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Introduction: To improve comprehension of initial brain growth in wellness 
along with sickness, it is essential to precisely segment child brain magnetic 
resonance imaging (MRI) into white matter (WM) and gray matter (GM), along 
with cerebrospinal fluid (CSF). Nonetheless, in the isointense phase (6-8 months 
of age), the inborn myelination and development activities, WM along with GM 
display alike stages of intensity in both T1-weighted and T2-weighted MRI, making 
tissue segmentation extremely difficult.

Methods: The comprehensive review of studies related to isointense brain MRI 
segmentation approaches is highlighted in this publication. The main aim and 
contribution of this study is to aid researchers by providing a thorough review to 
make their search for isointense brain MRI segmentation easier. The systematic 
literature review is performed from four points of reference: (1) review of studies 
concerning isointense brain MRI segmentation; (2) research contribution and 
future works and limitations; (3) frequently applied evaluation metrics and 
datasets; (4) findings of this studies.

Results and discussion: The systemic review is performed on studies that were 
published in the period of 2012 to 2022. A total of 19 primary studies of isointense 
brain MRI segmentation were selected to report the research question stated in this 
review.
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1 Introduction

In brain research, the precise separation of infant brain tissues into non-overlapping regions 
such as white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) is crucial for 
determining how the normal and abnormal development of the developing brain (1–3). The first 
year of life is the most dynamic period in the development of the human brain, with fast tissue 
growth and the emergence of a vast array of cognitive and physical abilities (4, 5). Major brain 
diseases that are difficult to treat, such as attention deficit hyperactivity disorder (ADHD), baby 
autism, bipolar affective disorder, and schizophrenia, may show up in the patient’s developing 
brain tissue (6). Therefore, it is important that brain structures are adequately segmented in 
new-born images. The aim of precise brain tissue image segmentation is to provide crucial 
information for clinical diagnostics, treatment assessments, analysing brain changes, enabling 
clinical preparations together with presenting image-guided interventions (7–9).

Thus far, magnetic resonance imaging (MRI) is the predominant technique for imaging baby 
brain, specifically T1-weighted and T2-weight MRI, because it is safe, non-invasive and attains 
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non-intrusive cross-sectional views of the brain in multiple contrast 
without ionizing radiation (10, 11). Compared to automated 
segmentation, manual segmentation is tremendously arduous and 
time-consuming assignment which compels a comprehensive 
expertise base of brain structure and impossible at large scale. In 
addition, manual segmentation experiences small reproducibility, 
which is highly inclined to errors due to inter or inter-operator 
unpredictability (7, 8, 12, 13). Therefore, precise and automatic 
segmentation methods are highly needed.

Infant brain MRI segmentation is recognized to be  far more 
challenging than adult brain segmentation (5), due to ongoing white 
matter myelination, significant partial volume effects, decreased tissue 
contrast (14), increased noise, and infant brain pictures (14, 15). In 
actuality, as depicted in Figure 1, there are three distinct phases in the 
first-year brain MRI (16). Gray matter exhibits a higher signal strength 
than white matter in T1-weighted images during (1) the infancy phase 
(5 months). The gray matter has the lowest signal differentiation with 
the white matter in both T1 and T2 imaging during the second 
isointense phase (6–9 months), in which the signal intensity of white 
matter is growing during development due to myelination and 
maturation process. The final stage is the early adult-like stage 
(9 months), where the distribution of gray matter intensity in T1 
images is significantly lower than that of white matter, resembling the 
pattern of tissue contrast in adult MRI (5, 16).

Furthermore, the intensity distributions of the voxels in the gray 
and white matter continue to heavily overlap in the isointense stage, 
particularly in the cortical areas, in this way driving to the least tissue 
differentiation and making the primary challenging for tissue 
segmentation, in relationship to pictures on previous stages of brain 
development (5, 16–18). Numerous efforts have been made in the past 
few years to segment the baby brain using MRI (4, 6, 11, 19–28).

Despite having an array of infant brain segmentation models, to 
determine which segmentation techniques are most frequently employed 
and in what combinations, there is a need to assess the body of literature 

as a whole using a systematic literature review paper. By doing this, the 
restrictions on personal searches for isointense brain MRI segmentation 
models would be lessened. What are the current isointense brain MRI 
segmentation algorithms, and what are the application challenges? Is the 
main research question leading this systematic literature review (SLR). 
As a result, the study’s goal is to examine isointense brain MRI 
segmentation models utilizing a literature review.

2 Literature review

As of late, deep learning techniques centred around convolutional 
neural networks (CNNs) have demonstrated exceptional execution 
around a range of computer visualization and photograph evaluation 
usages in the clinical space (16, 17, 29–32). CNNs have accomplished 
advanced outcomes in numerous brain segmentation tribulations 
(7, 8, 12, 33–36), including the subdivision of 6-moths old brain MRI 
(1, 11, 21, 22, 24, 25, 32, 37, 38).

Some researchers have refined many recognized CNNs, for 
example U-Net (36, 38, 39) and the DenseNet (11, 21, 24, 34), for 
brain MRI division on 6-months-old child (1, 40, 41). These methods 
improve the viable conveyance and combination of the semantic data 
in a multimodal characteristics and have accomplished enhanced 
functioning contrasted with common machine learning techniques 
(16, 17). Nevertheless, inadequacies however occur in the present 
CNN-based division techniques for child brain for example, previous 
models focus on enhancing network architecture for example 
modality blend (41) and interlayer links (37, 42), which requires 
seasoned expertise experience for network designing and the training 
turn out to be more challenging as the network amplifies the depth 
(21). Furthermore, hardware requirements for computing and 
memory escalates drastically as the depth increase (21). Combination 
of these methods for improved performance is also problematic due 
to the inconsistence network layouts, tedious hyper-parameter 

FIGURE 1

T1 and T2 weighted MRI images of a baby taken at various ages—2  weeks, 3, 6, 9, and 12  months. The MR images of infants around 6  months old (i.e., 
the isointense phase) show the lowest tissue contrast, indicating the most difficult tissue segmentation. The bottom row displays the equivalent tissue 
intensity distributions from T1w MR images, where the WM and GM intensities are heavily overlapping during the isointense period. Reprinted with 
permission from IEEE, Copyright © 2019 IEEE (16).
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alteration and extreme graphic processing unit (GPU) memory 
utilization (17).

3 Methodology

The process of finding and critically evaluating pertinent research, 
as well as gathering and analysing data from this research, is known 
as a systematic literature review, or SRL (43). A systematic review’s 
objective is to locate all empirical data that satisfies the inclusion 
criteria and provides an answer to a particular research question (43, 
44). Additionally, it takes time to separate the known from the 
unknown. That is a crucial justification for conducting SLRs in 
accordance with a set of clear-cut methodological stages (45). This 
study established a systematic literature review (SLR) on the 
segmentation of isointense brain MRI using the Preferred Reporting 
Items for Systematic Reviews and Meta-analyses (PRISMA). PRISMA 
is a well-known systematic review methodology that has been used in 
a variety of research domains, including the medical field (46), 
business (47) and safety mining (45). Because of its 27 evidence-based 
checklist and four-phase analysis, PRISMA is acceptable in the 
research area even if it is not a quality assessment approach. This 
allows systematic literature reviews (SLRs) to be clear and transparent 
(43, 48). Identification, screening, eligibility, and data abstraction and 
analysis are the four core PRISMA phases. This systematic review was 
conducted from 1 August 2022 to 31 December 2022.

3.1 Research question

This study assesses segmentation results of isointense brain MRI 
studies that have been conducted in the past. For the purpose of 
describing the systematic literature review, the following four research 
questions have been developed.

 • [RQ-1] What techniques have been used for isointense brain 
MRI segmentation in neurosciences?

 •  [RQ-1a] What are the existing isointense brain MRI 
segmentation machine learning algorithm?

 •  [RQ-1b] What evaluation metrics have been used to measure 
accuracy of the techniques?

 • [RQ-2] What are the characteristic of the dataset used in 
neurosciences for isointense brain MRI segmentation?

 • [RQ-3] What are the findings of isointense brain MRI 
segmentation in this study?

 • [RQ-4] What are the future works and limitations to ease the 
other researchers search for isointense brain MRI segmentation?

3.2 PRISMA phases

3.2.1 Identification
The identification stage is the first step in the systematic 

literature review (SLR) process. The study question and goals are 
clearly defined at this point. A widespread search study was 
executed using Web of Science (WoS) and Scopus. All significant 
publishers, including Science Direct, Emerald, Taylor & Francis, 
Springer Links, IEEE, and Willey, are included in the Scopus 
integrated database. Due to its high calibre indexing information, 
many academics have regarded the Scopus database as a 
trustworthy resource for SLR. All appropriate peer-reviewed 
articles published between 2012 and December 31, 2022, are 
included in the search. When looking for pertinent publications, 
use terms like “automatic isointense MRI brain segmentation,” 
“Image segmentation 6-month brain MRI,” “Infant brain tissue 
segmentation,” and “Segmentation neonatal brain MRI.” The 
Boolean operators are combined with various keywords to enlarge 
the search range 634 articles were obtained as a consequence of this 
method from the combined Scopus and Web of Science databases 
(Table 1).

3.2.2 Screening
The subsequent stage is the screening procedure, in which articles 

are included or excluded based on standards set by the writers. 
Tables 2–4 provide specifics regarding inclusion and exclusion. 
Following the identifying procedure, 634 articles needed to 
be screened. Duplications were identified and removed, and 580 for 
the title and abstract screening, articles were found. Relevant articles 
were forwarded to the candidate data. After reviewing all available 
literature, the candidate data set was reviewed, and the inclusion and 
exclusion criteria were used to populate the chosen data. The screening 
stage produced 167 publications that were only focused on isointense 
brain MRI segmentation and were published between January 2012 
and December 31, 2022. Journals that published systematic reviews, 
review papers, proceedings from conferences, book chapters, book 
series, and novels were not included. The goal is to concentrate on 
legitimate isointense brain MRI segmentation research.

3.2.3 Eligibility
The third phase is the eligibility procedure, in which articles 

are included or eliminated according to the precise standards set 
forth by the writers. Manual screening of literature with a focus 
on the segmentation of isointense brain MRI and the inclusion 
and exclusion criteria from previous screening processes. The 
review was able to collect 19 carefully chosen articles on 
isointense brain MRI segmentation.

TABLE 1 Keywords used in this research.

Automatic Image 
Segmentation construct

AND Group of participants’ 
construct

OR Characteristic of interest construct

“Automatic segmentation” OR “Isointense” OR “brain MRI” OR

“Image segmentation” OR “6-months” OR “brain MRI tissues” OR

“Brain tissue segmentation” OR “Infant” OR “white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF)” 

OR

“Segmentation” “Neonatal” OR “MRI brain tissues”
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3.2.4 Data abstraction and analysis
Data abstraction and analysis come last. The remaining 

publications were assessed, examined, and analysed, and 19 were 
chosen for in-depth discussion in this paper (see Table 5). Reviews 

were based on particular studies that addressed the study’s research 
issue and purpose. Then, by reviewing the article’s title, abstract, and 
full text, the studies were extracted to find pertinent themes for the 
current study. Figure 2 depicts a synopsis of the SLR procedure. In this 

TABLE 2 Literature inclusion criteria.

Number Criteria Inclusion

1 Primary Source Literature describes data collected and analysed by the authors and not based on the other research conclusion

2 Relevant topic Literature directly references isointense infant brain image segmentation and provide analysis of the proposed models and the 

metrics used to evaluate the models

3 Publication timeline January 2012 – December 2022

4 Review quality Literature is published in a peer-reviewed journal

5 Dataset used Studies that use iSeg-2017 and iSeg-2019 dataset.

6 Data quality Literature must show data sources are numerous enough, qualified enough and representative enough to avoid bias in qualitative 

literature.

TABLE 4 Quality assessment checklist adopted from Kitchenham et al. (49) as cited by Usman et al. (50).

NO# Question Score

1 Are the research aim clearly specified? Y|N|P

2 Was the study designed to achieve these aims? Y|N|P

3 Are the segmentation techniques clearly described? Y|N|P

4 Are the evaluation metrics used adequately described Y|N|P

5 Are all research question answered adequately? Y|N|P

6 Are negative (if any) presented? Y|N|P

7 Are datasets considered by the study? Y|N|P

8 Is the purpose of data analysis clear? Y|N|P

9 Do the researcher discuss any problems with validity/reliability of the results Y|N|P

10 How clear are the links between data interpretation and conclusion? Y|N|P

11 Are finding based on multiple projects Y|N|P

12 Are statistical techniques are used to analyse data adequately? Y|N|P

13 Are data collection method adequately described? Y|N|P

TABLE 3 Literature exclusion criteria.

Number Criteria Exclusion

1 Secondary Source Article is a secondary source. Secondary data can distort this analysis by presenting a single model with multiple results.

2 Irrelevant studies Literature that does not reference infant brain image segmentation, specifically isointense (6–8 months)

3 Publication timeline 2011 and before

4 Document type Journals (systematic review), review papers, conference proceedings, dissertations, these, white papers, incomplete bibliographic 

records, industry reports, others on the basis of relevance, chapters in a book, book series, books

5.1 Unavailability Literature is not available as a full-text article in the selected data source.

5.2 Literature not available in research data source at the time of data collection.

6.1 Inadmissible quality Literature is not published in a peer-reviewed journal.

6.2 Literature does not adequately or completely its methodology such that it cannot determined how the model was created and 

evaluated.

6.3 Literature were T1-weighted and T2-weight MRI are not used.

6.4 Literature were fetal MRI imaged was used. (0–5 months).

6.5 Literature were not all 3 tissues (WM, GM and CSF) are segmented.

7 Language Literature is not in English

8 Duplication Literature is a duplicate of other literature in the study.
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study, quality assessment was based on the checklist suggested and 
provided by Kitchenham et al. (49) as cited by Usman et al. (50). A 
three-point scale was used in this study which is Yes/ NO/ Partial. Yes 
(Y), represented 1, Partial represented 0.5, and NO represented 0, This 
study used first quartile as the cut-off point which is 3.25. If a study 
scored less than 3.25 it would be removed from the primary studies.

The scoring process was Y = 1, P = 0.5, N = 0.

4 Results

Below, you  will find a review of these 19 studies, with four 
categories of the methodologies that were examined. Knowledge-
driven segmentation methods are covered in the first section. These 
methods are based on the use of advanced knowledge of brain 
morphology, including information on the relative position, 
connection, and structure of brain tissue. The second section presents 
an approach atlas-based and patch-driven approach. Methods that 
primarily rely on propagated atlas labels, registration techniques for 
the best atlas alignment, and various label fusion techniques for multi-
atlas methods are all examples of atlas-based approaches. The third 
section presents machine learning methods such as random forest, 
k-nearest (kNN) neighbour and support vector machine (SVM). 
When a multi-class classifier is used to create a brain tissue probability 
map for each tissue type (i.e., WM, GM, CSF), these supervised 
algorithms are intrinsically well suited for multi-class challenges. 
Convolution neural network-based deep learning techniques are 
covered in the final section. In a variety of computer vision 
applications, including the segmentation of infant brain MRI, CNN 
has displayed exceptional achievements (42, 57).

4.1 Knowledge-based approach

By incorporating knowledge of tissue connectivity, structure, and 
relative placements (15), offer a brain MRI segmentation technique 
that is based on general and widely acknowledged knowledge of 
neonatal brain morphology. The authors, for instance, utilised 
knowledge that the extra-ventricular CSF surrounds the cerebral gray 
matter, which is itself surrounded by the cortical white matter. The 
outline in Figure  3 summarizes the segmentation algorithm’s five 
steps. The procedures involve removing the brain’s intracranial cavity 
and hemispheres, detecting subcortical gray matter, separating cortical 
gray matter, unmyelinated white matter, and CSF, segmenting the 
cerebellum and brain stem, and detecting unmyelinated white matter 
(15). An infant’s brain’s T1 and T2 MR scans served as the algorithm’s 
input data.

4.2 Atlas-based and patch-driven approach

The authors provide a basic framework for isointense new-born 
brain MRI segmentation that uses sparse representation to combine 
the information from multiple imaging modalities (5). The authors 
initially create a library made up of a collection of multi-modality 
images from the training subjects and the ground-truth segmentations 
that match to those images. T1 and T2 images as well as fractional 
anisotropy (FA) images make up multi-modality. The training library 
patches provide a sparse representation of each patch needed to 
segment a brain image. The generated sparse coefficients are then used 
to obtain the first segmentation. The initial segmentation will 
be further considered in light of the patch similarities between the 

TABLE 5 Summary of the 19 selected studies using PRISMA approach for isointense brain tissue segmentation.

Authors Techniques Modality Infantile
Development stage at scan

Early-Adult
Isointense

(15) - T1, T2 ✓

(20) K- Nearest Neighbour T1, T2 ✓ ✓

(5) Multi-Atlas T1, T2, FA ✓ ✓ ✓

(18) Random Forest T1, T2, FA ✓

(27) 2D CNN T1, T2, FA ✓

(25) SVM T1, T2 ✓

(51) Random Forest T1, T2 ✓

(2) 3D CNN T1, T2 ✓

(21) 3D CNN T1, T2 ✓

(24) 3D CNN T1, T2 ✓ ✓

(34) 3D CNN T1, T2 ✓

(6) FCN T1, T2 ✓

(52) 3D CNN T1, T2 ✓

(42) 3D CNN T1, T2 ✓

(53) CNN T1, T2 ✓ ✓

(54) 2D CNN T1, T2 ✓

(28) 3D FCN T1, T2 ✓ ✓

(55) 3D CNN T1, T2 ✓ ✓

(56) GAN T1, T2 ✓ ✓
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segmented testing picture and the manual segmentation (ground-
truth) in the library images in order to enforce the anatomical 
correctness of the segmentation (5). Figure 4 illustrates the tissue 
probability maps calculated using the suggested approach.

4.3 Machine learning approaches

A segmentation technique based on supervised pixel 
categorization is suggested by Anbeek et al. (20). Both spatial and 

intensity characteristics were provided for each voxel. Each brain 
voxel was classified into one of the eight tissue classes using the 
k-nearest neighbour (kNN) classifier based on these characteristics. 
A preterm cohort of 108 infants’ T1- and T2-weighted MR images 
were obtained at term equivalent age. The brainstem, cerebellum, 
cortical and central grey matter, unmyelinated and myelinated 
white matter, cerebrospinal fluid in the ventricles and in the extra 
cerebral space were all segmented into eight classes using an 
automatic probabilistic segmentation method. Using leave-one-out 
tests on seven photos for which a reference standard had been 

FIGURE 2

The step of PRISMA for the systematic literature review. Adapted with permission from Liberati et al. (43), licensed under CC BY.
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manually established by a subject matter expert, the approach was 
trained and evaluated (20). The approach was then used on the 
remaining 101 scans, and the segmentations that resulted were 
assessed visually by three specialists. The volumes of the eight 
groups of segmented tissue were then calculated for each 
subject (20).

A strategy based on learning, employing random forest classifier 
for infant brain MRI segmentation is proposed by Sanroma et al. (25), 
Wang et al. (51), and Wang et al. (18). The authors propose a novel 
learning-based multi-source integration architecture for segmentation 
(18), where the tissue segmentation challenge is formulated as a tissue 
categorization challenge. In particular, tissue probability maps for each 
tissue type can be produced via voxel-wise classification using the 
random forest classifier, which is naturally suited for multi-class 
situations. In order to completely capture both local and contextual 
picture information, a large amount of training data with high data 
dimensions can be handled by random forest. This allows for the 
exploration of a huge number of image features. Additionally, an 
anatomy-guided tissue segmentation for 6-month-old new-born brain 
MRIs with autism risk was presented by Wang et al. (51). Intensity 
images’ 3D Harr-like feature extract is input to a random forest 
classifier, which outputs a class classification. Figure 5 shows a training 
flowchart for a series of classifiers for WM versus GM. A combination 
of strategies is presented by Sanroma et al. (25) for infant brain MRI 
segmentation. The standard approaches include support vector 
machine (SVM) and multi-atlas joint label fusion, which serve as 
examples of registration-based methods. A collection of several 
annotated photos is necessary for both registration and learning-
based approaches.

4.4 Deep learning methods

As of late, deep learning techniques centred around convolutional 
neural networks (CNNs) have demonstrated exceptional execution 
around a range of computer visualization and photograph evaluation 
usages in the clinical space (30, 31, 35, 36, 39). Convolutional neural 
networks were used in the majority of the publications found through 
the systematic literature review study using the PRISMA approach; 12 
out of the 19 articles used CNNs.

4.4.1 Deep fully convolutional neural networks
Deep convolutional neural networks (CNN) are suggested for 

multi-modality MRI segmentation of isointense brain tissue (27). 
According to Figure 6, the authors created CNN architectures with 
three input feature maps for 13 × 13 T1, T2, and FA image patches. 
There are three convolutional layers and one fully connected layer 
used. Local response normalization and softmax layers were also used 
in this network.

It is advised that more research be done on deep convolutional 
neural networks and suggestive annotations for new-born brain 
MRI segmentation (42). This study uses an ensemble of semi-
dense fully convolution neural networks with T1- and T2-weighted 
MRI as the input to examine the issue. The study shows that there 
is a strong correlation between segmentation mistakes and 
ensemble agreement. The approach thus offers measurements that 
can direct local user corrections. The performance of deep 
architectures was also examined by the authors in relation to the 
effects that early or late fusion of various image modalities might 
have (42).

FIGURE 3

Outline of the segmentation algorithm. Reprinted with permission from Elsevier, Copyright © 2012 Elsevier (15).
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A fuzzy-informed deep learning segmentation guided network by 
pertinent principles, as well as building blocks to learn multimodal 
information from MRI images, are also proposed by Ding et al. (55). 
Figure  7 shows the architecture, which consists of three primary 

processing steps: deep supervision, fuzzy-enabled multi-scale 
learning, and image refinement. A volumetric fuzzy pooling layer 
applies fuzzification, accumulation, and de-fuzzification to the 
neighbourhoods of adjacency feature maps to mimic the local 

FIGURE 4

Tissue probability maps calculated using the suggested approach without and with the anatomical restriction, as well as with and without the sparse 
constraint. Reprinted with permission from Elsevier, Copyright © 2014 Elsevier (5).

FIGURE 5

Training flowchart for a series of classifiers for WM versus GM. Reprinted with permission from Wiley, Copyright © 2018 Wiley (51).
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fuzziness of the volumetric convolutional maps. To enable the 
extraction of brain characteristics in various receptive fields, the fuzzy-
enabled multiscale feature learning module is designed using the VFP 
layer. A fuzzified multichannel dense model for multimodal 
segmentation has also been introduced.

A powerful 2D convolutional network called Rubik-Net uses the 
bottleneck structure and residual connections to improve information 
transfer while requiring fewer network parameters. On the iSeg2017, 
iSeg2019, and BrainWeb datasets, the Rubik-Net demonstrated good 
results in terms of segmentation accuracy (54).

4.4.2 Hyper densely connected CNNs
Hyper-densely connected CNNs have been employed by Basnet 

et al. (53), Bui et al. (21), Dolz et al. (2), Hashemi et al. (34), and 
Qamar et al. (24) in isointense infant brain MRI segmentation. The 
idea of dense connection is extended to multi-modal segmentation 
problems by a 3D fully convolution neural network developed by 
Dolz et  al. (2). Each image modality has a path, and dense 
connections can be shown in Figure 8 for both airings of layers that 
are on the same path as one another as well as layers that are on 
distinct paths.

FIGURE 6

Convolutional neural network’s detailed architecture using inputs in patches that are 13 by 13 in size. Reprinted with permission from Elsevier, 
Copyright © 2015 Elsevier (27).

FIGURE 7

The structure of the fuzzy-guided framework that has been presented for multimodal brain MRI segmentation. Reprinted with permission from IEEE, 
Copyright © 2022 IEEE (55).
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A deep densely connected network called 3D FC-DenseNet has 
been suggested by Hashemi et  al. (34). Due to its early 
downsampling and late upsampling layers, the network in Figure 9 
has eight times the usual patch sizes (128 × 128 × 128 vs. 64 × 64 
× 64), more depth, skip connections, and parameters than 
its predecessors.

“Deeper is the better” concepts plays an important role in deep 
learning architecture (24). A hyper-densely connected convolution 

neural networks for segmentation of infant brain MRI is presented by 
Qamar et  al. (24). The suggested model offers close connections 
between layers to enhance the network’s flow information 
performance. The algorithm employs T1 and T2 as input. On the other 
hand (21), carefully designed a fully convolutional densely connected 
network with skip connections, allowing for the direct combination 
of data from various densities of dense blocks to produce extremely 
precise segmentation results.

FIGURE 8

In the case of two picture modalities, a portion of the proposed HyperDenseNet. Each area of gray stands for a convolutional block. Black arrows denote 
dense connections between feature maps, while red arrows represent convolutions. Reprinted with permission from IEEE, Copyright © 2019 IEEE (2).

FIGURE 9

The study’s 3D FC-DenseNet architecture uses a 222 convolution with stride 2 (purple) to downscale the input patch from 128  ×  128  ×  128 to 
64  ×  64  ×  64 in the first layer. The patch is upsampled from 64  ×  64  ×  64 to 128  ×  128  ×  128 using a 222 convolution transpose with stride 2 (red) before 
the activation layer. With the help of this deep architecture, we were able to overcome memory size restrictions with big input patches, retain a wide 
field of vision, and add five skip connections to enhance the flow of local and global feature data. Reprinted with permission from, licensed under  
CC BY-4.0 (34).
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4.4.3 Generative adversarial networks
A network known as a “generative adversarial network” (GAN) is 

made up of two networks: a generator (G) that creates a false image from 
a noise vector and a discriminator (D) that determines the difference 
between produced and real data (56). It is advised to use a multi-stage 
Generative Adversarial Network for image segmentation (56). The 
model creates a rough contour of the background and brain tissues in 
the first stage. The model then creates a more detailed contour for the 
white matter, gray matter, and cerebrospinal fluid in the subsequent 
stage. The performed fusion of the coarse and refined outliners.

4.4.4 UNet architecture
The UNet model is one of the most popular convolution neural 

networks (CNN) that have been successfully used to medical imaging 
tasks (38, 52, 53). Convolutional, pooling, and up-sampling layers make 
up the UNet model (52). An architecture for segmenting the baby brain 
is shown in Figure 10. The network has two paths: a downsampling 
encoder path and an upsampling decoder path. Reduced feature map 
resolution and increased receptive field are the goals of downsampling 
in the encoder path. The residual inception and upsampling blocks 
make up the up-sampling procedure in the decoder pipeline. 
Particularly, local features are found in the shallower layers, whereas 
global features are found in the deeper layers. For new-born brain 
segmentation, the concatenation of the several levels of upsampling 
feature maps enables the capture of multiple contextual information. 
To classify the concatenated features into the target classes (WG, GM, 
CSF), a classifier is made up of a Conv (1 × 1 × 1). The brain probability 
maps that were produced using the Softmax classifier (52).

On the other hand (53), proposed In order to partition the 
brain tissues into the three categories of white matter, gray 
matter, and cerebrospinal fluid, a novel 3D CNN architecture that 
is based on the U-Net structure is described. The basic idea 
behind the proposed method is to use residual skip-connections 
and densely connected convolutional layers, as shown in 
Figure 11, to reduce the number of parameters in the network, 
improve gradient flow, and increase representation capacity. In 
addition, the suggested network is trained using the loss 
functions, cross-entropy, dice similarity, and a combination of 
the two.

In addition, Triple Residual Multiscale Fully Convolutional 
Network, a deep network design based on U-Net, is suggested by 
Chen et al. (6). The model is composed of encoder and decoder 
process. Encoder procedure comprises: tradition 2D convolution, 
max-pooling and residual block while the decoder procedure 
comprises deconvolution, residuals multiscale block, concatenate 
block and traditional 2D convolution. Furthermore, APR-Net, a 
new 3D fully convolutional neural network for segmenting brain 
tissue, is presented by Zhuang et al. (28). The model is made up 
of several encoded streams and one decoded stream, three 
primary components make up APRNet: Multi-modal cross-
dimension attention modules, 3D anisotropic pyramidal 
convolutional reversible residual sequence modules, and the core 
of the APRNet.

The common evaluation metrics that were applied to the 19 
studies that were obtained for this analysis utilizing the PRISMA 
approach are detailed in the section that follows.

FIGURE 10

Segmentation of 3D MRI brain images using a suggested network design. In the suggested approach, DenseNet and Inception-ResNet are used 
concurrently. Reprinted with permission from Elsevier, Copyright © 2020 Elsevier (52).
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5 Evaluation metrics

To assess the accurateness of an automatic segmentation 
algorithm: Dice Similarity Coefficient (DSC) (58, 59), Modified 
Hausdorff distance (MHD), where the 95-th percentile of all 
Euclidean distance is utilized, along with Average Surface 
Distance (ASD). The initial method computes intensity of overlap 
amongst the segmented area together with the ground truth, 
while the additional two techniques estimate the border distances 
(2, 21).

19 out of 21 of the articles obtained from the PRISMA approach 
employed one or more of the evaluation metrics (DSC, MHD, and 
ASD). Table 6 presents a list of all 19 studies and the metrics applied 
to assess the results of an segmentation algorithm.

In addition, Dice Similarity Coefficient, Modified Hausdorff 
Distance, Average Surface Distance metrics were also employed by 
iSeg-2017 organizers to assess the accurateness of the contesting 
segmentation techniques (16, 17):

To measure the intersection amongst separations, outcome X 
together with ground truth Y, the Dice Similarity Coefficient is 
characterised as tails:

 
DSC X Y

X Y
=

Ç
+

2

 
(1)

where X and Y represent two segmentation labels created 
physically and computationally, correspondingly, |X| represents the 

FIGURE 11

Architecture of the proposed network. Reprinted with permission from Elsevier, Copyright © 2021 Elsevier (53).

TABLE 6 A list of evaluation metrics employed by the 19 selected articles using PRISMA approach.

Authors
Evaluation 
Metrics

Dataset DSC
WM GM CSF

MHD ASD DSC MHD ASD DSC MHD ASD

(15) Dice 0.94 0.92 0.84

(20) Dice 0.47 0.91 0.75

(5) Dice 0.89 0.87

(18) Dice, MHD NeoBrain12 0.86 0.88 0.92

(27) Dice, MHD 0.86 0.28 0.85 0.24 0.83 0.44

(25) Dice iSeg2017 0.97 0.90 0.95

(51) Dice, MHD NDAR 0.89 0.28 0.90 0.24 0.92 0.43

(2) Dice, MHD iSeg2017, MRBrainS13 0.89 1.78 6.03 0.86 1.34 6.19 0.83 2.26 7.31

(21) Dice, MHD, ASD iSeg2017 0.91 5.92 0.39 0.91 5.75 0.34 0.94 13.64 0.13

(24) Dice, MHD, ASD iSeg2017 0.90 6.88 0.39 0.92 5.63 0.31 0.96 9.00 0.11

(34) Dice, MHD, ASD iSeg2017 0.90 7.1 0.36 0.92 9.55 0.31 0.96 8.85 0.11

(6) iSeg2017

(52) Dice, MHD, ASD iSeg2017 0.91 6.56 0.37 0.92 5.75 0.31 0.96 9.23 0.13

(42) Dice, MHD, ASD iSeg2017 0.90 7.45 0.41 0.92 6.06 0.34 0.96 9.13 0.12

(53) Dice, MHD, ASD iSeg2017, IBSR18 0.90 6.77 0.39 0.91 5.94 0.32 0.95 9.20 0.11

(54) Dice, MHD, ASD iSeg2017, iSeg2019, 

IBSR, BrainWeb

0.86 8.92 0.53 0.81 8.17 0.53 0.82 11.6 0.53

(28) Dice, MHD, ASD iSeg2017, MRBrainS13 0.91 6.22 0.35 0.92 6.41 0.32 0.95 9.13 0.12

(55) Dice, MHD, ASD iSeg2017 0.92 6.21 0.29 0.93 5.24 0.28 0.96 7.66 0.09

(56) Dice iSeg2017, MRBrainS13 0.88 0.93 0.93
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amount of optimistic portions in the binary segmentation X, and 
X YÇ  is the amount of common optimistic elements by X together 

with Y. A bigger DICE reveals a greater intersection among the 
physical and projecting division regions. The threshold should not 
be greater than 1 (16, 17).

Allow R along with S be the series of voxels within the physical 
and predicative segmentation limit, correspondingly. A modified 
Hausdorff distance (MHD) is described as follows:

 
MHD R S h R S h S R, max , , ,( ) = ( ) ( ){ }  (2)

where h R S
N

d r S
c r r

, ,( ) = ( )
Î
å1  and d r S r sr R,( ) = -Î

min
  with  .  

representing the Euclidean distance. A lesser MHD coefficient implies 
bigger resemblance between manual and predictive segmentation 
contours (7, 60). The maximum MDH from set X to set Y is a max 
function defined as 95%.

The third computation metric is the average surface distance 
(ASD), termed as:
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where SC  and SD signify the outside meshes of C and D, 
correspondingly. A lesser ASD number implies superior segmentation 
accuracy (17).

The performance comparison of this study was done using DCS, 
MHD and ASD, comparing it with previous studies (21, 24, 34, 42, 
52). This shows the room of improvement or lack of improvement of 
our study using different evaluation metrics. The evaluation metric 
employed are DSC, MHD, and ASD for white matter (WM). The most 
favourable results of DCS was which was highest was 0.97, achieved 
by Sanroma et al. (25) followed by Gui et al. (15) which obtained DSC 
value of 0.94. Other authors have results less than 0.94. Regarding 
MHD results, the most optimal results were obtained by Luan et al. 
(54), which identified a value of 8.92 (11) followed and obtained the 
results of 6.03.

In addition to that; DSC, MHD, and ASD were computed to 
identify gray Matter (GM). The most accuracy results were obtained 
for DSC are 0.93 (55, 56), MHD of 9.55 was obtained by Hashemi et al. 
(34). For ASD (11), achieved a value of 6.19. Furthermore, CSF 
accuracy was measured using DSC, MHD, and ASD. Pertaining DCS, 
the most favourable accuracy was 0.96 supported by Hashemi et al. 
(34), Qamar et al. (24), Qamar et al. (52), Dolz et al. (42), and Ding 
et al. (55). The most accuracy value of the metric MHD was 13.64 
which was supported by Bui et al. (21). The most favourable metric 
value for ASD was 7.31 which was supported by Dolz et al. (11).

The most promising algorithm is supported by Dolz et al. (11). 
Their study was produced most accuracy when using WM, GM, and 
CSF. Interestingly, no strategy had a statistically significant superior 
performance than all other methods for segmentation of WM, GM, 
and CSF across any parameter. For example (25), obtained the highest 
median in terms of DCS for white matter (WM). Nonetheless, the 
differences between their findings and those of (15) are not statistically 
significant. Furthermore, Dolz et al. (11) has the highest ASD values 

for both WM, GM, and CSF, but one of the lowest MDH medians for 
WM, GM, and CSF. As a result, there is no discernible, statistically 
significant difference with any other methods.

The following dataset were used by in the 19 studies selected using 
the PRISMA.

iSeg-2017 dataset is a publicly available to the research 
community1 consisting of 10 infant subjects (5 females and 5 male) 
with manual labels were provided for training and 13 infant subjects 
(7 females and 6 male) were provided for testing. However, manual 
labels for testing subjects are not provided (16). In addition, iSeg-2019 
challenge was done with the aim of promoting automatic segmentation 
algorithms on infant brain MRI from multiple sites, MR images from 
four different sites as training, validation, and testing datasets, 
respectively are available from https://iseg2019.web.unc.edu/.

Three separate image sets of premature babies are included in the 
NeoBrainS12 data set: (i) axial scans taken at 40 weeks corrected 
gestational age; (ii) coronal scans taken at 30 weeks corrected 
gestational age; and (iii) coronal scans taken at 40 weeks corrected 
gestational age. At the neonatal critical care unit of the University 
Medical Center Utrecht in the Netherlands, all scans were performed 
as part of routine clinical procedures. You  can get the remaining 
photos from the first two sets along with the appropriate manual 
annotations from the NeoBrainS12 website at http://www.miccai2012.
org and use them as training data (61).

MRBrainS13 challenge workshop at the Medical Image 
Computing and Computer Assisted Intervention (MICCAI) 
conference provided dataset consisting of 20 subjects (mean 
age ± SD = 71 ± 4 years, 10 males, 10 female) were selected from an 
ongoing Computational Intelligence and Neuroscience 3 cohort study 
of older (65–80 years of age) functionally independent individuals 
without a history of invalidating stroke or other brain diseases. This 
dataset is publicly available from http://www.miccai2013.org (62).

Along with magnetic resonance brain image data, the Internet 
Brain Segmentation Repository (IBSR) offers manually guided expert 
segmentation results. Its goal is to promote the analysis and 
advancement of segmentation techniques https://www.nitrc.org/
projects/ibsr.

Through data sharing, data harmonization, and the publication of 
study findings, the National Database for Autism study (NDAR), a 
research data repository supported by the National Institutes of Health 
(NIH), seeks to further the understanding of autism spectrum 
disorders (ASD). In addition, NDAR acts as a platform for the 
scientific community and a gateway to numerous additional research 
repositories, enabling data aggregation and secondary analysis. 
Dataset can be accessed from https://www.re3data.org/repository/
r3d100010717

6 Findings and limitation of the 
presented frameworks

The findings of this study and drawback of the concerned 
frameworks on isointense brain MRI segmentation can be seen in 
Table 6.

1 http://iseg2017.web.unc.edu
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6.1 Findings

Deep learning methods are popular in isointense brain MRI 
segmentation, specifically convolution neural networks. An interesting 
discovery is that 13 of the 19 studies obtained using PRISMA 
employed convolution neural networks. In addition, Dice similarity 
coefficient (DCS) was the most frequently used evaluation metrics, 
where 17 out of the 19 studies used DCS. Modified Hausdorff Distance 
(MHD) was also employed in 13 studies out of 19, while Average 
Surface Distance (ASD) was the least utilized evaluation metrics, 
where nine studies out of the 19 used it. Furthermore, the most 
commonly used dataset for training and testing was from MICCAI 
iSEG-2017 Grand Challenge on 6-month infant brain MRI 
segmentation as illustrated in Table 6. iSEG-2017 dataset is a publicly 
available to the research community2 consisting of 10 infant subjects 
(5 females and 5 male) with manual labels were provided for training 
and 13 infant subjects (7 females and 6 male) were provided for 
testing. However, manual labels for testing subjects are not provided.

6.2 Limitation of the presented frameworks

Limitations presented from the assessed frameworks included the 
omission of ensemble to improve the evaluation metrics. Another 
studies used Dice similarity coefficient (DCS) and did not compare it 
with Modified Hausdorff Distance (MHD) and Average Surface 
Distance (ASD) to provide better results. On the other hand, some 
authors applied DCS and MHD and did not compare it with ASD to 
provide better results. Wilcoxon signed-rank test with all-against-all 
was used to see whether any study performs noticeably better than the 
others in terms of DCS, MHD, and ASD. Surprisingly, no study was 
able to partition WM, GM, and CSF across all parameters (DCS, 
MHD, and ASD) with a substantial statistically significant 
performance advantage over all other studies. In order to detect the 
significant difference, ensemble techniques must be  employed in 
conjunction with CNN, and the segmentation error can decrease in 
order to improve the model. With minimal user interaction, this idea 
has the potential to deliver expert-level performance.

Most researchers do not focus on improving the accuracy of the 
model, reducing the amount of Rubik convolutional calculations, and 
using multi-axis information more efficiently (54). While other avoid 
image processing due to the lack of datasets (56). Researchers are 
lacking to integrate different deep fuzzy structures to model data 
ambiguity and further explore training of deep fuzzy models using 
incremental and reinforcement learning. In addition, comparison of 
the research and other study to evaluate performance of proposed 
architectures using other challenges to take advantage of multi-modal 
data was lacking in their studies (24). A large amount of researchers 
have focused on image recognition and classification, there is a lack of 
CNNs focusing on semantic image segmentation (11). Some emerging 
research approach such as FCNN minimize redundant convolution 
results in computation being more efficient. Also few researchers have 
focused on 3D CNN-ensemble learning strategy used to improve 
performance (42). To overcome the challenges, single non-linear 

2 See footnote 1.

convolutional can be  used. Lastly, this study considered paper 
published between 1st of January 2012 and 31st of December, 2022.

7 Limitation and future work

The limitation of this study come from fact that number of images 
in iSEG-2017 dataset is not enormous, it consists of only 10 
(T1-weighted and T2-weighted MRI) for training and 13 (T1 and T2 
MRI) for testing. In addition, the ground truth labels for the test 
instance are not available. In this study, both T1-weight and T2-weight 
MRI are studied. In future, only T1-weight or T2-weight MRI will 
be considered. In addition, accurate segmentation of child brain MRI 
is extremely difficult than grown-up brain segmentation, because of 
low tissue differentiate, excessive noise, continuing WM Mylenium, 
and uncompromising incomplete volume effects which makes tissues 
to remain miscategorised together with diminishing the exactness of 
the segmentation algorithm (14, 16, 63).

Most of the CNN models, experiments were performed on 
computational servers or CPU with a graphic processing unit (GPU) 
memory. Furthermore, similar article written by same authors were treated 
as separate paper based on different ideas of contribution (5, 18). Most 
dataset are already cleaned as secondary dataset, as a result, they contain 
lots of errors which can be minimized by re-cleaning the dataset. In the 
future, data augmentation could be applied to possible improve the results, 
by amplifying the size of the dataset. Furthermore, other evaluation metrics 
could be  utilized such Jaccard index which is also common for the 
evaluating of image segmentation tasks. The same algorithms selected in 
this study can be applied to adult brain MRI segmentation.

8 Conclusion

This systematic review investigates isointense brain MRI 
segmentation. An extensive literature search for relevant studies 
published in the period of 2012 to 2022 and finally identified 19 
primary studies that are pertaining to the four research questions 
(RQs) raised in this review. A summarized research approach of the 
existing literature along with the research contribution, evaluation 
metrics, datasets, finding and future recommendations to study 
isointense brain MRI segmentation models are described. The 
principle findings of this review are summarized as follows:

 • [RQ-1] The detailed review of infant brain MRI segmentation 
techniques and deep learning techniques has been deliberated in 
Section 4 and Sub-Section D of Section 4, respectively. The 
summarized review is examined in Table 5.

 • [RQ-2] Section 5 of this study reviews datasets. Table 6 presents 
the evaluation metrics and the most frequently used dataset for 
isointense brain MRI segmentation.

 • [RQ-3] It has been observed that deep learning techniques are 
popular in isointense brain MRI segmentation. Thirteen out of 
the nineteen studies used convolutional neural network and Dice 
Similarity Coefficient is also the most used evaluation metric 
from the presented frameworks.

 • [RQ-4] Future works and limitations from researcher play a vital role 
to explore further research in a relevant domain. To answer this RQ, 
the limitations and future works of deep learning technique and 
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evaluation metrics is discussed in Section 6 and 8, respectively. It was 
found that most studies recommended the use of data augmentation 
to amplify the size of the dataset, which could possibly improve 
the results.
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