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Introduction: In the rapidly evolving field of digital public health, effective management 
of medical equipment is critical to maintaining high standards of healthcare service 
levels and operational efficiency. However, current decisions to replace large medical 
equipment are often based on subjective judgments rather than objective analyses and 
lack a standardized approach. This study proposes a multi-criteria decision-making 
model that aims to simplify and enhance the medical equipment replacement process.

Methods: The researchers developed a multi-criteria decision-making model 
specifically for the replacement of medical equipment. The model establishes a 
system of indicators for prioritizing and evaluating the replacement of large medical 
equipment, utilizing game theory to assign appropriate weights, which uniquely 
combines the weights of the COWA and PCA method. In addition, which uses the 
GRA method in combination with the TOPSIS method for a more comprehensive 
decision-making model.

Results: The study validates the model by using the MRI equipment of a tertiary hospital 
as an example. The results of the study show that the model is effective in prioritizing 
the most optimal updates to the equipment. Significantly, the model shown a higher 
level of differentiation compared to the GRA and TOPSIS methods alone.

Discussion: The present study shows that the multi-criteria decision-making model 
presented provides a powerful and accurate tool for optimizing decisions related to 
the replacement of large medical equipment. By solving the key challenges in this 
area as well as giving a solid basis for decision making, the model makes significant 
progress toward the field of management of medical equipment.
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1 Introduction

Large medical equipment is an essential material foundation for maintaining the normal 
operation of hospitals and improving their competitiveness (1, 2). With the iterative development 
of medical technology, hospitals should match the acquisition of medical equipment to the 
actual needs. In one survey, it was shown that nearly 60% of the total cost of a hospital project 
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involves hospital equipment (3). The Malaysian government invested 
about MYR27 million in healthcare facilities in 2018 by implementing 
a program of new and upgraded medical equipment purchases (4). 
According to the Chinese government, the total value of medical 
equipment in all hospitals rose from RMB320 billion to RMB629 
billion from 2010 to 2015, thus medical equipment occupies an 
important investment in public hospitals (5).

In practice, however, some hospitals blindly pursue the advancement 
of equipment, leading to unbalanced resource allocation and waste of 
resources. The phenomenon of under-utilization and over-utilization of 
equipment occurs repeatedly, adding an invisible burden to patients, 
reducing the operational efficiency of hospitals, and neglecting the actual 
needs of hospital work use (6, 7). Hospital management decision makers 
are faced with the challenge of replacing medical equipment in an orderly 
manner, especially when it comes to old equipment, and need to prioritise 
the replacement of various medical equipment through assessment and 
quantitative tools for effective allocation of state funds and the healthy 
development of clinical departments in hospitals (8). Too little or too slow 
replacement of equipment can easily lead to stagnation in the development 
of the department, hindering the healthy development of the hospital and 
affecting the patient’s experience.

Multiple Criteria Decision Making (MCDM) is a decision analysis 
method used to assist decision-makers in evaluating and selecting the 
best decision alternative among multiple decision criteria or standards 
(9). Evaluating major medical equipment replacement priorities is 
closely related to problem-solving using multicriteria decision-making 
(10). Due to the particular ambiguity and difficulty in defining 
indicators in solving multicriteria problems, MCDM calculates an 
overall score based on the weight of each criterion by quantifying the 
ranked quantitative criteria and provides effective decision-making on 
a more accurate basis (11). Common methods available include 
hierarchical analysis (AHP) (12), network analysis (ANP) (13), ideal 
solution similarity preference ranking (TOPSIS) (14), and data 
envelopment analysis (DEA). Presently, domestic and foreign scholars 
have thoroughly researched medical equipment replacement decisions. 
Mazloum Vajari S et al. (15) a proposed decision system that uses a 
hybrid SWOT-ANP-WASPAS approach provides solutions for medical 
equipment replacement programs. Ben Houria et al. (16) developed a 
multicriteria decision model based on AHP, TOPSIS and MILP 
methods to select the best maintenance strategy for the equipment by 
quantitatively ranking the different maintenance strategies of the 

equipment according to their importance. Mora-García T et al. (17) 
using an assessment tool based on multicriteria decision analysis, 12 
indicators were defined for technical and economic aspects, resulting 
in the Medical Equipment Replacement Priority Indicator (MERUPI), 
which provides supporting criteria for deciding which medical 
equipment should be replaced and for the purchase plan. Faisal M et al. 
(18) proposed an analytical hierarchy processes -group decision-
making (AHP-GDM) model, which includes 11 quantitative and 
qualitative indicators as primary and secondary criteria to prioritize 
medical equipment replacement priorities.

The focus of this paper is to develop a comprehensive MCDM 
model to test the feasibility and superiority of the improved 
COWA-PCA and GRA-TOPSIS methods in evaluating the 
replacement priorities of large medical equipment based on the 
example of four MRI devices.

2 Constructing the evaluation 
indicator system

This article follows the principles of systematicity, operability, 
independence and measurability (19), and combines the demand 
characteristics of the hospital and the technical characteristics of the 
equipment to construct an evaluation system for the replacement 
priority of large medical equipment, so as to assists hospitals and 
related departments in managing and replacing medical equipment 
more effectively (20, 21), ensuring that the equipment is operated 
efficiently, and to reduce the operating costs.

First, relevant data involving the renewal of large medical equipment 
were studied, and the indicators related to the equipment were initially 
screened. Subsequently, experts engaged in medical equipment 
management and hospital management were consulted using the Delphi 
method (22, 23), and the initially selected evaluation indicators were 
refined and perfected from the 20 indicator datasets based on the 
criteria of high sensitivity and collectability of the indicators. Finally, the 
evaluation index system was constructed from four aspects, namely, 
operation guarantee, social benefits, technical indicators (24) and 
economic benefits, in order to comprehensively evaluate the 
performance, efficiency and effectiveness of the equipment in actual 
operation, and to provide a more comprehensive and objective basis for 
the decision-making of equipment renewal, as shown in Table 1.

TABLE 1 Large medical equipment renewal priority evaluation indicator system.

First-level indicator Second-level indicator Meaning of indicator Property

Operational security(X1)

Work Saturation(X11) actual working load of the equipment +

Equipment Usage(X12) actual working condition of the equipment +

Work Intensity(X13) work density during the rated working time +

Social benefits(X2)
Average Patient Waiting Time (X21) patient satisfaction with the examination +

Average Patient Interval Length (X22) efficiency of the equipment examination +

Technical specifications(X3)
Life Index(X31) current condition and performance of the equipment +

Failure Frequency(X32) reliability of the equipment in actual operation +

Economic benefits(X4)
Cost–benefit Ratio(X41) ratio of revenue generated to operating costs −

Payback Period(X42) payback time of the equipment investment −
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2.1 Operational security (X1)

Operational assurance indicators reflect the stability and reliability 
of the equipment during actual use. These indicators allow us to 
understand how the equipment operates and whether it can meet the 
existing workload and demands.

 1) Operating saturation (X11): higher operating saturation may 
lead To overworking of the equipment, thus affecting its 
stability and reliability.

 
X

Zi
b

11
2

=
+( )×∑ττ
ηη

  
(1)

Where τ refers to the average inspection time per patient, Z refers 
to the total number of inspections andηb the equipment’s powered-on 
runtime, and 2 refers to the preparation time set aside.

 2) Equipment utilization (X12): a low equipment utilization rate 
may mean that equipment is sitting idle for a more extended 
period and resources are not being fully utilized.

 
X w

b
12 =

ηη
ηη

  
(2)

Whereηw refers to the total working time of the equipment, from 
the start of the first patient’s inspection to the end of the last 
patient’s inspection.

 3) Work intensity (X13): higher work intensities can lead to 
excessive wear and tear and equipment breakdowns
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(3)

Where ηr refers to the rated working time, generally 8 h daily.

2.2 Social benefits (X2)

The social effectiveness indicators focus on patient satisfaction 
and quality of care. Understanding how well the equipment performs 
in meeting the needs of patients helps to evaluate the impact of the 
equipment on the overall reputation of the hospital and patient 
satisfaction. Societal benefits are important for decisions on 
equipment replacement.

 1) Average patient waiting time (X21): longer waiting times may 
affect patient satisfaction and, thus, the impact of equipment 
on patient service quality.

 
X

Z
bi ci

i
21 =

∑ −( )
∑ ′
ττ ττ

  
(4)

Where τbi  refers to the patient’s examination start time, τci refers 
to the patient’s examination end time, Zi′ and refers to 
appointment times.

 2) Average patient interval length (X22): longer examination 
intervals may mean that the equipment is insufficiently used, 
possibly due to poor appointment scheduling or operational 
delays resulting in longer waiting times for patients, which 
helps to understand the efficiency of the equipment.

 
X bi e i22 1= ∑ −( )−( )ττ ττ

  
(5)

Whereτe i−( )1  refers to the previous patient’s end time.

2.3 Technical specifications (X3)

Technical indicators focus on the technical performance and 
status of the equipment and can directly reflect the technical 
advancement and reliability. Technical indicators help to 
understand whether the equipment is at or near its expected 
service life and the failure rate of the equipment in 
actual operation.

 1) Life index (X3): equipment has a reference useful life of 6 years, 
and a higher life index means that the equipment is close to or 
Has reached its estimated useful life, which can help in 
planning for replacement or upgrading of the equipment and 
affect the efficiency of the equipment

 
X a

p
31 =

ψψ
ψψ

  
(6)

Where ψ a  refers to the current age of equipment, ψ prefers to 
the Estimated valid lifetimes of equipment, generally taken to 
6 years.

 2) Failure frequency (X32): a high number of failures may mean 
that the performance of the equipment decreases and helps to 
understand the stability and reliability of the equipment.

 X b32 = ∑φ   (7)

Where φb refers to several breakdown times.

2.4 Economic benefits (X4)

The economic efficiency indicator looks at the equipment’s cost-
effectiveness and investment recovery. It reflects the value of the 
equipment on an economic level and helps to determine whether 
the economic performance of the equipment is in line 
with expectations.

 1) Cost–benefit ratio (X41): reflects the revenue generated To 
operating costs. A lower cost–benefit ratio may mean The 
equipment Is more expensive, reducing economic efficiency.

 
X R

C
t

t
41 =

  
(8)

Where Rt  refers to total equipment inspection revenueCt  and 
equipment running costs, including staffing, maintenance, 
servicing, etc.

 2) Payback period (X42): reflects the payback time of the 
equipment investment. A more extended payback period may 
mean a lower rate of return on the equipment and the need to 
delay the replacement of the equipment, helping to understand 
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the economic value of the equipment and the benefits of 
the investment.

 
X C

R C
v

t t
42 =

−   
(9)

Where Cv refers to the price when the equipment was purchased.

3 Materials and methods

3.1 Research framework

The research framework of this article is shown in Figure 1. In 
Part 1, the evaluation indicator system for prioritizing the replacement 
of large medical equipment is constructed by looking up the literature 
as well as consulting with experts (see Table 2).

In Part 2, COWA, PCA, and game theory methods (25) are 
combined to determine the weights of the indicators. The COWA 
method is mainly used to assign weights to different expert opinions 
to determine the key factors affecting the decision of equipment 
replacement. The PCA is used to calculate the objective weights of the 
indicators, and the raw indicators are transformed into principal 

components. The weights are determined based on the contribution 
of each principal component to the variance, thus reducing subjective 
bias. Game theory is used to promote balance and co-operation 
between multiple stakeholders to develop an optimal weight 
allocation strategy.

In Part 3, the GRA-TOPSIS method was used to prioritise 
equipment replacement. The relative correlation between equipment 
is determined by gray relational analysis (GRA) and the distance of 
each piece of equipment relative to the ideal solution is calculated 
using the TOPSIS method to prioritise the replacement decision. By 
integrating these methods, a combination of expert opinion, reducing 
information loss and analysing weighting relationships was achieved 
and the validity of the method was tested by comparing multiple 
methods and the Kendall method, ultimately providing excellent 
guidance for the decision-making process surrounding the 
replacement of large medical equipment.

3.2 Combined weighted averaging(COWA)

Text for this sub-section. C-OWA (26) is a method for 
determining experts’ weights. Based on the concept of Combined 
Ordered Weighted Average (OWA) and Compatibility Ranking (CO), 

FIGURE 1

Flow chart.
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the COWA operator first calculates the ranking compatibility of each 
expert on different evaluation indicators and then assigns weights to 
each expert based on the compatibility score. The method fully uses 
the experts’ experience, eliminates the negative effects of individual 
extremes, improves the scientific nature of the indicator assignment 
and avoids the extremes of the experts’ perceptions (27).

Step 1: by inviting n experts in the field of medical equipment to 
rate the importance of the indicators at each level (0 to 10 scale), the 
initial scoring data of the experts from the data set 
a a a aj n1 2, , , , , ( )  the scoring data in the data set are sorted 

from 0 to the smallest, and the result is b b b bn0 1 2 1≥ ≥ ≥ ≥ − .
Step  2: using the combination number b0 to determine the 

weights of the data, the weighting vector is applied to the decision data 
to obtain the absolute weights of the indicators ωωi :

θθj 1 n 1
j

k 0
n 1

n 1
k

n 1
j

n 1
C

C

C
2

j 0 1 2 n 1+
−

=
−

−

−
−= = = −

∑
, , , , ,  (10)

 

ωωi
j

n
j j¸ b i m= =

=

−

+∑
0

1
1 1 2, , , ,

  
(11)

Where Cn
j
−1 is the combinatorial formula that calculates the 

number of methods to select j  data from n −1 data, 2n 1−  represents 
all possible combinations when selecting any quantity of data out of 
n −1, ̧ j 1+  offers a normalized weight for each j .

Step 3: Calculate the relative weights of the indicatorsωi, which 
achieved by normalizing the absolute weights Éi  such that their 
aggregate is equal to 1.

 

ωω
ωω

i
i

i
m

iw
i m= =

=∑ 1

1 2, , , ,

 

(12)

Where 
i

m
iw

=
∑

1
 represents the summation of all absolute weights for 

all m indicators. This normalization ensures that the relative weights 
are proportional to the absolute weights, and their collective sum is 1, 
rendering them appropriate for scenarios where the relative 
significance between indicators is paramount.

3.3 Principal component analysis (PCA)

Principal Component Analysis (PCA) (28) is a method of 
multivariate statistical analysis in which multiple factors in an 
evaluation system are described by a few unrelated important 
variables, using linear equations to summarize and integrate all the 
factors so that they are used to reflect the variance at the higher level 
(29). All linear combinations are a type of principal component, and 
the information reflected in the selected composite factors is 
interpreted to make the overall evaluation model more balanced.

Step  1: The evaluation indicators are normalized to obtain a 
judgment matrixΥij

 
ϒϒ ij

ij
, , , ; , , ,=

−
−

= =( )x x
x x

i n j mmin

max min

, 1 2 1 2 

  
(13)

Where xmaxand xmin are the highest and lowest values within a 
given unit.

Step 2: Calculate the correlation coefficient between the variables 
using the standardized data and calculate the correlation 
coefficient matrix R rij m n= ( ) ×

 
r

y y

n
i n j mk

n
ki kj
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−
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1 2 1 2,  

  
(14)

Step 3: Calculate the eigenvalues and eigenvectors to solve for the 
eigenvalues and eigenvectors of the correlation coefficient matrix. The 
characteristic equation for the correlation moment R E− =λ 0
calculates the eigenvalues λ λ λ1 2, ,L n, and the non-zero 
solution R E X− =λ 0 is the eigenvector ∝ ∝ ∝1 2, ,L n.

Step  4: Calculate the variance contribution and cumulative 
variance contribution of each principal component:

 

a bj
j

j
n

j
p

k
p

k

k
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k
= =

=

=
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∑
∑

λλ

λλ

λλ
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(15)

TABLE 2 Results of principal component analysis weights.

Indicator Components 1 Component 2 Component 3 Component 4 Score Weights

Characteristic 
roots

4.013 1.652 1.186 0.924

Explanation of 
variance

44.59% 18.36% 13.18% 10.27%

X11 0.443 0.158 0.297 0.218 0.333 0.124

X12 0.402 0.246 0.325 0.321 0.347 0.129

X13 0.392 0.195 0.123 0.335 0.302 0.113

X21 0.226 0.576 0.062 0.057 0.255 0.095

X22 0.358 0.151 0.229 0.348 0.293 0.109

X31 0.388 0.151 0.367 0.397 0.335 0.125

X32 0.097 0.612 0.336 0.046 0.237 0.088

X41 0.381 0.099 0.432 0.328 0.322 0.120

X42 0.065 0.339 0.549 0.588 0.259 0.096
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Where a jis the variance contribution, bp is the cumulative 
variance contribution，p is the number of principal components.

Step 5: Calculate the composite score:

 
Z a P

j

p

j j=
=
∑

1   
(16)

Where P is the main component.

3.4 Game theoretical portfolio weights

In order to improve the objectivity, science and accuracy of 
the indicator assignment, game theory is introduced into the 
indicator weights (30). The game principle means that each 
player in the game decides which action to take, according to 
their interests and taking into account the possible impact of 
their decision-making behavior on the behavior of others, by 
considering the equilibrium between the mutually influencing 
behaviors, to achieve the goal of optimization of the subject’s 
objectives in a state of compromise between the factors (31). 
Therefore, game theory is introduced to consider the COWA and 
the PCA methods as two sides of the game, seeking the optimal 
combination of weights that will bring both sides to equilibrium. 
At this balance level, the sum of the deviations between the 
optimal combination weights and the two is minimized.

Step  1: Using L methods to determine the weights of the n 
indicators, the set of indicator weights is expressed as 
W W W Wk k k kn= ( )

1 2
, , ,  where k L=1 2, , ,  then the weight L  vectors  

Wk combination weights w are

 
W W k L

k

L
k k= =

=
∑
1

1 2λλ , , , ,

 
(17)

Where λk  is the linear combination factor.
Step 2: Minimize the divergence ∆ = −( )W Wk between W  and 

Wk , and according to game theory principles, the corresponding 
optimization model is

 
min , , , ,

k

L
k k

T
kW W k L

=
∑ − =
1 2

1 2λλ 

  
(18)

Step  3: Uses two weighting methods, taking the value L = 2. 
According to the principle of differentiation, the set of linear equations for 
the optimal first-order derivative condition is obtained by substituting Eq:
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(19)

Step  4: The combination coefficients λ1 and λ2 are obtained 
according to Eq. and normalized to λk

∗, which in turn gives the game 
combination weights W ∗:

 
W W WT T∗ = +λλ λλ1 1 2 2   (20)

3.5 Gray relational analysis and technique 
for order of preference by similarity to 
ideal solution (GRA-TOPSIS)

Text for this sub-section, the TOPSIS method (32) is suitable 
for applying large multi-factor systems, which avoids the 
subjectivity of data and describes the overall evaluation of multiple 
factors. GRA (33) can be used to judge an indicator’s merits by the 
degree of similarity in geometric shape trends between factors. 
Each of the above two methods has its advantages (34). The 
combination of the weighted TOPSIS and GRA to construct a 
medical equipment replacement priority model makes the 
conclusions of the model calculation more consistent with practice 
and scientific.

Step  1: Construct a weighted normalized decision matrix S , 
calculate the Euclidean distance to the positive and negative ideal 
solutions for each evaluation object d di i

+ −, :

 S s w zij m n j ij m n= ( ) = ×( )× × ′  (21)
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n
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j
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(22)

Where s s s sj j ij j j ij
+ −= =max min; .

Step  2: Calculate the matrix of gray correlation coefficients 
between each solution and the positive and negative ideal solutions:

 
H h H hij m n

ij
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−
− −

− −
=

− + −

− + −

minmin maxmax

ρρmax max

  

(25)

Where ρ  is the resolution factor and ρ ∈( )0 1,  is 
taken from ρ = 0 5. .

Step  3: Calculate the gray correlation coefficients of each 
evaluation object and the positive and negative ideal solutions l li i

+ −, , 
and dimensionless process the Euclidean distance d di i

+ −,  and the 
correlation l li i

+ −, :
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Step 4: Combine the Euclidean distance D Di i
+ −,  and the gray 

correlation coefficient L Li i
+ −,  and calculate the replacement decision 

factor ξi :

 
T D L T D Li i i i i i
+ − + − + −= + = +αα αα αα αα1 2 1 2,

  (29)

 
, , , ,

+

+ −= =
+

1 2 3i
i

ii

T
i m

T T
ξ

  
(30)

Whereα α1 2,  reflects the decision maker’s preference for location 
and shape, andα α α α1 2 1 21 0 1+ = ∈[ ], , , . α α1 2,  values are empirically 
taken as 0.5  in general. The more significant the corresponding 
replacement decision factor ξi , the better the object; the smaller the 
corresponding replacement decision factor ξi , the worse the object.

4 Results

4.1 Case presentation and data sources

Text for this sub-section. Four magnetic resonance imaging (MRI) 
machines in the hospital are used alternately with old and new 
equipment. The equipment types are Signa HDx, MR750, MR750W 
and Prisma, located in different parts of the hospital.

In order to fully access the evaluation indicators for equipment 
replacement, multiple data sources are used to ensure the accuracy and 
completeness of the required information. Firstly, data collectors were 
installed on the large equipment to collect critical data such as hours of 
operation, start-up time and workload in real-time. These data collectors 
use advanced image recognition technology to accurately monitor the on/
off status of the equipment. At the same time, the data collectors read 
information from the equipment’s examination interface through a 
frequency divider and use image recognition technology to identify 
essential information such as patient numbers and examination 
sequences, enabling accurate calculation of the equipment’s total working 
examination time.

In order to obtain more effective data, the real IoT collection data is 
matched with other information systems in the hospital as well as data 
integration. By interfacing with PACS, HIS, RIS, reservation system, ERP 
and other related systems, data acquisition of data fields required by 
indicators is achieved, to obtain metric fields such as patient appointment 

days, average interval length, and revenue. Through in-depth analysis of 
patient payments and examination moments in these systems, key 
indicators such as patient appointment days, average interval length, and 
revenue were obtained. This process uses rigorous data cleaning and 
validation methods to ensure the reliability and accuracy of the data. In 
addition, a close working relationship is maintained with the equipment 
manufacturers to obtain data on failures data. Equipment manufacturers 
regularly provide information on equipment failure fills, which is carefully 
verified and collated to provide a reliable data source for assessing 
equipment failure count indicators.

In summary, the multiple data sources and rigorous data 
processing methods ensure that the indicator data used in assessing 
equipment replacement decisions are accurate and comprehensive. 
This provides a solid study database and helps make more scientific 
and rational equipment replacement decisions.

4.2 Correlation analysis

Text for this sub-section. Pearsons’ method in SPSS is used to 
calculate correlations between indicators. It can reveal the strength and 
direction of linear relationships between variables, which indicators have 
strong positive or negative correlations with each other (35), to understand 
the interactions between indicators and provide a basis for the subsequent 
principal component analysis. The result is shown in Figure 2.

The evaluation indicators were subjected to Pearson correlation 
analysis to reveal their interrelationships. The analysis results show a high 
positive correlation between equipment utilization, work saturation and 
work intensity, indicating that these indicators may influence each other. 
The payback period was positively correlated with the average interval 
length, indicating that the average interval length also tends to increase 
when the payback period increases. In contrast, there is a negative 
correlation with equipment utilization, work saturation, average 
appointment length, work intensity, equipment life index and cost–benefit 
ratio, indicating that these indicators tend to decrease when the payback 

FIGURE 2

Indicator correlation.
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FIGURE 4

COWA weighting results.

period increases. The average appointment length positively correlated 
with the number of breakdowns, suggesting that more equipment 
breakdowns may lead to increased appointment length.

4.3 Determination of weights

Text for this sub-section. To assess the importance of the 
indicators, eight experts in the field of medical device management 
were invited to score the indicators and weight them using the 
C-OWA method. The scores are shown in Figure 3.

Expert scores (0–10) for the evaluation indicators covered in this 
paper, with larger scores representing higher importance of the indicators. 

Take indicator X11 as an example, sort the scores of indicator X11 from the 
largest to the smallest to get (7–9), and calculate the weight vector by the 
formula to get: (0.07, 0.44, 1.31, 2.19, 2.19, 1.15, 0.38, 0.05). The results of 
the weight values are shown in Figure 4.

As shown in Figure  5, the gravimetric plot is a visual tool 
commonly used to present the results of principal component analysis, 
determining the number of principal components that should 
be retained. The graph shows the percentage of variance explained by 
each principal component and the cumulative percentage of variance 
explained. An inflection point can be found where the number of 
principal components retained explains most of the variance in the 
original data while avoiding the problem of overfitting due to retaining 
too many principal components. The curve begins to level off at the 
fourth eigenvalue point. The variance explained by these four principal 
components are 44.59, 18.36, 13.18 and 10.27% respectively, and the 
cumulative variance explained is 86.39%.

After calculating the PCA weights and COWA subjective weights, 
these weights were combined using a game-theoretic approach to 
obtain a combined weight value for each evaluation indicator. The 
comparison of the weights calculated by the three methods is shown 
in Figure  6, which takes into account both the variability of the 
evaluation indicators and the conflicting and variable nature of the 
indicator data, reflecting the objectivity of the data itself and helping 
to provide more targeted guidance to decision-makers, making the 
weight calculation results more reasonable.

4.4 Updating decision factor determination

Text for this sub-section. The Euclidean distances of the positive 
and negative ideal solutions s sj j

+ −,  and the positive and negative ideal 
solutions d di i

+ −,  can be obtained by using Eq. The gray correlation 

matrix H h H hij
m n

ij
m n

+ +
×

− −
×′ ′

= { } = { },  and the correlation degree 

FIGURE 3

Experts Scoring.
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l li i
+ −,  are calculated for each device according to Eq. The correlations 

between the indicators are reflected in the three-dimensional space. 
Furthermore, the Euclidean distances D Di i

+ −,  and the 
correlations L Li i

+ −,  for each device are processed dimensionless 
according to (26)–(28). The results are shown in Table 3.

The more significant the replacement decision factor, the 
more the device needs replacement. The results of ranking the 
four MRI devices using the combined weight GRA-TOPSIS 
evaluation model are SignaHDx < MR750 < Prisma < 

FIGURE 5

Principal component feature results.

FIGURE 6

Comparison of weight values for different methods.
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FIGURE 7

Updating decision results.

MR750W. The GRA-TOPSIS model calculates a uniform and 
reasonable distribution of the resulting values, shown in Figure 7.

The VIKOR method (36) is also applicable to multi-attribute decision 
problems and is able to take into account the complementarity and 
conflict between attributes when determining the weights of each 
attribute. This article compares the results of the calculations of several 
methods of the GRA method, TOPSIS method, GRA-TOPSIS method 
and VIKOR method were used to calculate the replacement priority of 
large medical equipment, respectively, and the data were standardized to 
take complete account of the closeness of individual indicators to the 
indicator series. The replacement decision results and ranking results are 
shown in Table 4.

The results in the table show that compared to the GRA and 
TOPSIS methods alone, the GRA-TOPSIS method has significantly 
improved in terms of correlation coefficients, thus better coping with 
the uncertainties and limitations in the evaluation process. The 
accuracy of the traditional GRA method may be limited when dealing 
with decision problems with complex quantitative attributes. In 
contrast, the accuracy of the TOPSIS method suffers when correlations 
exist between attributes. The VIKOR method is not applicable when 
the result values differ too much in the replacement decision 
evaluation process. This suggests that the GRA-TOPSIS method has 
higher accuracy and reliability in evaluating replacement priorities for 
large medical equipment. A comparison of the results obtained from 
the four methods is shown in Figure 8.

Kendall’s test (37) can measure the correlation between 
multiple evaluation methods and assess their consistency in solving 
the problem of prioritizing the replacement of large medical 
equipment, which helps to reveal the similarities and differences 
between different methods in terms of evaluation results so that 
the best evaluation method suitable for the actual problem can 
be selected in a targeted manner. Kendall’s test was used to analyze 
the consistency of the three methods, GRA, TOPSIS and 
GRA-TOPSIS, to better understand the strengths and weaknesses 
of the different methods and to provide a reference for subsequent 
research, which is shown in Table 5.

The table gives Kendall’s W coefficient of 0.812, an X2 value of 6.5 
and a value of p of 0.039. Kendall’s W coefficient is close to 1, 
indicating a high level of consistency in the replacement decision 
factors between the three methods. Also, as the value of p is less than 
0.05, the overall data level shows significance. Therefore there is a 
significant correlation between the three methods regarding the 
replacement decision factor.

5 Discussion

This research constructs a large medical equipment renewal priority 
evaluation indicator system, covering four aspects: operational security, 
social benefits, technical indicators and economic benefits. This system is 
designed to provide a robust framework for medical equipment 
administrators and policymakers, thereby facilitating empirically 
informed renewal decisions. The employed methodology harnesses the 
combined strengths of the COWA and PCA methods, bridging both 
subjective judgment and objective data attributes. Through an 
amalgamation of subjective weights derived from COWA with objective 
weights from PCA, realized via game-theoretic reasoning, a 
comprehensive weighting system is established. This approach not only 
minimizes the potential for information loss, which is often inherent in 
isolated weighting schemes, but also augments error resilience and 
alignment, ensuring enhanced methodological precision and relevance. 

TABLE 3 Results of principal component analysis weights.

Equipment 
Type

European distance Gray correlation

Positive Negative Positive Negative

Signa HDx 1.000 0.646 0.873 1.000

MR750 0.622 0.985 0.979 0.875

MR750W 0.410 1.000 1.000 0.818

Prisma 0.570 0.959 0.982 0.859
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Building on this foundational methodology, the research introduces an 
integrative multicriteria decision model, combining the attributes of 
COWA-PCA and GRA-TOPSIS. The GRA method, adept at handling 
sparse and fragmented data sets, aligns seamlessly with the attributes of 
TOPSIS, which excels in analyzing multi-attribute decision matrices. The 
union of gray correlation (from GRA) with Euclidean distance (from 
TOPSIS) ensures a model capable of addressing both uncertainty and 
information incompleteness. This fusion not only circumvents the 
limitations of unilateral approaches but also amplifies the accuracy and 
robustness of evaluations regarding equipment renewal priorities.

Significant preparation and groundwork has been invested to 
ensure that the research has solid utility and enhances the full lifecycle 
management of large medical devices. The deployment of advanced 
IoT collectors, the development of interfaces with third-party systems, 
and rigorous database management have combined to create a robust 
dataset. Although the proposed model requires some computational 
power and computational cost, in terms of economic and social 
benefits, the model can better guide the management of medical 

devices, thus saving costs and improving service quality for healthcare 
organizations, and bringing considerable economic dividends to 
hospitals, thus achieving greater economic benefits. The scalability 
and replicability of this project offer great prospects for subsequent 
data-centric exploration in this area.

For empirical validation, data from MRI equipment in a 
selected third-tier hospital was utilized. The results revealed that 
the GRA-TOPSIS method returned an R^2 value of 0.9667, 
attesting to its alignment with empirical realities. In addition, 
Kendall’s test validates the robustness of GRA-TOPSIS with 
respect to the GRA and TOPSIS methods, emphasizing its 
usefulness as an effective tool for decision-making on equipment 
replacement in various industries.

6 Conclusion

This article constructs a comprehensive medical equipment 
replacement priority evaluation indicator system and proposes a 
comprehensive multicriteria decision model based on COWA-PCA 
and GRA-TOPSIS. In practical application, the medical equipment 
replacement priority evaluation model proposed in this paper can 
help hospital managers and policymakers to better understand and 
evaluate the need for equipment replacement so as to formulate more 
scientific and rational replacement strategies. Comparing and 
analyzing the equipment replacement priorities of different hospitals 
can provide a basis for resource allocation and policy formulation. In 
addition, the findings of this paper can also inspire equipment 
replacement decisions in other fields.

In future, research could further expand the study area and 
methodology to include a wider and more diverse range of data sources, 
diversifying the range of evaluation metrics to capture a broader range of 
operational realities and patient-centered outcomes. Continuous 
refinement and integration of evaluation methods is essential to improve 
the accuracy, robustness and generalisability of evaluation models. In 
addition, with the development of big data technology, artificial 
intelligence technology and other technologies (38, 39), in hopes of 
building an intelligent management platform for large medical 
equipments, ensuring a more scientific, rational and effective decision-
making process driven by data. Through in-depth research and practical 
application, it is expected to provide more scientific, rational and effective 
support for medical equipment decision-making.
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TABLE 4 Updating decision results.

Equipment type GRA TOPSIS GRA-TOPSIS VIKOR

Score Sort Score Sort Score Sort Score Sort

Signa HDx 0.864 1 0.613 1 0.568 1 0.000 1

MR750 0.756 3 0.393 2 0.433 2 0.831 3

MR750W 0.707 4 0.296 4 0.380 4 0.807 2

Prisma 0.742 2 0.379 3 0.424 3 0.990 4

FIGURE 8

Sorting chart of replacement results.

TABLE 5 Kendall’s result.

Methods Rank 
average

Median Kendall’s 
W

X2 p

GRA 3 0.749

0.812 6.5 0.039TOPSIS 1.25 0.386

GRA-TOPSIS 1.75 0.428
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