
Frontiers in Medicine 01 frontiersin.org

A vendor-agnostic, PACS 
integrated, and 
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software-server pipeline for 
testing segmentation algorithms 
within the clinical radiology 
workflow
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Background: Reproducible approaches are needed to bring AI/ML for medical 
image analysis closer to the bedside. Investigators wishing to shadow test cross-
sectional medical imaging segmentation algorithms on new studies in real-
time will benefit from simple tools that integrate PACS with on-premises image 
processing, allowing visualization of DICOM-compatible segmentation results 
and volumetric data at the radiology workstation.

Purpose: In this work, we develop and release a simple containerized and easily 
deployable pipeline for shadow testing of segmentation algorithms within the 
clinical workflow.

Methods: Our end-to-end automated pipeline has two major components- 1. 
A router/listener and anonymizer and an OHIF web viewer backstopped by a 
DCM4CHEE DICOM query/retrieve archive deployed in the virtual infrastructure 
of our secure hospital intranet, and 2. An on-premises single GPU workstation 
host for DICOM/NIfTI conversion steps, and image processing. DICOM images 
are visualized in OHIF along with their segmentation masks and associated 
volumetry measurements (in mL) using DICOM SEG and structured report (SR) 
elements. Since nnU-net has emerged as a widely-used out-of-the-box method 
for training segmentation models with state-of-the-art performance, feasibility 
of our pipleine is demonstrated by recording clock times for a traumatic pelvic 
hematoma nnU-net model.

Results: Mean total clock time from PACS send by user to completion of transfer 
to the DCM4CHEE query/retrieve archive was 5  min 32  s (± SD of 1  min 26  s). This 
compares favorably to the report turnaround times for whole-body CT exams, 
which often exceed 30  min, and illustrates feasibility in the clinical setting where 
quantitative results would be expected prior to report sign-off. Inference times 
accounted for most of the total clock time, ranging from 2  min 41  s to 8  min 27  s. 
All other virtual and on-premises host steps combined ranged from a minimum 
of 34  s to a maximum of 48  s.

Conclusion: The software worked seamlessly with an existing PACS and could 
be  used for deployment of DL models within the radiology workflow for 

OPEN ACCESS

EDITED BY

Michalis Savelonas,  
University of Thessaly, Greece

REVIEWED BY

Christos Veinidis,  
National and Kapodistrian University of Athens,  
Greece  
Jonathan Luisi,  
University of Texas Medical Branch at 
Galveston, United States  
George Dimas,  
University of Thessaly, Greece

*CORRESPONDENCE

David Dreizin  
 daviddreizin@gmail.com

RECEIVED 20 June 2023
ACCEPTED 09 October 2023
PUBLISHED 26 October 2023

CITATION

Zhang L, LaBelle W, Unberath M, Chen H, Hu J, 
Li G and Dreizin D (2023) A vendor-agnostic, 
PACS integrated, and DICOM-compatible 
software-server pipeline for testing 
segmentation algorithms within the clinical 
radiology workflow.
Front. Med. 10:1241570.
doi: 10.3389/fmed.2023.1241570

COPYRIGHT

© 2023 Zhang, LaBelle, Unberath, Chen, Hu, Li 
and Dreizin. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Methods
PUBLISHED 26 October 2023
DOI 10.3389/fmed.2023.1241570

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2023.1241570%EF%BB%BF&domain=pdf&date_stamp=2023-10-26
https://www.frontiersin.org/articles/10.3389/fmed.2023.1241570/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1241570/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1241570/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1241570/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1241570/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1241570/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1241570/full
mailto:daviddreizin@gmail.com
https://doi.org/10.3389/fmed.2023.1241570
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2023.1241570


Zhang et al. 10.3389/fmed.2023.1241570

Frontiers in Medicine 02 frontiersin.org

prospective testing on newly scanned patients. Once configured, the pipeline is 
executed through one command using a single shell script. The code is made 
publicly available through an open-source license at “https://github.com/vastc/,” 
and includes a readme file providing pipeline config instructions for host names, 
series filter, other parameters, and citation instructions for this work.

KEYWORDS

artificial intelligence, deep learning, nnU-net, PACS, DICOM, OHIF, quantitative 
visualization, computed tomography

Introduction

Unmet need for open-source software 
integrating DL models into quantitative 
visualization clinical workflows

Simple, reproducible approaches are needed to bring AI/ML for 
medical image analysis closer to the bedside. During the Radiologic 
Society of North America (RSNA) 2018 Artificial Intelligence (AI) 
Summit, researchers, opinion leaders, and early adopters of AI 
computer-aided detection/diagnosis (CAD) radiology innovations 
emphasized that frameworks are needed to integrate machine learning 
(ML) algorithms into clinical practice (1), but few open source 
solutions to this problem have been reported. For methods involving 
quantitative visualization (i.e., those that produce segmentation results 
with volumetric data), solutions are needed that present segmentations 
as Digital Imaging and Communications in Medicine (DICOM) SEG 
objects and volumetric measurements as DICOM structured report 
(SR) elements, since the DICOM format is required in clinical work. 
In the future, SR elements could be used to autopopulate radiology 
reports, provided that timely results can be  generated prior to 
report completion.

The Radiologic Society of North America (RSNA) recently 
released a special report on clinical AI implementation and presented 
a road map for governance, including a framework for required 
infrastructure (2). Clinical artificial intelligence/machine learning 
(AI/ML) integration in the DICOM format is necessary for 
deployment of commercial vendor-specific quantitative CAD tools. 
But imaging departments may want to deploy and test locally 
developed algorithms as well, and this can be facilitated with open-
source vendor agnostic methods (3). Such algorithms commonly 
employ research-grade code and models, are at the stage of 
preliminary testing and validation, use the Neuroimaging Informatics 
Technology Initiative (NIfTI) format as input and output, and are not 
ready for clinical use. However, researchers may want to evaluate 
generalizability on new cases as they arise in the clinical workflow or 
conduct prospective studies of diagnostic performance, prognostic 
utility, or user acceptance.

In radiology, criteria that need to be met for pre-clinical “shadow-
mode” testing of AI/ML CAD tools include cross-platform and cross-
domain integration, as well as data security and access. A vendor-
agnostic platform should be integrated with hospital imaging archival 
systems. These pre-conditions are also critical for data search and 
retrieval in the pathology domain (4, 5). Jansen et al. (6) developed a 
vendor-agnostic EMPAIA (EcosysteM for Pathology Diagnostics with 

AI assistance) platform which is used for integrating AI applications 
into digital pathology infrastructures.

Within the radiology clinical workflow, the DICOM standard 
includes a large library of metadata to facilitate interoperability for 
storing and visualization in Picture Archiving and Communications 
Systems (PACS). Sohn et al. (7) released a vendor-agnostic PACS-
compatible solution for integrating AI into the radiology workflow. 
They showed feasibility of their pipeline for 2D classification of breast 
density on mammograms. However, the method did not include 
functionality for visualizing DICOM SEG and SR elements necessary 
for quantitative imaging.

As AI/ML methods improve along the technology readiness 
pipeline, clinical-translational teams working on precision imaging 
solutions will be increasingly interested in deploying trained cross-
sectional imaging-based models that segment and volumetrically 
quantify pathology for pre-clinical evaluation on new cases in “real 
world” settings as they arise (2, 8). Granular quantitative volumetric 
information can provide objective metrics for personalized decision-
making and treatment planning in clinical workflows (8). Such 
quantitative visualization (QV) tools fall under FDA computer-aided 
diagnosis (CADx) or image processing and quantification (IPQ) 
Software as Medical Device (SaMD) designations (9).

Necessary elements for a clinical 
workflow-compatible software server 
pipeline

Simple, modular, and open-source PACS integrated pipelines are 
needed that are tailored specifically for segmentation and quantitative 
visualization tasks applied to cross-sectional imaging modalities. 
DICOM lacks the elegant design features of the NIfTI format for 
cross-sectional medical image processing and analysis (10, 11). 
Conversely, PACS systems do not support data handling of NIfTI 
image volumes used as model input and output.

Each slice of a DICOM CT series is represented by a.dcm file, 
whereas the NIfTI series employed in segmentation algorithm 
development is represented as a volume in a single.nii.gz file. DICOM 
to NIfTI and NIfTI to DICOM conversion bridges the gap between 
clinical PACS and visualization for quantitative imaging (11). A 
listener and router are needed to handle the flow of data for file 
conversion, image processing, and viewing of coregistered 
segmentation masks and quantitative results. JSON files are needed to 
specify relevant DICOM metadata such as pathology type and display 
color for a given DICOM SEG (segmentation) object, and the DICOM 

https://doi.org/10.3389/fmed.2023.1241570
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://github.com/vastc/


Zhang et al. 10.3389/fmed.2023.1241570

Frontiers in Medicine 03 frontiersin.org

SEG object needs to be associated with its original DICOM image 
series through a DICOM unique identifier (UID). The precise volume 
of pathology (e.g., milliliters (mL)) should be available to the end-user 
for a QV task in the form of a DICOM structured report (SR) element.

Rationale for nnU-net backbone use case

Automated precision diagnostics in cross-sectional imaging of the 
torso typically require multiscale deep learning (DL) solutions to 
address complex and heterogeneous pathology with highly variable 
volumes. DL has demonstrated promising performance on a large 
variety of medical image analysis tasks (12), however computer vision 
solutions for torso imaging have been late-comers due to challenges 
including small target to volume ratios and the highly variable size, 
appearance, and distribution of pathology (13). A variety of bespoke 
solutions have been employed for multiscale problems, including 
coarse-to-fine approaches, and dilated convolutional neural networks 
with attention modules (14–17).

In 2021, Isensee et al., introduced nnU-net (18), which uses a 
simple existing u-net backbone and systematizes design choices 
(including pre-processing, hyperparameter selection, and post-
processing) based on the “data fingerprint” of the task at hand, a 
representation that considers voxel spacing, image size, class ratios, 
and other dataset-specific features derived from 53 different 
segmentation tasks. The premise of nnU-net is that such design 
choices are a more important condition of high performance than 
architectural modifications, hence the name “no new U-net.” The 
method achieved state-of-the-art or performance on 23 public 
datasets in the Isensee et al., paper, and given its ease of implementation 
and robust performance for a wide variety of tasks, represents a 
watershed for out-of-the-box automated medical image segmentation. 
Given the ease of training nnU-net and its high performance, it is now 
widely used by many investigators. We employed nnU-net in our 
pipeline due to the low complexity and easy out-of-
the-box deployment.

Doran et al. (10) integrated the Open Health Imaging Foundation 
(OHIF) viewer with the XNAT informatics software platform for 
quantitative imaging research based on the DICOM web protocol, 
with advanced features including paintbrush editing tools and 
integration with NVIDIA’s AI assisted annotation (AIAA). Similarly, 
Monai label provides active learning and AIAA functionality and can 
be combined with robust quantification tools as a 3D slicer plug-in 
(19). The pipelines can be configured with a variety of segmentation 
algorithms on the back end, including 3D U-Net, DynU-Net and 
UNETR. A sliding window patch-based method is typically employed 
to address local GPU memory limitations in training and inference 
and represents a dependency requiring user configuration that is 
handled by nnU-net as part of its default settings. To our knowledge, 
implementations of these tools with nnU-net on the back-end are not 
currently publicly available, and user selection of patch-based 
parameters are required with these frameworks.

With our pipeline, investigators have the agency to easily swap in 
any segmentation algorithm code, including any pre-and post-
processing steps such as the sliding window approach described 
above. The only proviso is that the algorithm receives NIfTI images as 
input, and outputs segmentations in the NifTI format, as per standard 
practice in the investigational setting. Further, while new modules 

may be developed, the lack of a DICOM structured reporting element 
containing segmentation volumes with XNAT-OHIF, and lack of 
out-of-the-box DICOM compatibility with 3D Slicer (20) represented 
barriers for quantitative visualization in the clinical environment that 
motivated this work.

Rationale for traumatic pelvic hematoma 
use case

Whole Body CT has become the routine diagnostic workhorse for 
admissions with major trauma (21, 22), with potential associated 
survival benefit (23), but long interpretation times, ranging from 30 
to 87 min remains a major bottleneck that limits rapid surgical 
decision-making (24, 25). Volumetric measurements of hemorrhage 
are not feasible at the point of care without automation (26, 27), and 
a recent scoping review found no commercial CAD tools for this 
purpose (8). A cross-sectional survey of practitioners in the 
Emergency/Trauma subspeciality reported a desire on the part of most 
respondents for automated quantitative visualization tools (28). 
Bleeding pelvic fractures are a leading cause of morbidity and 
mortality in trauma patients. Once we achieved high saliency visual 
results that correlated with patient outcomes (14), and further 
improved DSC using nnU-net, Shadow testing in the clinical 
environment became desirable for this task. CT volumetry has myriad 
applications beyond our use case— including objective assessment of 
malignancy progression with a higher level of precision compared to 
two-dimensional RECIST criteria (29–31); for measuring organ 
volumes and body composition parameters (32, 33); and for a wide 
variety of other applications.

Purpose

To meet the needs of the community of researchers in this 
domain, following FAIR (findable, accessible, interoperable, and 
reusable) principles, we aimed to construct and disseminate a simple 
and secure, modular, open-source and vendor-agnostic PACS-
integrated and DICOM compatible pipeline for end-to-end automated 
CT quantitative visualization suitable for nnU-net or any other 
segmentation algorithm. The feasibility of our approach for real-time 
shadow evaluation in the clinical setting was assessed using clock 
times for a cascaded nnU-net traumatic pelvic hematoma use case.

Materials and methods

Software architecture

In the proposed python-based client–server architecture, the 
study is pushed by an end user from a picture archiving and 
communications system (PACS) to a DICOM listener/router host 
where the DICOM series of interest is filtered, anonymized, and sent 
to (1) a DCM4CHEE query/retrieve archive associated with a zero-
footprint Open Health Imaging Foundation (OHIF) DICOM web 
viewer running on a radiologist workstation, and separately to (2) a 
deep learning workstation host, where the DICOM series is converted 
to a NIfTI volume and processed by the DL segmentation algorithm. 
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On this host, the output NIfTI segmentation mask is converted to a 
DICOM SEG object with a unique identifier (UID) linking to the 
original DICOM and sent back to the listener/router where the pixel 
data is used to create a DICOM structured report (SR) element with 
volumetric information. The DICOM SEG and SR are then routed to 
the DCM4CHEE query/retrieve archive for secure permission-based 
quantitative visualization using the OHIF viewer on a radiologist 
workstation, or other secure Windows-based desktop or laptop. 
nnU-net is used in our publicly available containerized software. The 
workflow for the overall pipeline and the deep learning host are 
illustrated in Figures 1A,B, respectively.

Building blocks for data transfer and 
handling: listener/router, archive, and 
viewer

 1. When an asynchronous request is made in PACS to send a study 
for processing and viewing (by selecting the listener/router node 
from a dropdown menu), PACS performs a C-STORE operation, 
which queues the study for transfer inbound to the router 
Application Entity (AE) Title. The listener/router includes a 
facility to filter for config file-specified series. The study is 
anonymized according to the DICOM standard and queued up 
through its handler using C-STORE for transfer to two AE 
Titles-a DCM4CHEE archive1 and an on-premises deep learning 
(DL) workstation host. The bespoke listener/router script utilizes 
the pynetdicom library and is constructed using our own high-
level logic to fit the required task.

 2. The DCM4CHEE archive provides web services to the OHIF 
web viewer for retrieving data using the Java-based Web Access 
to DICOM Objects-RESTful services (WADO-RS) protocol. In 
short, the DCM4CHEE archive backs the OHIF viewer as the 
source of DICOM data storage and appears as a list of studies 
for permission-based viewing by the end-user. Use of a web 
viewer distinct from PACS is intended to prevent research-
grade results from entering the patient’s medical record. The 
PACS, the router, the DCM4CHEE archive, and the viewer all 
reside within virtual machine (VM) infrastructure running 
under the institution’s secure intranet.

 3. The deep learning (DL) workstation host is assigned a specific 
IP address, AE Title, and port. The listener/router executes a 
C-STORE to the DL host AE Title using the pynetdicom library 
and has a time-out function that triggers a callback to the DL 
host to indicate that transfer of all DICOM images from the 
series of interest is completed. The time out begins with a 
C-MOVE operation to queue the job up and is followed by a 
C-STORE operation to a unique directory on the DL host 
workstation once the time out (from the last time the object of 
the DICOM series was received) completes, ensuring that 
NIfTI conversion does not occur prematurely. The callback, 
which is serialized and currently processed on a single thread, 
contingent on receipt of the DICOM SEG object to prevent 
concurrent processing, then triggers code for a series of DL 

1 DCM4CHE library: https://www.dcm4che.org/.

host side conversion and image processing steps described in 
detail in the next subsection.

 4. Once image processing steps are complete, the DL workstation 
host returns a DICOM SEG object to the listener/router host 
AE Title. A handler from the listener/router then creates a 
DICOM structured report (SR) element with a volume value in 
milliliters extracted from the DICOM SEG pixel data, and 
executes another C-STORE operation, transferring both SEG 
and SR elements to the DCM4CHEE archive. A tree of DICOM 
Unique identifier (UID) study, series, and image DICOM tags 
associate with the original DICOM series for quantitative 
visualization in the OHIF web viewer.

Building blocks for DL host: image format 
conversion and image processing

The on-premises DL host code runs on a Linux operating system 
(Ubuntu 20.04; Canonical, London, England) on an AMD Ryzen 
Threadripper PRO 5965WX 24-Cores CPU workstation with 128 GB 
of memory, and an NVIDIA GeForce RTX 3090 Ti GPU. The 
workstation operates within the intranet of the hospital’s radiology 
department to communicate securely with the listener/router. We used 
the PyTorch open-source machine learning framework to run 
nnU-net in inference on this workstation. The components are 
containerized using Docker and include 1. A DICOM to NIfTI 
converter that executes upon completion of DICOM transfer, 2. code 
for cascaded nnU-net inference, and 3. A NIfTI to DICOM SEG 
converter (Figure 1B). A serialized model from an open-source task 
(spleen segmentation) is provided in our GitHub repository due to 
institutional restrictions on our trauma CT data.

 1. DICOM to NIfTI conversion. A listener script written in 
LINUX sends a command prompt to convert the collected 
DICOM files to a NIfTI volume after an adjustable delay time 
set to 30 s. The DICOM to NIfTI converter is implemented 
using the DICOM2nifti library.2 This building block is used to 
convert the DICOM sequence to a.nii file. After the data 
conversion is completed, the script executes model inference.

 2. Trained model. Prior to deployment in our pipeline, all 
pre-processing, training, and post-processing steps were 
completed by nn-Unet in five-fold cross-validation per 
specifications of this self-configuring method (18). 
We  employed the 3D cascaded low-resolution to high-
resolution nnU-net architecture and model which gives state 
of the art performance for multiscale segmentation tasks. The 
pipeline can be reconfigured with other networks in place of 
nnU-net to suit investigators’ needs.

 3. The segmentation output is converted from NIfTI to a DICOM 
SEG object linked to the original segmentation with a UID 
using dcmqi (34) (DICOM for Quantitative Imaging) library3 
and dcmqi-created JSON file (Figure 2), which also specifies 
target attributes such as “hemorrhage,” pelvic hematoma, and 
the color of the mask or contour. Once created, the script calls 

2 https://github.com/icometrix/DICOM2nifti

3 https://github.com/qiicr/dcmqi
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FIGURE 1

(A) Diagram of the overall end-to-end workflow, containerized as software with documentation available through: https://github.com/vastc/. Steps are 
summarized as follows: In step 1, the study is pushed by a radiologist end-user from a dropdown menu in the radiology PACS to the DICOM router/
listener node, which filters the series and performs DICOM-standard anonymization. On the back-end, PACS performs C-MOVE/C-STORE operations, 
queuing the study for transfer the listener/router application entity (AE) title filtered by pre-specified series descriptions that can be modified per user 
needs. In step 2, the router performs a C-STORE operation, transferring to (i) the DCM4CHE archive backing the Open Health Imaging Foundation 
(OHIF) viewer, and (ii) the deep learning (DL) workstation host. The router and viewer run on hospital virtual machine (VM) infrastructure. On the DL 
workstation host side [see detailed description in (B)], a pipeline processes the DICOM series, and returns a DICOM SEG (segmentation) output (step 3), 
linked to the original study unique identifier (UID) metadata. This is sent by a DCM4CHE DICOM toolkit (DCM4CHE is a robust library used for many 
healthcare enterprise production applications and utilities) to the router/listener via another C-STORE operation (step 4). In step 5, the router/listener 
extracts quantitative volumetric data from the DICOM SEG and creates a structured report (DICOM SR) element (shown in Figure 5). The DICOM SEG 
and SR elements linked to the original DICOM series through the same UID are forwarded to the DCM4CHEE archive backstopping OHIF in step 6. This 
is visualized as a list of archived studies in OHIF by the radiologist end-user. Double-clicking on the study opens the original series for quantitative 
visualization (QV), with superimposed segmentation and a clickable SR element containing volumetric data in milliliters (see Figures 3–5). (B) DL 
workstation host flow diagram. Steps are summarized as follows. C-MOVE/C-STORE commands from the listener/router (step 1) trigger a time-out 
function (step 2). DICOM (.dcm) images are individual files, wherein the imaged volume/series is represented by a.dcm image stack. The time-out is 
necessary to trigger conversion of all.dcm files into a single NifTI (.nii) volume once all images are received (i.e., no further images are sent during the 
timeout period, set to 30  s). This triggers step 3, DICOM to NIfTI conversion, followed by step 4, image processing by algorithm. We employ nnU-net 
due to widespread adoption and state-of-the-art performance, but this can be swapped out by users with any segmentation algorithm (with relevant 
pre-and post-processing steps) that employs NifTI input and output, as per standard practice for segmentation methods in medical imaging analysis. 
In step 5, the NIfTI label output is converted back to a DICOM SEG series. Metadata is preserved using the dcmqi library and configured. Json file 
(illustrated in Figure 2). In step 6, the DICOM SEG is sent back to the router/listener for creation of the SR element and routing to the OHIF viewer 
archive for quantitative visualization as described in this figure.
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a DCM4CHE toolkit installed on the DL host to perform a 
C-STORE operation, transferring the DICOM SEG object back 
to the router/listener discussed in the previous subheading.

Patient dataset

Performance of pelvic hematoma segmentation in 5-fold cross-
validation on 253 training cross-sectional CT studies with over 100,000 
2D images is previously reported (15) with DSC improving further from 
0.71 to 0.75 with cascaded nnU-net. A convenience sample of 21 new, 
unseen patients with pelvic hematoma between 1/1/2018 and 2/1/2021 
was used to record clock times (described below). Patients had a mean 
age of 42.1 years (range: 21–82) and were 62% male. 20 had blunt injury 
mechanisms including motor vehicle (n = 7), motorcycle (n = 3), and 
bicycle collision (n = 1), pedestrian struck by car (n = 5), fall (n = 3), and 
industrial crush injury (n = 1) = and 1 patient had a pelvic gunshot 
wound. Trauma WBCTs at our institution are performed on either of 
two trauma bay-adjacent scanners-a 64 section unit (Brilliance; Philips 
Healthcare, Andover, Mass) or a dual source 128-section scanner 
(Siemens Force; Siemens, Erlangen, Germany), using 100 mL of 
intravenous contrast material (Omnipaque [iohexol; 350 mg of iodine 
per milliliter]; GE Healthcare, Chicago, IL). Arterial phase images are 
obtained from the thoracic inlet through the greater trochanters, and 
portal venous (PV) phase images starting at the dome of the diaphragm. 
Studies are archived with 3 mm section thickness. The number of PVP 
axial images for a given study ranged from 91 to 203.

Clock times

To test our software pipeline, the 21 consecutive cases were 
pushed from PACS. Total clock times from the beginning of the PACS 
C-STORE operation to completion of transfer to the viewer were 
recorded, along with times for the following steps: (1) clock times for 

model inference, (2) clock times for all data conversion and transfer 
steps on the DL-host side, and (3) combined clock times for virtual 
and on-premises host steps without nnU-net inference.

Results

The software is available on our github repository,4 with relevant 
links to our customizable listener/router docker container, DL host 
docker container, other components (DCM4CHEE container and OHIF 
viewer) and config files for modifiable site-specific configuration of the 
listener/router (e.g., file names for filtering, time-out delay, AE titles, IP 
addresses, and ports). readme files are provided for documentation.

Example visual results using the OHIF viewer (35) with the DICOM 
SEG mask overlaid on the linked anonymized DICOM series are shown 
(for pelvic hematoma segmentation, see Figure  3; for splenic 
segmentation, see Figure 4). A modular structured report element with 
a statement of “Splenic volume: 40 mL” is shown in Figure 5.

Returning to pelvic hematoma, Mean total clock time in the 21 
patients from PACS send request to completion of receipt of the 
DICOM SEG object and structured report in the DCM4CHEE archive 
was 5 min 32 s (± SD of 1 min and 26 s; min: 3 min 16 s, max: 9 min, 
2 s). nnU-net inference times contributed to over 89% of the total 
time. Mean clock time for all other on-premises DL host steps totaled 
only 5.4 s (± SD: 1.3 s: min: 2.0 s; max: 7.0 s). Excluding inference time, 
mean combined total clock time for all steps on the listener/router 
virtual infrastructure side and DL host side of the proposed software 
platform was 38.5 s (± SD of 4.7 s) (Table 1). Pelvic hematoma volumes 
ranged from 28.0 to 924.7 mL (median: 301.5 mL, IQR [94,8, 491.7]). 
Pearson correlation r values between volumes and nnU-net inference 
times (r  = 0.12 p  = 0.61), between volumes and total clock times 

4 https://github.com/vastc/

FIGURE 2

Creating a JSON file for NIfTI to DICOM conversion using dcmqi.
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(r = 0.06, p = 0.8) and between the number of slices per DICOM series 
and clock times (r = 0.17, p = 0.5) were all poor, such that these factors 
had no discernable effect on processing times. DICOM SEG volumes 
corresponded exactly (to the nearest 1/10th of a milliliter) to those 
obtained from NIfTI volumes using the 3D slicer image computing 
platform quantification module.5 Interoperability with the public 
spleen model is illustrated in Figure 4.

5 www.slicer.org, version 5.0.3.

Discussion

There is a need for open-source software that integrates AI/ML 
algorithms into clinical workflows for pre-clinical evaluation (6). 
Jansen et al. (9) developed a vendor-agnostic platform for integrating 
AI applications into digital pathology infrastructures, and Sohn et al. 
(13) introduced a vendor-agnostic platform for integrating AI into 
radiology infrastructures using breast density classification on 2D 
mammography as a use case. XNAT-OHIF integrates with DICOM 
(4) but to our knowledge and based on personal correspondence, did 
not provide quantitative volumetric information. Segmentation and 

FIGURE 4

Interoperability using various models on the back-end. In this case, the pelvic hematoma model was swapped out for a public model trained on the 
spleen segmentation dataset (task_009 spleen) from the public nnU-net repository (https://zenodo.org/record/3734294).

FIGURE 3

Client-side display of DICOM images, segmentation mask, and a structured report element including pelvic hematoma volumes in mL.
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quantification of pathology— such as advanced malignancy (14), lung 
nodule size (15), or COVID infiltrate volume (16) has generated 
considerable interest as potential precision medicine tools since 
manual segmentations are not feasible at the point of care, and there 
is considerable information loss and subjectivity associated with 
diameter-based measurements (17).

In this work, we address an unmet need for tools that integrate 
automated cross-sectional imaging segmentation results into a 
DICOM-based quantitative visualization clinical workflow. Since its 
introduction in 2021 (3), nnU-net has emerged as a widely-employed 
robust and easy to train method for segmentation tasks in medical 
imaging in the NIfTI format. Our containerized open-source vendor-
agnostic software is intended for clinical-translational researchers who 
wish to deploy their segmentation models in inference for further 
testing on new cases encountered in the clinical workflow using the 
DICOM standard. For those wishing to use cascaded nnU-net, the 
pipeline can be used out-of-the-box with relevant.pkl files.

On the virtual infrastructure host side, a router/listener 
anonymizes and handles DICOM series which are sent to a DICOM 
query/retrieve archive backing an OHIF web viewer, and to an 
on-premises single GPU-based DL workstation. On the DL host side, 
DICOM series are converted to NIfTI and processed by the 
segmentation algorithm. A NIfTI segmentation mask sharing the 
same UID as the DICOM files is converted to a DICOM SEG object 
and returned to the router/listener where a DICOM SR element 
containing segmentation volume (in mL) is created. The DICOM SEG 
and SR objects are then sent to the DICOM archive for viewing. The 
segmentation and quantitative information are thereby harmonized 

to the same format as the original DICOM data. The building blocks 
were implemented using publicly available open-source libraries, 
which made our software vendor-agnostic and easily deployable, 
along FAIR principles. By open-sourcing the proposed software, 
we encourage radiologists and radiology IT developers to integrate 
more data transfer functionality and more models into the clinical 
radiology workflow.

Radiologists should be  able to receive verifiable quantitative 
results well within CT report turnaround times should they wish, for 
example, to include this information in their reports within the 
framework of a prospective research study. We tested the software 
using 21 consecutive patients with traumatic pelvic hematoma. 
Clinical interpretation of WBCT scans for polytrauma or cancer 
staging typically exceeds 30 min, and results were available within a 
fraction of this minimum expected turnaround time in all cases.

Using our method, we achieved a mean clock time of 5 min and 
32 s using a workstation with a single NVIDIA GeForce RTX 3090 Ti 
graphics card. This is approximately 1/5th of a typical report 
turnaround time for a patient undergoing WBCT for suspected 
polytrauma. nnU-net inference is responsible for over 89% of the 
clock time, and the time for all other on-premises DL host-side and 
virtual router/listener-side steps were found to be negligible, with a 
mean of only 38.5 s (which includes the 30 s time-out). Therefore, 
investigators can expect minimal delays resulting from data transfer 
within the pipeline itself, with clock times dependent almost wholly 
on algorithm inference. Given lack of correlation with number of 
slices or wide range of target volumes using nn-Unet, we speculate 
that slice thickness (whether 5 mm or < 1 mm) or the volume of 

FIGURE 5

SR element corresponding with this figure. Structure/pathology type and color scheme is derived from the original JSON file. Pixel data is extracted 
from the SEG study instance unique identifier (UID). In future iterations, SR element meta-data will be used to auto populate radiology reports with 
statements such as “splenic vol: 44.4  mL” Radiologists find this a highly desirable functionality (28).

TABLE 1 Summary of clock times.

Total time Inference time Other DL host-side 
steps

Virtual and on-premises host steps 
(w/o inference)

Mean 332.4 293.9 5.4 38.5

Median 337.6 301.0 5.5 36.3

std dev 86.1 85.3 1.3 4.7

1st quartile 261.1 227.0 5.0 35.3

3rd quartile 345.5 307.0 6.0 42.5

Min 195.9 161.0 2.0 34.1

Max 541.8 507.0 7.0 48.1

Total time = time between PACS send operation and images received in client-side OHIF reviewer. All times presented in seconds and rounded to the nearest 10th of a second. Std dev, 
standard deviation; DL, deep learning; w/o, without; Min, minimum; Max, maximum.
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pathology (whether for example, adrenal nodules, tiny pancreatic 
cysts, liver masses, or widely metastatic disease) will have little impact 
on send-to-receive times.

There are limitations to our pilot study. We describe clock times 
for 21 patients on a single task. However, any algorithm or model can 
be used. We include a publicly available nnU-net model for spleen 
segmentation (pretrained nnU-net model Task009_Spleen) in our 
GitHub link to initially operationalize the deployed pipeline. In the 
future, end-users may wish to have an “always-on” system that sends 
the series of interest for every patient directly from a scanner AE Title. 
Given the lag time associated with post-processing, study completion 
by the technologist, and transfer from the scanner to PACS, sending a 
given series from the scanner on creation could result in substantial 
time savings, however this may not be desirable without an initial 
rapid detection or classification step to separate positive from negative 
studies for a given feature of interest. To this end, we have recently 
developed a message broker and pop-up notification tool for our 
pipeline and plan to release these in future updates. Sending a study 
from PACS to the listener/router node selected from a drop-down 
menu is currently the only manual step. To simplify the process, 
we are working on an integrated PACS icon. We are also exploring 
solutions for auto-population of quantitative results in radiology 
reports. Our method currently employs nnU-net and investigators 
wishing to implement other segmentation algorithms and models that 
use the NifTI format as input and output (as is standard for 
segmentation tasks in medical imaging analysis) will need to simply 
swap out the code and models.

Conclusion

In conclusion, we have developed and released a simple open-
source vendor-agnostic PACS and DICOM compatible software 
package for investigators wishing to shadow test volumetry-based 
algorithms in the clinical environment. The method approximates 
FDA-designated IPQ or CADx quantitative volumetry-based CAD 
tools and is meant to accelerate deployment of precision medicine-
based applications for cross-sectional imaging.
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