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Explainability agreement between
dermatologists and five visual
explanations techniques in deep
neural networks for melanoma AI
classification

Mara Giavina-Bianchi*, William Gois Vitor,

Victor Fornasiero de Paiva, Aline Lissa Okita,

Raquel Machado Sousa and Birajara Machado

Department of Big Data, Hospital Israelita Albert Einstein, São Paulo, Brazil

Introduction: The use of deep convolutional neural networks for analyzing skin

lesion images has shown promising results. The identification of skin cancer by

faster and less expensive means can lead to an early diagnosis, saving lives and

avoiding treatment costs. However, to implement this technology in a clinical

context, it is important for specialists to understand why a certain model makes

a prediction; it must be explainable. Explainability techniques can be used to

highlight the patterns of interest for a prediction.

Methods: Our goal was to test five di�erent techniques: Grad-CAM, Grad-

CAM++, Score-CAM, Eigen-CAM, and LIME, to analyze the agreement rate

between features highlighted by the visual explanationmaps to 3 important clinical

criteria for melanoma classification: asymmetry, border irregularity, and color

heterogeneity (ABC rule) in 100 melanoma images. Two dermatologists scored

the visual maps and the clinical images using a semi-quantitative scale, and the

results were compared. They also ranked their preferable techniques.

Results: We found that the techniques had di�erent agreement rates and

acceptance. In the overall analysis, Grad-CAM showed the best total+partial

agreement rate (93.6%), followed by LIME (89.8%), Grad-CAM++ (88.0%), Eigen-

CAM (86.4%), and Score-CAM (84.6%). Dermatologists ranked their favorite

options: Grad-CAM and Grad-CAM++, followed by Score-CAM, LIME, and Eigen-

CAM.

Discussion: Saliency maps are one of the fewmethods that can be used for visual

explanations. The evaluation of explainability with humans is ideal to assess the

understanding and applicability of these methods. Our results demonstrated that

there is a significant agreement between clinical features used by dermatologists

to diagnose melanomas and visual explanation techniques, especially Grad-Cam.
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1. Introduction

Melanoma is a skin cancer that is more lethal than all the other skin cancers combined,

even though it accounts for less than 5% of all cases (1). The global incidence of melanoma

rose from 11.8 to 17.5/100,000 inhabitants from 2003–2006 to 2011–2014 (2, 3). In Australia,

one of the countries with the highest incidence of this pathology in the world, the number of

deaths frommelanoma of the skin increased from 596 in 1982 to 1,405 in 2019 (4). In 2021, in

the U.S.A., 106,110 cases were diagnosed and 7,180 deaths by melanoma were estimated (5).
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Melanoma represents a high cost to society. Loss of productivity

due to morbidity or premature death, as well as the cost of

treatments, are a considerable burden for health systems and have

multiple implications in the life of such individuals (6). It is ranked

as one of the most expensive cancers, with a significant decrease

in cost when diagnosed in the early stages (7, 8). The average cost

per patient with melanoma ranges from e 149 for disease stage 0

to e 66,950 for stage IV (9). When melanoma is diagnosed early,

it can be treated effectively and with a high probability of survival

(5). Therefore, it is essential to promote prevention programs

with periodic examination of the skin for the early detection of

suspicious lesions to reduce the costs and mortality of melanoma

(6). The ABCDE rule is a widely used method to recognize

characteristics often associated with melanoma. It was developed

for both physicians and patients. It includes: Asymmetry, Border

irregularity, Color heterogeneity, Diameter larger than 6mm, and

Evolution or transformation of the lesion over time (10).

Since the detection of melanomas at an early stage is essential

for a good prognosis, and the distinction between melanomas

and harmless pigmented lesions is often not trivial, AI-based

classification systems may bring important contributions to this

field. Artificial intelligence algorithms have performed in silico at

least as well as expert dermatologists in detecting melanoma lesions

(11–13). Results have been encouraging, but there are only a few

recent studies trying to use AI in the real world to detect melanoma

lesions (14–16). There is still some controversy about the use of

AI for diagnoses in “real-life” clinical settings. Concerns include

the possibility of biases, the lack of transparency and explainability,

scalability, data integration and interoperability, reliability, safety,

privacy, and the ethics of aggregated digital data (17, 18). As with

any other innovation, especially in healthcare, AI must prove to be

efficient, reliable, reproducible, and friendly enough to be accepted

by those who are actually going to use it; in this case, physicians (or

perhaps other health professionals) and patients. As for physicians,

a recent study in Korea has shown that, in general, physicians

have a positive attitude toward AI in medicine (19). Another

study has presented similar results in a large international survey

among dermatologists, indicating that AI is well-accepted in the

dermatology field and that AI should be a part of medical training

(20). As for patients, one article concluded that they expressed a

high level of confidence in decision-making by AI and that AI can

contribute to improving diagnostic accuracy, but should not replace

the dermatologist (21). Another survey has shown that patients

and physicians are willing to use AI in the detection of melanoma

lesions. Patients appear to be receptive to the use of AI for skin

cancer screening if implemented in a manner that preserves the

integrity of the human physician-patient relationship (22).

To satisfy the requirement for transparent and comprehensible

treatment decisions, it will be necessary to work on strategies that

allow AI results to be interpreted and verified (at least in part). Due

to the high complexity of the algorithms, complete transparency

of AI will probably not be possible. Still, it may be possible to

explain the decisive influencing factors on individual decision

steps within the algorithms. Explainable artificial intelligence (XAI)

is an initiative that aims to “produce more explainable models

while maintaining a high level of learning performance (prediction

accuracy); and enable human users to understand, appropriately

trust, and effectively manage the emerging generation of artificially

intelligent partners” (23). The aim of enabling explainability in

ML, as stated by FAT (fairness, accountability, and transparency)

(24), “is to ensure that algorithmic decisions, as well as any data

driving those decisions, can be explained to end-users and other

stakeholders in non-technical terms”.

For deep learning models, the challenge of ensuring

explicability is due to the trade-off in terms of powerful results and

predictions (25) and the inherent opacity of black box models. This

represents a serious disadvantage, as it prevents a human being

from being able to verify, interpret and understand the system’s

reasoning and how decisions are made (26). It is a common

approach to understand the decisions of image classification

systems by finding regions of an image that were particularly

influential to the final classification. They are called sensitivity

maps, saliency maps, or pixel attribution maps (27). These

approaches use occlusion techniques or calculations with gradients

to assign an “importance” value to individual pixels which are

meant to reflect their influence on the final classification.

Gradient-weighted Class Activation Mapping (Grad-CAM)

uses the gradients of any target concept flowing into the

final convolutional layer to produce a coarse localization map

highlighting important regions in the image for predicting the

concept. It highlights pixels that the trained network deems

relevant for the final classification (28). Grad-CAM computes the

gradient of the class-score (called logit) with respect to the feature

map of the final convolutional layer (28). Despite the difficulty

of evaluating interpretability methods, some proposals have been

made in this direction (29, 30). Grad-CAM is one method of local

interpretability being used for deep learning models and was one

of the few methods that passed the recommended sanity checks

(29). There is also an improved version of the original Grad-

CAM and CAM method, called Grad-CAM++. This method is

based on the same principles as the original Grad-CAM method,

but it uses a different weighted combination (31). Two other

CAM techniques can be used: Eigen-CAM (32) and Score-CAM

(33) which differ from the Grad-CAM by not relying on the

backpropagation of gradients. A totally different approach can also

be made using Local Interpretable Model-agnostic Explanations

(LIME) technique, where the image is segmented into superpixels

interconnected with similar colors (34).

To elucidate more about the explainability of deep neural

network classification in melanoma lesions, we performed an

exploratory experiment with 2 objectives. First, to assess the

agreement rate between the features highlighted by 5 different

techniques of visual saliency maps to the three most used

clinical dermatological criteria for melanoma lesions: asymmetry,

border irregularity, and color heterogeneity (ABC rule). Second,

to subjectively evaluate the preferable techniques ranked by the

dermatologists, the reasons for it and the degree of agreement

between the two dermatologists about the five techniques.

2. Methodology

In this section, we will introduce the dataset used to build

the classification model for evaluating the visual explanations,

the Convolutional Neural Network (CNN) models used for the

segmentation and classification tasks, the explainability methods
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used for the visual explanations, and the experiment performed.

The development of the algorithm and its performance were

described in detail in a previous article (35).

This study was approved by Hospital Israelita Albert

Einstein Ethics Committees under the identification

CAAE:32903120.40000.0071.1 and it is in accordance with

the ethical standards on human experimentation and with the

Declaration of Helsinki. Dermatologists that took part in the

experiment signed consent forms agreeing to participate. This

research was performed at Hospital Albert Einstein, São Paulo,

Brazil, from January-March 2023.

2.1. Melanoma dataset

For this study, we used the following datasets: HAM10000

Dataset (36), MSK Dataset (37), Dataset BCN20000 (38), and

Derm7pt (39), all publicly available. The first three datasets

compose the dermoscopic image data available by ISIC (37–

39), an international competition for the identification of skin

diseases. Derm7pt is composed of clinical and dermoscopic images

categorized by the 7-point technique for the identification of

melanoma, with more than 2000 images of melanoma and non-

melanoma. In this study, we selected only dermoscopic images.

The total dataset consists of 26,342 images. Only two different

classes were established for our dataset: melanoma (18%) and

non-melanoma (82%).

2.2. Convolutional neural networks models
(CNN)

The classification model for melanoma lesions was constructed

using two steps: image segmentation and image classification. For

the segmentation, we used the MaskR-CNN architecture (40). The

lesions in the dermoscopy images were segmented and then used

in the classification model in a way that the latter could focus only

on the patterns closely related to the lesion itself, excluding most

of the background information that could impair its classification

capabilities. To train the segmentation model, we used 2000 images

previously annotated by specialists with the regions of interest.

Using transfer learning with a Resnet50 backbone and 20 epochs,

the trained model reached a 99.69% mAP for our test set.

For the classification task, we divided the total dataset as

80% for training, 10% for validation, and 10% for testing the

classificationmodel. To train themodel, we used the EfficientNetB6

convolutional neural network (41). This family of architectures

achieved some of the best precision and efficiency in the literature

(41), performing better than previous CNN (42, 43). Through

transfer learning with pre-trained weights from the ImageNet

(44), the model was fine-tuned for 50 epochs using the Adam

optimization (45) with a 0.001 starting learning rate and a batch

size equal to 32. The learning rate was scheduled to be reduced

by a factor of 30% if the model failed to improve with a stagnant

validation loss for 5 epochs. Finally, we used early stopping, also

based on a validation loss of 10 epochs.

To address the imbalance in the two target classes, we trained

the model using the focal loss function (46) to avoid bias for the

most dominant class. We also weighted the classes according to

their inverse frequency, in order to balance model attention in the

loss function. All images were resized to 220 × 220. In addition,

we applied data augmentation using common image processing

operations (rotation, shear, horizontal flip, zoom). The sigmoid

function was used to deliver the prediction result. In the tests, our

model has achieved an average ACC of 0.81, AUC of 0.94, sensitivity

of 0.93 and specificity of 0.79, considering the threshold of 0.5.

More details of the model can be found in our study previously

reported (35).

2.3. Explainability methods adopted

2.3.1. Gradient-weighted class activation
mapping (Grad-CAM)

Grad-CAM was proposed to produce visual explanations for

decision-making in comprehensive classes of convolutional neural

networks (28). The idea was to make AI models transparent and

explainable, giving the possibility to identify flaws in the systems,

mainly of deep learning models that were considered difficult to

interpret. Some proposals have used Grad-CAM in an attempt to

explain possible decisions of the model (47) in the medical field

(48–51).

Since Grad-CAM does not require any particular CNN

architecture, it can be used with fixed weights (after being trained),

and it is able to explore the spatial information of the last

convolutional layers through feature maps that are weighted and

calculated, based on gradients. The positive values, which are the

most “relevant” information for the classification result, can be

obtained through a ReLU operation, defined as,

LcGrad−CAM = ReLU

(

∑

k

αc
kA

k

)

(1)

where αc
k
=

1
Z

∑

i

∑

j
∂yc

∂Ak
ij

.

2.3.2. Grad-CAM++
Grad-CAM++ technique is an improved version of the original

Grad-CAM and CAMmethod. The Grad-CAM++method is based

on the same principles as the original Grad-CAM method, but it

uses a weighted combination of the positive partial derivatives of

the last convolutional layer feature maps with respect to a specific

class score as weights to generate a visual explanation for the class

label under consideration (Equation2) (31).

LcGrad−CAM = ReLU

(

∑

k

αc
kA

k

)

(2)

The class-discriminative saliency map generated by Grad-

CAM++ is a high-resolution heatmap that indicates the regions of

the input image that are most relevant to the specific prediction

made by the network. For a given image, Lc is calculated as a linear
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combination of the forward activation maps, followed by a relu

layer (Equation 3) (31).

Lcij = ReLU

(

∑

k

wc
kA

k
ij

)

(3)

2.3.3. Eigen-CAM
The Eigen-CAM technique leverages the principal components

on the activation maps of the convolutional layers (32). It

does not rely on the backpropagation of gradients. For the last

convolutional layer:

1. Singular value decomposition (SVD) is used to factorize the

combined activation map A for input X as A = U
∑

V t ;

2. The activation map is then projected on the first eigenvector of

the V matrix;

3. The projection highlights the principal components of the

activation map.

In this method, there is no use of a ReLU activation function.

Conceptually, the Eigen-CAM can be defined as,

LEigen−CAM = AV1 (4)

where V1 denotes the first the eigenvector at the first position

in the V matrix.

2.3.4. Score-CAM
Like Eigen-CAM, Score-CAM does not rely on the

backpropagation of gradients. It borrows from the Grad-

CAM technique in the sense that it is also non-dependent on a

particular architecture; where they differentiate, however, is in

the way they deal with the flow of gradient information. Instead

of using the gradient from the last convolutional layer to build

on the importance of each region of input X toward class C, the

Score-CAM technique assimilates the importance of each region

as an increase of confidence in the overall prediction (33). For a

specific convolutional layer:

1. Each activation map is upsampled, normalized, and then used as

a mask for input X, highlighting the most activated regions;

2. The masked input image is passed through the CNN resulting in

a logit for each class;

3. All logits and activation maps are linearly combined;

4. A ReLU activation function is applied to the combined product,

resulting in the Score-CAM output.

Because gradients can be noisy, explode, and/or vanish (52),

these characteristics can also be present in the layer activations (53),

thus resulting in suboptimal CAM visualizations. The Score-CAM

technique, however, is not dependent on the model gradient.

Conceptually, the Score-CAM can be defined as,

LkScore−CAM = ReLU

(

∑

k

αc
kA

k
l

)

(5)

where αk
c = C

(

Ak
l

)

, and C
(

Ak
l

)

= f
(

X ·Hk
l

)

− f (Xb).

2.3.5. Local interpretable model-agnostic
explanations (LIME)

LIME is model agnostic, which allows it to be utilized across

a wide range of machine learning models. The locally weighted

square loss (L) as the metric choice by authors (Equation 6). This

loss function takes into account the exponential kernel rx(z), which

is defined as exp(−D(x, z)2/σ 2), where D represents a distance

function, such as the cosine distance for text or the L2 distance for

images, and σ is the width of the kernel (54).

L(f , g,πx) =
∑

z,z′ǫZ

πx (z)
(

f (z) − g
(

z′
))2

(6)

How LIME is used for image:

1. The image is segmented into superpixels. Superpixels are

interconnected pixels with similar colors;

2. The surrogate model highlights the superpixels of the image that

are the most active in predicting a certain class;

3. The image is transformed into a binary vector where 1 indicates

the original superpixel and 0 indicates a grayed-out super-pixel.

The complexity depends on the time required to compute

the prediction of the relevant class and the number of samples

N. Due to this complexity, LIME may take longer than other

methods, especially when applied to image data (34, 54). In the

present publication, the LIME is used to highlight superpixels

that have the maximum positive and negative influence on the

model’s prediction.

2.4. The experiment

In order to analyze the impact of the five different explainability

techniques on humans, we defined two major questions to be

addressed experimentally. They are:

1. Is there a quantitative agreement between dermatologists ABC

rule and the visual explanation techniques for melanoma?

2. Do dermatologists qualitatively agree with the visual explanation

techniques for melanoma?

In the next sections, we will explore each question in

further detail.

2.4.1. Is there a quantitative agreement between
dermatologists ABC rule and the visual
explanation techniques for melanoma?

In this experiment, we aimed to apply an explainability

method visual analysis by human experts, such as dermatologists,

comparing the highlighted areas in the saliency maps with the areas

of the lesion that show asymmetry, border irregularity, and color

heterogeneity (ABC rule), three of the main features evaluated in a

melanoma lesion.

From the dataset, we selected 100 lesions correctly classified

by the model as melanoma. These 100 dermoscopy images were

analyzed by two experienced and Board-Certified dermatologists

(MGB and ALO). They first assessed only the dermoscopy

image and graded three of the five most frequently melanoma

criteria (ABCDE) used in clinical practice: asymmetry (A), border
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irregularity (B), and color heterogeneity (C). They did not grade

diameter (D) because most of the dermoscopy images had no scale

measure and evolution in time (E) due to the fact that the clinical

photographs in the dataset were taken at one point in time and no

follow-up images were available.

Both dermatologists had to reach a consensus to use a semi-

quantitative scale from 0 to 2 to grade the ABC features in the

lesions, as shown in Figure 1. To assess asymmetry, the lesion was

divided into 4 quadrants, and its shape and color distribution was

analyzed. If all 4 quadrants had regular shapes and colors, there

was no asymmetry (0); if 2 or 3 quadrants were similar, there was

mild asymmetry (1); and if all four quadrants were different, there

was severe asymmetry (2). For borders, they evaluated the shape

and regularity. If the aspect was smooth and regular in color, the

borders were considered benign (0). If ≤50% of the border area

presented irregular borders or signs of color abnormality, it was

called partial involvement (1), and if >50%, severe involvement

(2). If >50% of the lesion’s limits could not be evaluated, they

were designed as non-available (N/A). For color, we assessed the

degree of color heterogeneity by the number of colors present

in the lesion: one color present, no heterogeneity (0); two colors

present, mild heterogeneity (1); three ormore colors present, severe

heterogeneity (2).

Next, they analyzed each visual explanation technique (Grad-

CAM, Grad-CAM ++, Eigen-CAM, Score-CAM, and LIME) in

conjunction with its dermoscopy image, separately, in pairs, and

blindly to the techniques name. For each of them, they assessed

the features highlighted by the saliency map, using the following

criteria (Figure 2). For asymmetry, it was the same criteria as for

clinical features. The visual explanation map was divided into

4 quadrants and shape and color distribution were analyzed. If

all 4 quadrants showed the same color and format, there is no

asymmetry (0); if 2 or 3 quadrants are similar, there was mild

asymmetry (1); and if all four quadrants were different, there is

severe asymmetry (2). The clinical border area was compared to the

highlighted visual map for borders. If the visual technique showed

no highlight or ≤50% of the border area highlighted with cold

colors for the clinical borders, it was classified as no highlight (0).

If ≤50% of the area was highlighted with heat colors or >50% with

cold colors, it was called partial border highlight (1). If>50% of the

area were highlighted with heat colors, it was designated as total

border highlight (2) or non-available (N/A), and if>50% of lesion’s

limits could not be evaluated clinically.

For color assessment, we had to pursue a different strategy,

mainly because visual heat maps, by definition, ought to display

multiple colors, leaving all the maps to be rated as showing severe

heterogeneity of colors (2), which would not be meaningful to

the dermatologists understanding. Thus, dermatologists decided to

compare the most significant color abnormalities presented in the

dermoscopy image (as if they had a saliency map in their minds)

to the heat colors of the visual map, considering its location and

intensity, and grading the match between them. If the clinical color

abnormalities presented an agreement area was ≤75% for heat

colors, it was called total agreement (0). If the matched area was 25-

75% for heat colors or >75% for cold colors, it was designated as

partial agreement (1). If the matched area for heat colors was<25%

or 25-75% for cold colors, it was considered total disagreement (2).

For grading the highlight colors, we established blue/purple as cold

colors and orange/red for heat colors. Examples of high and low

agreement cases can be seen in Figure 3.

To calculate the agreement rate between the clinical criteria and

visual techniques, we used the following criteria: if the difference

between their grade scales was zero, they were in total agreement.

If the difference was one, they had a partial agreement and if

the difference was two, they had no agreement. For example, if

dermatologists graded the heterogeneity of colors as 0 in the clinical

image and as 0 in the visual technique, the difference was zero, so

they were in total agreement. On the other hand, if dermatologists

graded border irregularity as 2 for the clinical image and as 0 for the

visual explanation technique, the difference was 2, and therefore

there was no agreement. At last, if the asymmetry was rated as 0

for the clinical image and as 1 for the explanation technique, the

difference was 1, so that corresponded to a partial agreement.

2.4.2. Do dermatologists qualitatively agree with
the visual explanation techniques for melanoma?

The rationale for this part of the qualitative study was to

capture the overall characteristics perceived by the experts about

each explainability technique, making comments about each of

them and ranking their preferable techniques. For this purpose,

after grading ABC, we showed all the images again, with the

respective label for each technique to both dermatologists and

asked them to make comments about each technique and how

they would rank the techniques in order of the most preferable

to the least (1-5). After that, they were also asked to read the

comments and determine if they agree or not with the other

experts observations, according to the following criteria: total

agreement; partial agreement; no agreement nor disagreement;

partial disagreement; and total disagreement. Examples of clinical

melanoma images and their respective visual maps using Score-

CAM, Eigen-CAM, LIME, Grad-CAM, and Grad-CAM ++ can be

seen in Figure 4.

3. Results

3.1. Quantitative results

To assess the AB clinical criteria for melanoma in our study, a

confusion matrix was constructed after grading melanoma images,

as depicted in Figure 5. The diagonal of the matrix signifies

instances where the reference and dermatologists concurred,

indicating total agreement. The off-diagonal elements, displaced

either one or two columns away from the main diagonal, denote

partial agreement or disagreement, respectively. The generated

confusion matrix was used to construct (Table 1), presenting a

comprehensive overview of the inter-rater reliability of the AB

clinical criteria for melanoma in our study.

Table 1 shows the results of total, partial, and no agreement

rates to ABC melanoma rule. Asymmetry was the criterium of the

highest agreement rate among the three. LIME, Grad-CAM, and

Grad-CAM++ were the top techniques for asymmetry, all of them

showing >50% of total agreement rates. 40–50% of all techniques

showed a partial agreement rate in this criterium. Eigen-CAM had

the poorest performance, with >25% of no agreement rate, while
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FIGURE 1

Graphical representation of ABC melanoma criteria used in clinical images: asymmetry, border irregularity, and color heterogeneity. To assess

asymmetry, the lesion was divided into 4 quadrants, and its shape and color distribution were analyzed. If all 4 quadrants had regular shapes and

colors, there was no asymmetry (0); if 2 or 3 quadrants were similar, there was mild asymmetry (1); and if all four quadrants were di�erent, there was

severe asymmetry (2). For borders, they evaluated shape and regularity. If the aspect was smooth and regular in color, the borders were considered

benign (0); if ≤ 50% of the border area presented irregular borders or signs of color abnormality, it was considered as partial involvement (1), and if

> 50%, severe involvement (2). Finally, if > 50% of the lesion’s limits could not be evaluated, it was considered non-available (N/A). For color, we

assessed the degree of color heterogeneity by the number of colors present in the lesion: presence of one color was considered as no heterogeneity

(0); presence of two colors was considered as mild heterogeneity (1); presence of three or more colors was considered as severe heterogeneity (2).

Grad-CAM++ and LIME showed only around 3% of no agreement.

Thus, Grad-CAM++ seems to be the best technique for asymmetry

detection in melanoma cases.

Regarding border evaluation, all visual explanation techniques

showed similar total agreement rates, between 32 and 39%, but

Score-CAM and Grad-CAM++ showed no agreement in ≥ 20%

of the cases. For partial agreement, Grad-CAM and Eigen-CAM

showed the best numbers. Taking all into account, it looks like

Grad-CAM is the most reliable technique to identify border

abnormalities by visual maps.

As for the color match, Grad-CAM presented the top

performance, with 40% of total agreement, followed by Grad-

CAM++ and LIME. For partial agreement, all techniques showed

similar results. As Grad-CAM had only 6% of no agreement, it was

considered the best technique for this aspect.

Analyzing the three criteria together, Grad-CAM was

the best visual explanation technique in agreement with the

ABC rule of melanoma cases. In second and third places,

respectively, are LIME and Grad-CAM++, which performed

very similarly in this experiment. Eigen-CAM and Score-

CAM finalized in the fourth and fifth places, respectively,

Eigen-CAM presenting a little better result for total and no

agreement rates.

3.2. Qualitative results

Comments of both dermatologists about the five different

visual explanation methods can be seen in Table 2, as well as their

preferable choices, and their inter-expert agreement rates. Grad-

CAM and Grad-CAM++ were in the top position for both. Score-

CAM was unanimous the third place in choice and the worst

positions were occupied by LIME and Eigen-CAM techniques. The

overall inter-expert agreement rates was 60% total and 40% partial,

although they were not coincident for each explainability method.

There were no disagreements.
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FIGURE 2

Grading examples of the visual map explanation techniques. For asymmetry, the visual explanation map was divided into 4 quadrants and shape and

color distribution were analyzed. If all four quadrants showed the same color and format, there was no asymmetry (0); if 2 or 3 quadrants were

similar, there was mild asymmetry (1); and if all four quadrants were di�erent, there was severe asymmetry (2). For borders, the clinical border area

was compared to the highlighted visual map. If the visual technique showed no highlight or ≤ 50% of the border area highlighted with cold colors, it

was considered as no highlight (0). If ≤ 50% of the area was highlighted with warm colors or > 50% with cold colors, it was considered partial border

highlight (1); if > 50% of the areas was highlighted with warm colors, it was considered total border highlight (2). Finally, if > 50% of the lesion’s limits

could not be evaluated clinically, it was considered non-available (N/A). For color abnormality, dermatologists decided to compare the most

significant color abnormalities in the dermatoscopy image as if they had a saliency map in their minds, comparing the imaginary heatmaps to the

ones in the visual techniques. If the clinical color abnormalities presented an agreement area of ≤ 75% for warm colors, it was considered total

agreement (0); if it was 25−75% for warm colors or > 75% for cold colors, it was considered as partial agreement (1); if it was < 25% for warm colors

or 25−75% for cold colors, it was considered total disagreement (2). For grading the highlight colors, we established blue/purple as cold colors and

orange/red as warm colors.

4. Discussion

Due to the difficulty of interpreting deep learning models and

giving a plausible explanation for a prediction, this theme has

been increasingly addressed in the literature through proposed

methods, taxonomies, and benchmarks (29, 30, 55, 56). However,

there is little consensus on what is interpretability/explainability in

machine learning and how to evaluate it for benchmarking (55).

Especially in the medical field, as physicians play a major role

in endorsing (or not) the use of AI algorithms, it is important

to reach out to them, understanding how and what they think

about the explainability models. An adequate visual explanation

should be able to identify details that help explain a particular

classification (26). In this context, interpretability can be described

as the degree to which a human can consistently predict the models

result (25, 35).

There are very few studies addressing this question in

practice. Our work is likely one of the pioneers in this field,

trying to bring light to the CNN black box, through practical

experiments using human experts in the field of Dermatology. Our

methodology tested the discriminative visual explanation of five

different techniques to support the understanding of the model’s

decision and our quantitative and qualitative results composed an

interesting picture to compare the methods in a real-life situation.

Asymmetry was the criterium with the highest agreement rate,

reaching 57.5% using LIME. This can be explained because the

LIME technique is very geographical, dividing the maps lesion into

several different areas and color tones, making it almost impossible

to produce a symmetric visual map. As melanoma clinical lesions

are often asymmetric themselves, the high agreement may be more

of an expression of this fact rather than a true match with the

dermatologists criterium. On the other hand, Eigen-CAM had

the worst performance, justified by the fact that it often stamps

a rectangle over the entire lesion, showing no asymmetry at all,

poorly reflecting the reality of the clinical lesion. Grad-CAM and

Grad-CAM++ also performed very well for asymmetry, with only

≤ 6% of no agreement rate and excellent numbers for high and

partial agreements rate.
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FIGURE 3

Examples of high and low agreement cases. (A) Examples of high agreement rate. (B) Examples of poor agreement rates.

FIGURE 4

Examples of clinical melanoma images and their respective visual maps using Score-CAM, Eigen-CAM, LIME, Grad-CAM, and Grad-CAM++.

Borders evaluation was the criterium with the lowest

agreement rate. Grad-CAM showed the best results, with

only 9% of no agreement rate, followed by Eigen-CAM. That

corroborates the fact that Grad-CAM was the only technique

cited as better limiting the border area. Eigen-CAM might

have a good result in this assessment because, as said, the

rectangle displayed in the visual map included, in most cases,

the border area. As described above for LIME technique in

asymmetry evaluation, Eigen-CAM may not reflect a true match

with the border area, but only a coincidence dependent on

the techniques visual map displayed. The worst performance

techniques were Score-CAM and Grad-CAM++ was showing

≥ 20% of no agreement rates, which was also pointed out by the

dermatologists.
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FIGURE 5

Confusion matrix of clinical criteria asymmetry and border in melanoma images using: (A) Grad-CAM; (B) Grad-CAM++; (C) Eigen-CAM; (D)

Score-CAM; and (E) LIME.

Color abnormalities assessment is probably the most relevant

criterion when dermatologists evaluate lesions such as melanoma.

Eigen-CAM and Grad-CAM presented the best results, over 30% of

high agreement and ≤ 4% of no agreement. As already mentioned,

Eigen-CAM, as its visual map prints a big rectangle over the

lesion, it did match the color abnormalities, but indiscriminately, as

pointed out by the dermatologists. Thus, for this criterium, when

the qualitative study is considered, Grad-CAM seemed to better

match the relevant areas of color abnormalities of the lesions. LIME

and Score-CAMdid poorly in this evaluation, showing only around

15% of high agreement and 12-13% of no agreement.

Overall, Grad-CAM showed the best agreement rate with

40% of total agreement and only 6% of no agreement. This

was also reflected by the dermatologists opinion, which ranked

it in the top two techniques. The LIME technique ended

up in the second position in the quantitative study, probably

because of the high performance for asymmetry, but was ranked

very low by the dermatologists, in the last two spots. Grad-

CAM++ turned up to be third in quantitative agreement,

but it was highly ranked by the dermatologists (first and

second places). Eigen-CAM performed fourth in the agreement

experiment and it was disliked, as well, by the experts.

Finally, Score-CAM showed the worst performance in the

quantitative assessment, but it assumed a unanimous third place

among the dermatologists, only after Grad-CAM and Grad-

CAM++.

Another study, recently published, tested four

Convolutional Neural Network models using five different

interpretation techniques (saliency, guided backpropagation,

integrated gradients, input gradients, and DeepLIFT)
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TABLE 1 Agreement between clinical ABC melanoma features and each visual explanation.

Technique Total agreement Partial agreement No agreement Total

Assymetry

Eigen-CAM 52 26.00% 96 48.00% 52 26.00% 200

Grad-CAM 105 52.50% 83 41.50% 12 6.00% 200

Grad-CAM++ 101 50.50% 93 46.50% 6 3.00% 200

LIME 115 57.50% 80 40.00% 5 2.50% 200

Score-CAM 76 38.00% 100 50.00% 24 12.00% 200

Border

Eigen-CAM 62 32.63% 104 54.74% 24 12.63% 190

Grad-CAM 62 32.63% 110 57.89% 18 9.47% 190

Grad-CAM++ 74 38.95% 78 41.05% 38 20.00% 190

LIME 66 34.74% 92 48.42% 32 6.84% 190

Score-CAM 70 36.84% 80 42.11% 40 21.05% 190

Color

Eigen-CAM 75 37.50% 121 60.50% 4 2.00% 200

Grad-CAM 69 34.50% 123 61.50% 8 4.00% 200

Grad-CAM++ 41 20.50% 132 66.00% 27 13.50% 200

LIME 29 14.50% 148 74.00% 23 11.50% 200

Score-CAM 32 16.00% 141 70.50% 27 13.50% 200

TOTAL

Eigen-CAM 189 32.03% 321 54.41% 80 13.56% 590

Grad-CAM 236 40.00% 316 53.56% 38 6.44% 590

Grad-CAM++ 216 36.61% 303 51.36% 71 12.03% 590

LIME 210 35.59% 320 54.24% 60 10.17% 590

Score-CAM 178 30.17% 321 54.41% 91 15.42% 590

to compare their agreement with experts previous

annotations of esophagus cancerous tissue, showing

that saliency attributes match best with the manual

experts delineations and that there was moderate to high

correlation between the sensitivity of a model and the

human-and-computeragreement (57).

Saliency maps are one of the few methods that can be

used for visual explanations. As in our study, the evaluation of

explainability with humans is ideal to assess the understanding

and applicability of these methods (55). A large variety of

methods have been applied for this aim. However, recent work

has shown that many are, in fact, independent of the model

weights and/or the class labels. In these cases, it is likely that

the model architecture itself is constraining the saliency maps

to look falsely meaningful: frequently, the maps just act as a

variant of an edge detector. This is particularly dangerous in the

context of skin cancer detection, as features at the borders of

lesions are often considered diagnostic for melanoma: saliency

maps that highlight the edges of a lesion may be misconstrued

as clinically meaningful (51). Interestingly, our results in the

experiment showed that most of the techniques fail to identify

the borders of the lesions, and only Grad-CAM showed a

good performance.

Although human evaluation is essential to assess

interpretability, the evaluation of the human subject is not an easy

task (55). In our experiment, it is not possible to measure, in a

concrete way, if the techniques are looking at the same features as

the experts to confirm or not the agreement. Some studies claimed

that people tend to disregard information that is inconsistent with

their prior beliefs. This effect is called confirmation bias (25) and

that is why our dermatologists assessed the dermoscopic images

and Grad-CAM visual maps separately and blindly, trying to avoid

it. Also, relying only on examples to explain the models behavior

can lead to over-generalization and misunderstanding (58), and

observing where the network is looking at the image does not

tell the user what the CNN is actually doing with that part of the

image (59).

Furthermore, when evaluating the most appropriate

explanation, one must take into account the social environment

of the ML system and the target audience. This means that

the best explanation varies depending on the domain of the

application and the use case (60). Despite the fact that a
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TABLE 2 Qualitative results of each visual map technique showing the comments, ranking and inter-expert agreement.

Dermatologist 1 Dermatologist 2

Visual map Comments Preference Inter-expert Comments Preference Inter-expert

technique ranking agreement ranking agreement

Score-CAM Poor delimitation of

the lesion,

very specific,

but very low sensitivity

3 Total It points only to specific

areas, but not necessarily

the relevant ones

3 Partial

Eigen-CAM It creates a rectangle

over the central area;

does not seem

specific nor sensitive

4 Total It maps a great area,

without differentiation

between relevant

areas; it only points

to the lesion

5 Total

LIME It creates geographical

areas, hard to interpret;

it can delimitate

the lesion very well,

but does not seem

specific or sensitive

5 Total Maps do not explain

why clinically similar

areas of the skin show

different patterns in

the map; does not seem

sensitive or specific

4 Total

Grad-CAM It delimitates the lesion

most accurately, and

have better match

to clinically relevant

areas

1 Partial It seems more specific,

but not so much

sensitivity; it points

correctly to the whole

lesion

2 Partial

Grad-CAM++ It does not delimitate

the lesion; it highlights

only the major relevant

areas; high specificity

and low sensitivity

2 Total It also seems more

specific, localizing the

relevant areas but less

sensitive; it points only

to parts of the lesion,

not delimitating the

whole area

1 Total

saliency map located on the lesion cannot yet be viewed as

justification that clinically meaningful correlations have been

learned, a map that is clearly located on a clinically irrelevant

region could be used to signal a prediction that should be

ignored (51).

In our study, we encouraged experts to provide quantitative

and qualitative analyses of the different explainability techniques

to assess subjective matters related to how they visually interpreted

melanoma lesions alongside the technique’s results. By doing that,

we touched unknown territory in terms of analyzing how useful

these visual explainability techniques can be in clinical practice.

In our study design, the experts gave important feedback that was

statically detailed and explored. There was no adoption of a method

described in the scientific literature because it was not possible to

find one. In the future, it may be pertinent to carefully explore and

propose study designs to address this issue, preferably exploring

subjective matters objectively, minimizing model and expert biases,

and focusing on the real-world gains of adopting AI algorithms in

clinical practice.

5. Conclusion

Our work is likely one of the pioneers using experts to try

to bring light to the CNN black box in the Dermatology area,

performing quantitative and qualitative studies on different visual

explanation techniques for melanoma. Our results demonstrated

that there is a significant agreement between clinical features

used by dermatologists to diagnose melanomas and visual

explanation techniques, especially Grad-Cam. The interpretation

of black-box generalization in melanoma images based on

visual maps showed up to be promising, presenting trustworthy

outputs compared to experts interpretations and encouraging

new studies.
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