM is fused with the information on diagnostic and

symptom features extracted by BiLSTM. This allows symptoms

of different importance to exert different effects on disease

classification and expands the range of features. The following

section provides a detailed description of each component of

the PDCM.

Symptom weight matrix layer (I)

Some symptoms are common in various diseases (e.g., “fever”).

These symptoms can easily cause noise in the classification task.

The various symptoms that correspond to each diagnosis have

different levels of importance to the diagnosis, while symptoms of

the same category of diseases are similar. Term frequency–inverse

word frequency (TF-IWF) is an algorithm used to evaluate the

extent to which a word can reflect its corpus. We use the TF-IWF

(27) algorithm to calculate the importance of symptoms in disease

categories. The SWMwas proposed according to the corresponding

symptoms of the diagnosis. The SWM is calculated as follows:

In Table 2, we aggregate the symptom corpus Ni corresponding

to the diagnosis of each category of Padua, where Ni represents the

symptom corpus of category i. The total number of occurrences of

a certain symptom t in the symptom library Ni is Ni,t , and the total

number of words in the symptom libraryNi is count (Ni). Then, the

TF of symptom t relative to the symptom library Ni is as follows:

TF=
Ni,t

count(Ni)

Then, allNi is the total symptom corpus w. Let the frequency of

all symptoms be Wc, among which the frequency of symptom t in

all words of W is Wc,t ; then, the IWF of symptom t relative to the

total symptom corpus is as follows:

IWF= log
Wc

Wc,t

Thus, TF–IWF of symptom t relative to Ni is as follows:

TI=TF - IWF=TF× IWF

Finally, we developed the SWM algorithm to calculate the

SWM for adding feature information. The SWM construction

algorithm is shown in Table 5.
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TABLE 5 Algorithm: medical symptom weight matrix construction

procedure.

Algorithm 1: medical symptom TF-IWF
construct Procedure

Input:Nk ={N0 ,N1 ,N2 ,N3 ,N4 ,N5},Nk , represents Padua’s

symptom for different disease categories. Xt ={t1,t2...,Tn}, Xt are

the different symptoms corresponding to the diagnosis.

Output: The constructed symptom weighting matrix.

1: ## Construct an initial one-dimensional matrix of length 6,

corresponding to the 6 disease categories of the Padua scale.

2:SWM=[0,0,0,0,0,0]

3: ## Calculate the weights of the corresponding category for each

symptom separately.

4: for t in Xt do:

5: for i in range(k) do:

5: If i in Nk do:

7: SWMk=([TIi,t/max(TIi)])

8: ## symptom weight matrix summation for each symptom.

9: SWM= +SWMk

10: return SWM

ALBERT word embedding layer (II)

The initial phase of model training involves text vectorization.

Currently, several vectorization options exist, including Word2vec

(28), BERT (29), and ALBERT (30). BERT has emerged as

the most prevalent pretraining model due to its transformer

structure. It employs bidirectional encoding, which offers

more robust feature extraction capabilities than Word2vec.

Furthermore, BERT addresses the contextual ambiguity of words

that Word2vec struggles to resolve. Recently, in 2020, Lan et al.

proposed a lightweight pretraining model named ALBERT.

This model simplifies BERT using decomposition embedding

parameterization, cross-layer parameter sharing, and other

methods that significantly reduce computational parameters.

Models with few computational parameters can greatly reduce

memory overhead in terms of deployment.

According to the diagnosis and length of symptoms, we use

ALBERT to vectorize the input diagnostic or symptom text into

vectors of size (20, 768) or (50, 768).

BiLSTM layer (La)

The long short-term memory (LSTM) neural network (31) is

a recurrent neural network (RNN) that overcomes the gradient

explosion problem of traditional RNNs. However, LSTM considers

only past information and ignores future information. To use

context information effectively, BiLSTM combines forward and

backward LSTM is used to obtain two separate hidden states: h
′

t , ht .

The two hidden states are then concatenated to form the final

output h∼t =[h
′

t ,ht] of time t.

We used two BiLSTM layers. The output dimension of the first

layer of BiLSTM is (20,768) or (50,768), which aims to extract

the features of the word vector, and the second layer of BiLSTM

outputs the hidden state, which contains all time steps with a

feature dimension of 768.

Concatenate and output layer (IV)

Diagnosis and symptoms were represented by BiLSTM

extraction features as hdiagnosis and hsymptoms, respectively. We

concatenated hdiagnosis and hsymptoms, hConcatenated as follows:

hConcatenated=[hdiagnosis , hsymptoms]

hConcatenated has the features of diagnosis and diagnosis of

corresponding symptoms. Then we input hConcatenated to the

dropout layer to increase the generalization performance of the

neural network. The output of the dropout layer is represented as

hDropouted. Then, we concatenate the output SWM of the symptom

weight matrix with hDropouted to obtain the following:

hSWM = [SWM , hDropouted]

Finally, we input hSWM to the classification layer for

classification using softmax. Due to the unbalanced diagnosis

of Padua’s corresponding categories, we used the focal loss

(32) function.

Clinical comprehensive factor branch (branch B)
In this article, we propose a clinically comprehensive factor

branch related to the Padua scale that utilizes LAC splitting

techniques and negative word filtering to achieve the extraction

of patient symptoms, medication information, and activity in the

EMR text, as shown in Figure 3.

The LAC (19) lexical segmentation tool can perform automatic

lexical segmentation of sentences and provide lexical information

of words after lexical segmentation. Medical terms tend to be more

accurate, and direct use of LAC lexical segmentation is likely to

result in inaccurate lexical segmentation. LAC provides amethod of

loading an intervening lexicon that allows LAC to perform accurate

lexical segmentation when accurate medical terms are encountered.

First, to accurately and precisely segment and match medical

terms and diagnoses in the EMR, we used the LAC word-splitting

tool. Using the total corpus as a preloaded corpus, we represent

the EMR as a collection containing multiple sentences. Then, we

obtained the result of LAC segmentation by feeding each sentence

into the LAC model, which includes the segmented words and the

corresponding lexical properties.

When we use the LAC segmentation tool for each sentence in

the EMR, we can obtain a set of vocabulary and corresponding

lexical properties. These vocabularies and lexical properties are the

basis for performing medical terminology matching. In Section

Medical corpus data, four professional corpora were selected as

references for matching terms, including ICD-9-CM3, DiseaseKG-

Symptoms, Reduced Mobility, and World Health Organization’s

Drug List. These four corpora are standard classification systems

widely adopted in the medical field, and thus, they cover most of

the medical terms and disease diagnostic results.

To make the matched results more accurate and reflect

the actual situation of patients, we introduced a negative word

matching and filtering mechanism. In medical terminology and

disease diagnostic results, a negative situation often refers to

the exclusion of certain symptoms or conditions. For example,

“patient is not using hormones” means that the patient is not using
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FIGURE 3

Clinically Comprehensive factor extraction judgment process. The icons next to the letters (A–F) represent the following contents: (A) total corpus;

(B) symptom corpus; (C) trauma or surgery corpus; (D) hormone corpus; (E) activity reduction corpus; (F) process. The example content in the

module, the example in the figure, is the statement “On April 16, 2021, he was hospitalized Hospital for artificial joint replacement” that appears in the

EMR.

hormones. If we were to match that description directly, the result

would be “hormone use,” which does not match the patient’s actual

condition. Therefore, we added negative words to the matching

process. When a negative word appears in the LAC result, we

filter out the sentence and exclude the corresponding symptom

or condition from the sentence. Negative words include but are

not limited to “not used,” “not seen,” “none,” “not found,” and so

on. Specifically, we extracted all the negative words and matched

them according to their preceding and following contexts. For

example, in the phrase “no hormone use,” “no use” is a negative

word, so we filter the phrase. Similarly, in “no abnormalities seen,”

“no abnormalities seen” is a negative word, and it is followed

by “abnormalities,” so we will exclude “abnormalities” from

the results.

By using the negative word matching and filtering mechanisms,

we were able to more accurately extract the symptoms and

conditions that represent the actual condition of the patient in each

sentence. This has important implications for disease diagnosis

and treatment, providing clinicians with a more accurate reference

base, as well as providing more accurate data support for medical

research. Notably, the item “recent (≤1 month of) trauma and/or

surgery” has a time judgment requirement. Combined with the

feature of LAC to divide sentences according to lexicality, we

compare the time corresponding to the time adverb extracted by

LAC with the current time to judge this item. In Figure 3, the

sentence ‘On April 16, 2021, he was hospitalized Hospital for

artificial joint replacement’ within the Electronic Medical Record

(EMR) identifies ‘On April 16, 2021’ as the ‘TIME’. We can use this

time and the current time to make a judgment.

In summary, our method is based on the LAC word division

tool and several professional corpora to achieve accurate extraction

and recognition of medical terms and disease diagnosis results in

EMRs through matching and filtering mechanisms.

Results

Evaluation index and experimental
environment

In this article, the AUC (33) and F1 (34) were selected as the

main evaluation indexes. In addition, three common multi-label

classification evaluation indexes are used as subevaluation indexes,

including the Hamming Distance (HD) (35), One-Error (OE) (36),

Label Ranking Loss (RL) (37), and Coverage (Cov) (38). The higher

the AUC and F1 values are, the lower the HD, OE, and Cov values

are, and the better the performance of the model.

For the purposes of training, executing, and evaluating

performance, the training experiment was executed on a computer

running the Windows 10 operating system with an Intel
R©
CoreTM

i7-11700KF CPU, an NVIDIA GTX3080 graphics processing

unit, and 10 GB of memory. The computer was equipped with

32 GB of RAM and ran in the Python 3.7 and TensorFlow

2.7.0 environments.

Our proposed approach is divided into a deep learning model

for disease diagnosis and an assessment of clinical situations. We

evaluated the two parts of the experiments separately.

Experiment of branch A

The items “active cancer,” “prior VTE,” “acute

infection/rheumatologic disorder,” “heart/respiratory failure,”

and “acute MI/ischemic stroke” are based on the proposed PDCM.

We split the PDCM training data in Section Padua disease

classification model training data (PDCM training data) by 7:3

as a training set and a validation set. The number of training

iterations was 100, and the model performance was checked using
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TABLE 6 Comparative experimental results.

Category AUC HD RL Cov OE F1

TEXTCNN 0.700 0.047 0.132 0.349 0.223 0.722

BiRNN 0.735 0.049 0.151 0.404 0.225 0.769

IDCNN 0.769 0.052 0.135 0.360 0.234 0.752

Transformer 0.779 0.044 0.145 0.381 0.197 0.791

BiLSTM 0.791 0.039 0.117 0.390 0.179 0.800

PDCM

(Ours)

0.836 0.036 0.100 0.282 0.167 0.838

the validation set. We used the early-stopping (39) method during

the training. If the effect has not improved for 10 consecutive

rounds, then training is terminated. The previous model with the

highest F1 was saved.

Model comparison results and analysis
We test our proposed method using the EMR data in Section

EMR test data. To further evaluate the effectiveness of our

proposed PDCM, we have selected the following baseline models

for comparison: IDCNN (40), BiRNN (41), Transformer (42),

TEXTCNN (43), and BiLSTM (44) are commonly used in the

field of text classification for comparison. Among the comparative

methods, we also use diagnostic and symptom text inputs. We

chose ALBERT as our vectorization technique for both PDCM

and the comparative methods because of its extensive embedding

features, lower parameter count, and suitability for clinical

deployment, as described in Section Ablation experiment. Below,

we present the results in Table 6. Furthermore, in the following

section, we provide a detailed description of the prediction process

for each approach.

TEXTCNN

TEXTCNN uses convolutional neural networks for text

classification. In TEXTCNN, we employ ALBERT for vectorizing

diagnostic and symptom text data. Following the original paper,

we use convolutional kernels of sizes 3, 4, and 5 to capture

features from the text. Max pooling is applied to extract the

most salient features produced by each convolutional kernel. The

pooled outputs are then merged and combined with the feature

information from the diagnosis and symptoms. Finally, the merged

features are passed through a dropout layer and a classification

layer to predict the disease category of the patients. Compared with

TEXTCNN, our method improves the AUC by 13.6%.

BiRNN

BiRNN is an RNN model that can input information in

both forward and backward transmission directions. In BiRNN,

we input the vectorized diagnostic and symptom information

separately into BiRNN as time steps. This enables us to extract

text features by first obtaining the features of each time step.

Subsequently, we input the time step features into the next BiRNN

to obtain the final hidden state and extract overall features. Finally,

we merge the extracted diagnostic and symptom features, apply a

dropout layer, and perform classification using a linear layer. In

contrast, the AUC of our method improved by 10.1%.

IDCNN

IDCNN introduces the concept of dilation rate, allowing the

model to increase its receptive field without adding parameters.

This enables capturing longer-range dependencies. In the

prediction process of IDCNN, iterative dilation convolution is

used to capture contextual feature information at different scales

from vectorized diagnostic and symptom data. The diagnostic and

symptom features are then merged after applying Dropout for

regularization. Finally, the merged features are passed through the

classification layer to predict disease categories. IDCNN is 6.7%

less effective than PDCM (Ours) in the AUC.

Transformer

The structure of the Transformer is composed of an encoder

and a decoder. Inputs are provided to the encoder layer, comprising

vectors and positional information for diagnoses and symptoms

separately. It employs stacked self-attention mechanisms and

encoder–decoder attention mechanisms to capture sequence

correlation information. Finally, the features of diagnoses and

symptoms are concatenated, and the patient’s disease category is

produced through a linear layer. In contrast, the AUC of our

method improved by 5.7%.

BiLSTM

BiLSTM is an improvement of BIRNN, which solves the

problem of gradient explosion in RNN well by designing a forget

gate. We vectorize the diagnosis and symptom information and

input it into two BiLSTMs to extract temporal and global features,

respectively. Finally, we concatenate these features, apply a dropout

layer for regularization, and use a linear layer to predict the disease

category of the patient. Compared with BiLSTM, our method

improves the AUC by 4.5%.

PDCM (Ours)

Compared to BiLSTM, our PDCM model incorporates a

SWM, enabling better calculation of the influence weight for each

symptom category on the overall category. PDCM strengthens

the association between symptoms and disease categories using

a symptom weighting matrix. Additionally, PDCM expands the

feature range to achieve optimal performance.

It can be seen from the data in Table 6 that the PDCM used in

this article achieved the best results in terms of AUC and F1.

Ablation experiment
In Section Model comparison results and analysis, we

experimentally concluded that the PDCM model works best.

For this, we designed ablation experiments to determine the

effectiveness of several methods. In the proposedmethod, Diagnose

(Only), Diagnose + symptom, PDCM, and PDCM (Without)

were used. Diagnose (Only) means training with diagnosis

only, Diagnose + symptom means training with diagnosis and

corresponding symptoms for diagnosis; the PDCM represents

the use of diagnosis + symptom prediction while incorporating

the symptom weighting matrix presented in Section Symptom

weight matrix layer (I). To analyze the effectiveness of these
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TABLE 7 Ablation experiment.

Category AUC HD RL Cov OE F1

PDCM

(Without)

0.709 0.046 0.170 0.451 0.216 0.745

Diagnose

(Only)

0.782 0.041 0.140 0.389 0.190 0.798

Diagnose+

symptom

0.791 0.039 0.117 0.390 0.179 0.800

PDCM

(Ours)

0.836 0.036 0.100 0.282 0.167 0.838

methods, an ablation experiment was designed. In Section Padua

disease classificationmodel training data (PDCM training data), we

mentioned data augmentation for the diagnostic incorporation of

uncertain text. To verify the effect of this part, we removed this part

of the augmentation as PDCM (Without). The experimental results

are shown in Table 7.

It can be seen from the experimental results that the PDCM

proposed by us has achieved the best effect. Compared with

PDCM (Without), F1 and AUC were improved by 9.3 and 12.7%,

respectively. We compared Diagnose (Only) with Diagnose +

symptom and found a 0.9% increase in AUC after incorporation

of symptoms.

To compare the differences among different methods in detail,

we calculated the AUC value of each algorithm for each item, and

the results are shown in Figure 4.

In summary, the PDCMproposed by us achieved the best effect.

First, we compared Diagnose (Only) with Diagnose + symptom,

and found that the test result was significantly higher than that of

Diagnose (Only) after the integration of symptoms. The Diagnose

+ symptom method achieves a better effect on the evaluation of

the “active cancer” item (AUC: 0.837 vs. 0.824) and the “acute

infection and/or rheumatologic disorder” item (AUC: 0.789 vs.

0.749). Comparing PDCM and PDCM (Without), we found that

the model effect was significantly improved in “active cancer”

(AUC: 0.842 vs. 0.641), “acute infection and/or rheumatologic

disorder” (AUC: 0.808 vs. 0.791), and “acute MI and/or ischemic

stroke” (AUC: 0.804 vs. 0.643) items.

Experiment of branch B (clinical
comprehensive factor extraction judgment
results)

We test our proposed method using the EMR data in Section

EMR test data. Items of “Reducedmobility,” “Recent (≤1month of)

trauma and/or surgery,” and “Ongoing treatment” use the method

in Branch B. Items of “Elderly age (≥70 years),” “BMI>30 kg/m2,”

and “thrombophilic” use computerized numerical calculations. We

treated these items as independent dichotomous items using the

AUC assessment. The AUC values of these items are shown in

Figure 5.

Items of “Reduced mobility,” “Thrombophilic,” “Ongoing

treatment,” “Recent (≤1 month of) trauma and/or surgery,”

“Elderly age (≥70 years),” and “BMI>30 kg/m2” hadAUCs of 0.809,

0.95, 0.888, 0.995, 0.827, and 0.960, respectively.

Padua overall evaluation results

We integrated Branch A and B, presented in Section Proposed

method, into the VTE software system for practical use. The scoring

interface in real-world applications is shown in Figure 1. According

to the authoritative standards of the American College of Chest

Physicians, a total score below 3 on the Padua scale is considered

low risk, and a score above 3 is considered high risk. The risk

assessment level is crucial as it directly determines the patient’s

follow-up treatment plan. We used the scores to assess the patient’s

level of risk. It is a common phenomenon in healthcare that there

are far fewer high-risk people than low-risk people. In this section,

we use AUC, sensitivity, specificity (33), and precision value (34) to

evaluate the performance of our method, which is not affected by

data imbalance.

Of the 7,690 EMRs tested, 7,548 were assessed by doctors as

low risk and 142 as high risk. Among the 7,548 low-risk EMRs,

4,341 samples with a score of 0 were also assessed as low risk.

Although a score of 0 is also considered low risk, it represents a

much lower level of risk. Considering the imbalance in the samples,

we utilized the AUC value to evaluate the risk levels for 0 scores,

low risk, and high risk. The AUC of 0.883 in assessing patients’

risk of VTE indicates that the model has a high level of accuracy

in distinguishing between low-risk and high-risk EMRs.

The precision value can be used to further evaluate the false rate

of our proposed method. With an evaluation value for precision

of 0.87, it indicates that our model has high precision in its

predictions, denoting a low overall false positive rate and validating

the reliability of our method.

We further use sensitivity and specificity to evaluate the

accuracy of low and high risk. Both indicators are equally

unaffected by the data imbalance. Sensitivity and specificity

represent the ability of the method to detect positive samples

and exclude negative samples, respectively. The high specificity

value of 0.957 suggests that the model is able to correctly assess

a large proportion of low-risk EMRs, while the sensitivity value

of 0.816 indicates that the model is also effective at assessing

high-risk EMRs.

Discussion

Our proposed two-branch model automatically predicts VTE

risk from the EMRs without doctor input, greatly reducing the

burden on doctors. Currently, most patients do not receive effective

VTE risk assessment and prevention (6). Our proposed method for

automatic VTE risk assessment helps to improve the prevention

rate of VTE. Furthermore, intelligent assessment using an artificial

intelligence approach helps to eliminate the heterogeneity caused

by the assessment of different doctors. Moreover, our proposed

DB-DL assessment method achieves higher accuracy than other

intelligent methods.

In terms of automation of VTE risk assessment, although

both Pierre et al. (10) and Qatawneh et al. (16) automate the
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FIGURE 4

AUC values of multiple methods for ablation experiments.

FIGURE 5

Clinical comprehensive factor branch AUC.

assessment to some extent, their methods require additional steps.

Specifically, Qatawneh et al.’s approach involves information that

primarily exists in textual form, which requires considerable

time investment in converting textual information into numerical

values. On the other hand, Pierre et al. require the construction

of a complete EDW and subsequent transformation of EMR

text into structured data to determine risk factors, which may

not be feasible for healthcare organizations without available

resources for building a large-scale structured data warehouse. In

contrast, the object of our proposed DB-DL assessment method

is EMR text, and EMR systems are widely used at all levels of

healthcare systems, which makes our method more applicable.

Furthermore, we elaborate on our DB-DL assessment method

in Section Proposed method. The DB-DL assessment method is

divided into two branches, with Branch A using our designed

PDCM deep learning model to determine the patient’s disease

category, which mainly utilizes diagnostic and symptom text data.

By using LAC combined with negative word filtering in Branch
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B, we are able to extract and determine the patient’s symptoms,

hormone use, and activity, thus providing automation of the entire

DB-DL assessment method. Our method automates the entire

process of assessment without manual transformation or doctor

input compared to previous work.

The accuracy of the automated assessment of high- and low-

risk levels in Padua is crucial and determines the next preventive

measure or treatment for the patient. In terms of the accuracy of the

automated assessment of the Padua scale, we tested the accuracy of

our proposed DB-DL assessment method using the EMR test data

as an independent data source. Pierre et al. (10), who also studied

the automated assessment method regarding the Padua scale, had

an AUC of 0.81 in assessing Padua high and low risk for them,

while our DB (Pierre et al.) used a structured medical record from

a processed data warehouse matched to ICD-9 codes to determine

the patient’s VTE risk items. This has less characteristic information

and ignores the impact of the patient’s symptoms and test results

on the disease category. Such characteristics are less informative

and ignore the impact of the patient’s symptoms and test results

on the disease category. For example, the symptom “Precardial

pain” is correlated (45) with the item “Acute MI/ischemic stroke”

in the Padua scale. Our DB-DL assessment method utilizes a deep

learning model, PDCM, and a combination of clinical factors to

determine the branch; our method also accounts for the patient’s

diagnosis and multiple texts, including physical examination, tests,

medications, and diagnosis, to achieve higher accuracy.

In our DB-DL assessment method, Branches A and B represent

different items of the Padua scale, respectively. We further discuss

the accuracy of the table items represented by Branches A and B. In

Branch A, we propose the PDCM deep learning model and input

the patient’s diagnosis + symptom prediction to determine their

disease category. We compare the accuracy of the proposed PDCM

model with the common disease classification deep learningmodels

IDCNN (40), BiRNN (41), Transformer (42), TEXTCNN (43), and

BiLSTM (44) on this task. BiRNN is suitable for handling sequential

problems but prone to the gradient explosion problem, and our

proposed method outperforms BiRNN (AUC: 0.837 vs. 0.735).

The Transformer model is not affected by the gradient explosion

problem of traditional RNN and can better capture relationships

and dependencies at a distance in the input sequence. However, it

sacrifices traditional RNN and local feature capture. In contrast, our

model outperforms the Transformer model (AUC: 0.837 vs. 0.779).

While IDCNN and TEXTCNN have their advantages, IDCNNmay

lose information, while TEXTCNN has a fixed window size that

limits its ability to incorporate all textual information. Our model

outperforms the IDCNN and TEXTCNN models (AUC: 0.837 vs.

0.769 and AUC: 0.837 vs. 0.700, respectively). BiLSTM can model

stacked LSTM layers and better incorporate context but still falls

short of our PDCM model (AUC: 0.837 vs. 0.791). The latter

accounts for symptom weights and achieves higher accuracy.

To further validate the impact of each module of our proposed

PDCM model on the accuracy of Branch A assessment, in

Section Ablation experiment, we designed ablation experiments

in which we compared four methods, namely Diagnose (Only),

Diagnose + symptom, PDCM, and PDCM (Without). Diagnose

(Only) represents only Diagnose + symptom stands for training

and predicting patients’ disease categories using Diagnose only.

Diagnose + symptom stands for training and predicting patients’

disease categories using Diagnose + symptom. PDCM is our

proposed deep learning model, which stands for training and

predicting patients’ disease categories using Diagnose + symptom

and fused symptom weights. In Section Padua disease classification

model training data (PDCM training data), we performed Data

amplification to incorporate uncertain diagnostic descriptions to

improve the model’s generalization performance. To analyze the

effectiveness of data amplification, we removed this part of the

data extension and used PDCM (Without) representation. First, we

compared Diagnose (Only) and Diagnose + symptom in terms of

the validity of diagnostic integration of symptoms and found that

the test results after the integration of symptoms were significantly

higher than those of Diagnose (Only). This indicates that the model

obtained more feature information after incorporating symptom

information and obtained better generalization performance in the

actual test. In terms of data augmentation, PDCM (Without) and

PDCM were compared. We found that many uncertain diagnoses

were incorrectly judged as true by the model when no data

augmentation method was used. Diagnose + symptom or PDCM

can be used to verify the validity of incorporating the symptom

weighting matrix in PDCM. We then compared Diagnose +

symptom with the PDCM model and found that the accuracy of

determining patient disease categories was substantially improved

after incorporating symptom weights. The PDCM used the TF-

IWF algorithm to calculate the weight of each symptom category’s

influence on the category and showed the best results by integrating

the corresponding diagnoses based on the symptom weights.

The Branch B assessment method achieved good results. The

items “thrombophilic,” “Elderly age (≥70 years),” and “BMI >30

kg/m2” were calculated from the physical examination values, and

the AUCs were higher than 0.95, indicating the high accuracy

of these items. However, for the items “Reduced mobility” and

“Ongoing hormonal treatment,” the AUC values were 0.809 and

0.827, respectively, with average prediction accuracy. Among them,

the “Reduced mobility” item was more complicated to determine,

and its lack of representation in the EMR may be one of the main

reasons for its poor prediction. In addition, the poor matching

effect of the “Ongoing hormonal treatment” item was caused by

differences in doctors’ judgment criteria for whether hormonal

drugs were used. Taken together, although some items had average

predictive effects, the overall assessment results were still reliable.

In Branch B, we extracted medical data for rule determination

using LAC in combination with negative word filtering. We

used professional corpora, such as ICD-9-CM3, DiseaseKG, and

Organization Scripted Drug List, which have wide coverage and

achieve good accuracy in clinical situation determination.

Our proposed DB-DL assessment method intelligently assesses

the Padua risk class of patients in Branches A and B. Branch

A uses the proposed deep learning model PDCM to assess the

patient’s disease class. Our proposed PDCM shows the best results

compared to other deep learning models, and Branch B uses a

variety of professional corpora to extract and determine the clinical

comprehensive factors. We achieve good accuracy with the wide

coverage of the corpus we use. Ultimately, our DB-DL assessment

method constructed using both A and B branches demonstrated

good accuracy in assessing patients at high/low-risk levels. In
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addition, our method also showed high accuracy in the assessment

of individual Padua table items.

In terms of practical application, the Padua scale assessment

is widely used. Our proposed method is based on textual

information in EMRs and only requires the extraction of diagnoses,

symptoms, and other integrated medical terms from the EMR

system to perform an automatic Padua risk assessment. It can

be embedded in different EMR systems. We count the average

time our method takes to assess a medical record, and our

proposed method takes only 0.37 s on average in an EMR. The

speed of human assessment of the Padua scale by doctors is

mentioned in the study of Pierre et al. (10) to be ∼2–14min; our

proposed method has a huge advantage compared to the speed of

human assessment.

Conclusions

In this article, we propose a dual-branch method that utilizes

a deep learning model and clinically comprehensive factors to

develop an intelligent method to assess the risk of VTE in

patients. Compared to the doctors’ assessment used as a gold

standard, our proposed method attains an AUC value of 0.883

for judging high- and low-risk levels, and it takes only 0.37 s

to assess an EMR. Therefore, the proposed method in this

article can be applied to implement an intelligent assessment of

the Padua scale and has engineering applications for assisting

doctors in assessing the risk of VTE. Future studies should

incorporate work that includes incorporating increasingly diverse

clinical data, validating our methods in larger patient populations,

and exploring advanced models and algorithms to improve

assessment accuracy.
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