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In the last decades, it has become evident that endothelial cells (ECs) in the 
microvasculature play an important role in the pathophysiology of sepsis-
associated multiple organ dysfunction syndrome (MODS). Studies on how 
ECs orchestrate leukocyte recruitment, control microvascular integrity and 
permeability, and regulate the haemostatic balance have provided a wealth 
of knowledge and potential molecular targets that could be  considered for 
pharmacological intervention in sepsis. Yet, this information has not been 
translated into effective treatments. As MODS affects specific vascular beds, 
(organotypic) endothelial heterogeneity may be  an important contributing 
factor to this lack of success. On the other hand, given the involvement of ECs 
in sepsis, this heterogeneity could also be  leveraged for therapeutic gain to 
target specific sites of the vasculature given its full accessibility to drugs. In this 
review, we  describe current knowledge that defines heterogeneity of organ-
specific microvascular ECs at the molecular level and elaborate on studies that 
have reported EC responses across organ systems in sepsis patients and animal 
models of sepsis. We  discuss hypothesis-driven, single-molecule studies that 
have formed the basis of our understanding of endothelial cell engagement in 
sepsis pathophysiology, and include recent studies employing high-throughput 
technologies. The latter deliver comprehensive data sets to describe molecular 
signatures for organotypic ECs that could lead to new hypotheses and form 
the foundation for rational pharmacological intervention and biomarker panel 
development. Particularly results from single cell RNA sequencing and spatial 
transcriptomics studies are eagerly awaited as they are expected to unveil the full 
spatiotemporal signature of EC responses to sepsis. With increasing awareness of 
the existence of distinct sepsis subphenotypes, and the need to develop new drug 
regimen and companion diagnostics, a better understanding of the molecular 
pathways exploited by ECs in sepsis pathophysiology will be a cornerstone to halt 
the detrimental processes that lead to MODS.
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Introduction

Forming a barrier between the blood and underlying parenchyma, 
endothelial cells (ECs) cover the inner lining of all blood vessels. 
Together with circulating immune cells, they actively engage in the 
host response to bacterial and viral infections. While this is initially a 
localised process aimed at eliminating the pathogen and restoring 
tissue homeostasis, an excessive and dysregulated response can 
eventually result in sepsis (1). Despite improvements in patient care, 
there is currently still no effective treatment directly improving clinical 
outcome (2), and sepsis remains a global health problem with 
incidence estimates nearing 50 million cases per year and 11 million 
sepsis-related deaths reported in 2017 (3).

Progressive organ dysfunction is common in sepsis pathogenesis, 
leading to multiple organ dysfunction syndrome (MODS) when two 
or more organs are affected (Figure 1). In the clinic, this typically 
presents as diminished creatinine clearance, elevated blood urea 
nitrogen and oliguria/anuria; acute respiratory distress syndrome 
(ARDS); elevated bilirubin levels, dysregulated production of plasma 
coagulation factors and increased production of acute-phase proteins; 
malabsorption in the gut; lower consciousness; shock, cardiac 
dysfunction and/or thrombocytopenia and disseminated intravascular 
coagulation (4–7). Furthermore, patients with sepsis have systemically 
elevated levels of vascular cell adhesion molecule 1 (VCAM-1), 
vascular endothelial cadherin (VE-cadherin), EC-derived coagulation 
factors such as von Willebrand factor (VWF) and soluble 
thrombomodulin, as well as angiopoietin-1 and -2, thus strongly 
implying engagement of the endothelium in the body’s response in 
sepsis (8–12). Indeed, the microvasculature, which represents the 
largest surface of the vascular tree, is not only a main target but also a 

contributor to the sepsis-associated pathophysiological processes 
underlying MODS since it is the predominant site of leukocyte 
recruitment and blood vessel permeability, and is important for 
maintaining the haemostatic balance (5, 7, 13).

Given the strong dependence of ECs on their microenvironment, 
studying their role necessitates looking at their behaviour in an in vivo 
context, since enzymatic dissociation or culturing ECs leads to 
dramatic shifts in gene expression profiles (14–16). The organ- and 
microenvironment-specific behaviour also precludes the extrapolation 
of observations from one vascular bed to another without further 
validation (17, 18). This does not only hold true for changes observed 
under pathophysiological conditions, but also for studying 
pharmacological interventions aimed at the microvasculature (19). 
Although it is still technically challenging to study ECs in vivo, recent 
technological advances have created exciting new opportunities in this 
respect. Based on these developments we have chosen to focus this 
review on a combination of hypothesis-driven and unbiased -omics 
studies reporting in vivo endothelial responses in sepsis. While the 
former typically interrogate a single molecule or pathway, the latter 
provide a more comprehensive approach that has the potential to 
unveil previously understudied pathways important in sepsis 
pathology, and could thus lead to the identification of novel 
therapeutic targets.

We first provide a brief introduction on blood vessel and 
endothelial cell heterogeneity, as well as on relevant functions of the 
microvascular endothelium. We  will then describe our current 
understanding of endothelial responses in sepsis and sepsis-related 
conditions based on studies performed in tissue samples from patients 
who died of sepsis, and in animals subjected to experimental sepsis, 
with a special focus on EC reactivity across organs. Both the 

FIGURE 1

Schematic presentation of progression of organ loss in sepsis in response to an invading pathogen. Initially, the host senses the infectious 
microorganism that results in a local defence response to eliminate the pathogen and restore tissue homeostasis. (A dysregulated host response can 
lead to systemic inflammation and organ dysfunction, exemplified here for the lung, eventually leading to failure of multiple organs and death. 
Examples of specific organ failure as seen in the clinic are listed. The order and kinetics of organ systems affected are arbitrarily chosen and do not 
occur in a sequential fashion per se. ARDS, acute respiratory distress syndrome; AKI, acute kidney injury; BUN, blood urea nitrogen; ALT/AST, alanine 
transaminase/aspartate transaminase; CRP/SAA, C-reactive protein/serum amyloid A.
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differences and similarities in endothelial responses between tissues 
may provide opportunities for the design of biomarker panels that can 
be  measured in blood or urine to determine the kinetics of 
microvascular engagement in response to infection. A better 
understanding of organ-specific molecular reactions of the 
microvascular endothelium in sepsis is also essential for a rational 
design of (combination) therapies that interfere with organotypic EC 
dysfunction. By providing a perspective that combines knowledge 
from the past with technological innovations of today, we hope the 
long-standing notion of sepsis being “the graveyard of pharmaceutical 
industry” (20) will become invalid.

Endothelial cell heterogeneity

Structural and functional heterogeneity

All blood vessels in the body consist of an endothelial cell 
monolayer that is in direct contact with the blood and supported by 
mural cells (smooth muscle cells in larger veins and arteries, 
pericytes in the microvasculature). The structural distinction along 
the different branches of the vascular tree is predominantly 
dependent on mechanical forces (shear stress), whereas structural 
differences within the microvasculature are mostly dictated by the 
needs of the underlying parenchyma (Figure 2). For example, the 

liver sinusoidal endothelium is highly permeable as it consists of 
discontinuous ECs that lack a basement membrane and have open 
fenestrae to allow free transfer of fluid, nutrients, and both small 
and large molecules (21, 22). Endo- and exocrine glands, intestinal 
mucosa, and dedicated microvascular segments in the kidney all 
contain fenestrated endothelium to accommodate efficient secretion 
into and filtration of the blood (23–26). Microvessels in the heart, 
skin and lung are less permeable and contain continuous, 
non-fenestrated endothelium hallmarked by the presence of caveoli 
and vesiculo-vacuolar organelles (VVOs). While caveoli assist in 
the passage of macromolecules from blood into tissue (27), VVOs 
are involved in macromolecular extravasation and typically located 
in the ECs of postcapillary venules from organs that are sensitive to 
permeability-increasing signals induced by for example, vascular 
endothelial growth factor (VEGF) and histamine (28).

The correlation between structure and function of the 
endothelium is also clearly illustrated in the blood-brain barrier, 
where adherens junctions and tight junctions form strong connections 
between ECs to avoid noxious stimuli present in the circulation from 
entering the central nervous system. Particularly the presence of tight 
junctions, which are composed of occludin and members of the 
claudin, zona occludens and junction-associated molecule families, 
limits transcytosis. Therefore, to enable selective transfer of solutes 
from the blood into the brain parenchyma, these ECs express many 
highly specialised transporters (29, 30).

FIGURE 2

Schematic presentation of the gross architecture of blood vessels in an adult vertebrate. The cellular composition of blood vessels changes along the 
vascular tree where arterioles transport the blood from arteries into the tissue capillaries, and postcapillary venules transport it back to the bigger veins. 
Vascular permeability and leukocyte recruitment is predominantly regulated at the level of the capillaries and postcapillary venules, which show organ-
specific structural differences based on inter-endothelial connections with continuous capillaries allowing the most controlled passage of blood and 
soluble components in the blood, and discontinuous capillaries allowing free passage. Although vessels are often categorised based on diameter, 
scRNA-seq studies have shown that there is a continuum of transcriptional states in ECs across the different branches of the vascular tree.
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Molecular heterogeneity

As illustrated above, ECs need to tailor their form and function to 
the microenvironment they reside in. While this has long been 
recognized, understanding the observed heterogeneity at the 
molecular level was initially limited to studies evaluating specific 
genes and proteins in a low-throughput manner via histological 
approaches or the use of transgenic animals (31). Although crucial in 
laying the foundation for discerning the role of the endothelium in 
regulating immune cell recruitment and extravasation, barrier 
function and vascular permeability, and its contribution to 
coagulation, it was the introduction of unbiased -omics approaches 
that has greatly enhanced our knowledge on the molecular 
mechanisms underlying the structural and functional heterogeneity 
of ECs. Particularly high-throughput transcriptomics combined with 
improvements in methods to select ECs (32–34), EC-associated 
transcripts (16, 35–37) or luminal proteins (38, 39), has made it 
possible to evaluate the endothelium directly from its native in vivo 
environment in an unbiased manner (Table 1).

Despite being invaluable in establishing organotypic EC 
heterogeneity, it is important to note that these EC-enrichment 
methods do not allow the deconvolution of distinct endothelial 
subpopulations within a tissue. Instead, the data form an averaged 
endothelial expression profile per organ. This limitation has at least 
in part been overcome by the introduction of single cell and single 
nucleus RNA sequencing (RNA-seq), which has further improved 
our understanding of EC heterogeneity by providing increased 
cellular resolution. This has enabled identification of the EC 
compartment from organ-specific single cell RNA-seq (scRNA-seq) 
data based on the expression of known EC markers (41, 42, 45, 46, 
52–54, 57–61, 64, 66). Furthermore, by performing scRNA-seq 
analysis on preselected ECs or vasculature-enriched samples (43, 
44, 47–51, 55, 56, 62, 63, 65), transcriptional differences across EC 
subpopulations within organs and along the arterio-venous axis 
have been established as recently reviewed (24, 67–70), with 
available studies and datasets summarised in Table 1. The revealed 
molecular heterogeneity of the endothelium between, and even 
within organs, has further strengthened the conclusions that 
observations from one tissue or vascular segment cannot simply 
be extrapolated to the next.

Endothelial contribution to (patho)
physiology

Although our knowledge on EC heterogeneity has vastly improved 
in recent years, it is still not fully understood how heterogeneous 
responses in pathological conditions are controlled at the molecular 
level. Yet, their rapid responses to fluctuations in the local milieu and 
their unique anatomical position make ECs both an early target and 
contributor to many diseases, including sepsis (71). As such, the 
endothelium produces and secretes proteins into the circulation that 
could be used in the development of biomarkers, while on the other 
hand it makes them attractive targets for pharmacological 
interventions (72). In the following paragraphs, we will provide a brief 
overview of processes essential to the function of ECs in maintaining 
tissue homeostasis, discuss the impact of EC heterogeneity on these 
processes, and how they are perturbed under sepsis conditions.

Leukocyte recruitment

Leukocyte recruitment from the vasculature into the parenchyma 
in response to inflammatory conditions as present in sepsis involves 
sequential leukocyte tethering, rolling, adhesion, and transmigration 
through the endothelial layer. Under normal conditions, ECs are 

TABLE 1 Overview of studies evaluating organ-specific EC expression 
profiles.

Organ Species Method Vascular/
EC 
enrichment

References

Multiple Mouse Cell sort, 

bulk EC 

RNA-seq

Yes

(32, 33)

TRAP, bulk 

EC RNA-

seq

Yes

(16, 36, 37)

TU-tagging, 

bulk EC 

RNA-seq

Yes (35)

scRNA-seq No (40)

scRNA-seq Yes (41, 42)a

scRNA-seq Yes (43, 44)

scRNA-seq No (45)

Proteomics 

luminal 

proteins

Yes

(38, 39)

Human scRNA-seq No (46)

Brain Mouse scRNA-seq Yes (47, 48)

Human snRNA-seq Yes (49, 50)

scRNA-seq Yes (51)

Heart Human

scRNA-seq, 

snRNA-seq
No

(52, 53)

snRNA-seq Yes (54)

Kidney Mouse scRNA-seq Yes (55, 56)

scRNA-seq No (57, 58)

scRNA-seq, 

snRNA-seq

No (59)

Human scRNA-seq, 

snRNA-seq

No (60)

scRNA-seq No (61)

Liver Mouse scRNA-seq Yes (62)

Human scRNA-seq Yes (63)

scRNA-seq No (64)

Lung Mouse scRNA-seq Yes (65)

Cell sort, 

bulk EC 

RNA-seq

Yes (34)

Human scRNA-seq No (66)

aRe-analysis data Tabula Muris.
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covered by the glycocalyx, a layer consisting of proteoglycans, 
glycosaminoglycans, and incorporated plasma- and EC-derived 
proteins that protects the endothelium from directly interacting with 
blood cells (73, 74). In the presence of cytokines such as TNFα, 
interleukin (IL)-6 and IL-8 the glycocalyx can be degraded, thereby 
exposing (upregulated) adhesion molecules including P- and 
E-selectin as well as VCAM-1 and ICAM-1 (75–78). These adhesion 
molecules, in addition to inflammation-induced chemokines (e.g., 
MCP-1), recognize their cognate receptors on circulating immune 
cells, and guide leukocyte tethering and adhesion under pathological 
conditions (79, 80). Leukocyte transmigration on the other hand, is 
largely dependent on dynamics of EC adherens junctions and involve 
pan-EC molecules like PECAM-1 (also known as CD31) and 
junctional adhesion molecules, which also play an important role in 
regulating vascular permeability.

Nowadays it is widely accepted that the recruitment of (subsets of) 
immune cells into the parenchyma is a complex concerted action that 
takes place predominantly in the microvasculature, and that this 
process is dependent on the molecular make-up of the local tissue 
environment. For example, T lymphocyte recruitment into the brain 
in response to experimental encephalomyelitis has been shown to 
be  dependent on the local presence of laminin α4 (81), while 
leukocytes expressing the chemokine receptor CCR10 preferentially 
home to skin endothelium, and CCR7-positive leukocytes migrate 
into secondary lymphoid organs (82). Furthermore, early studies 
using radiolabelled antibodies specific for VCAM-1 and ICAM-1 have 
shown that constitutive expression of these 2 adhesion molecules is 
different across organs, with ICAM-1 levels being higher than 
VCAM-1  in brain and heart (83). These observations have been 
recently confirmed in bulk RNA-seq data of EC transcripts after 
translating ribosome affinity purification, which in addition showed 
the opposite result for kidney and to a lesser extent lung endothelium 
(16). Subsequent single cell RNA-seq data identified aerocytes (a 
specific EC subset in the lung) as the main ICAM-1-positive capillary 
cell (65), while the cerebral cortex contains a specialized postcapillary 
EC population characterized by constitutive expression of adhesion 
molecules, including ICAM-1 (47). Not surprisingly, for both organs 
these EC subsets have been shown to be the preferred site of immune 
interactions and leukocyte transmigration (47, 65).

Vascular integrity and permeability control

As mentioned, microvascular ECs have distinct morphological 
characteristics reflecting the permeability control required to exert 
their physiological function (27, 30). In addition to claudins and 
occludin that encompass tight junctions, VE-cadherin (encoded by 
CDH5) has been well-established as a gate-keeper of endothelial 
integrity in which EC–EC interactions are being formed by adherens 
junctions (84, 85). The dynamic expression of VE-cadherin is 
dependent on its phosphorylation status, with phosphorylation via 
VEGFR2 (KDR) or PECAM-1 leading to its endocytosis and 
degradation, resulting in increased vascular permeability (86).

Stabilization of the microvasculature is further influenced by the 
receptor tyrosine kinase TIE2 (TEK) and its ligands angiopoietin 
(ANGPT)-1 and ANGPT-2 (Figure 3). In quiescent endothelium, 
locally produced ANGPT-1 binds TIE2 and can subsequently activate 
2 distinct intracellular signalling cascades that lead to stabilization of 

EC-EC junctions via VE-cadherin and suppression of inflammation-
induced EC activation (91, 92). When ECs become activated they 
release Weibel–Palade bodies that contain high concentrations of 
ANGPT-2 (93). This rapidly tips the ANGPT balance in favour of 
ANGPT2, which via competitive binding to TIE2 leads to 
destabilization of the EC layer, a process that also involves the orphan 
receptor TIE1 (94). The ANGPT-induced destabilization furthermore 
enables a third well-studied molecular system important for vascular 
permeability: the VEGF pathway, in which VEGF interacts with 
VEGFR2, thereby leading to increased vascular leakage (95).

In addition to these 3 main pathways regulating vascular 
permeability, other proteins have been identified to contribute to this 
process. Most notably is vascular endothelial phosphatase VE-PTP 
(PTPRB), which controls barrier function through its substrates that 
include VE-cadherin, TIE2 and VEGFR2 (96–98). Furthermore, 
sphingosine 1-phosphate (S1P) regulates endothelial integrity via 
binding to its G-protein coupled receptor S1PR1 that is expressed on 
ECs, thereby stabilizing adherens junctions (99, 100) (Figure  3). 
Interestingly, S1P binding to S1P receptor type 2 (S1PR2) was shown 
to be associated with increased permeability in conditions of acute 
inflammation (101).

Studies using conditional knock-out mice lacking endothelial 
VE-cadherin showed distinct patterns of organotypic microvascular 
leakage, with increased permeability in the heart and lung, while skin 
and brain vessels were not affected by loss of VE-cadherin (96). This 
could possibly be explained by differences in basal expression levels, 
as RT-qPCR and EC-enriched RNA-seq data showed that CDH5 is 
more abundant in the lung and heart as compared to kidney, brain and 
liver (16, 102). Besides organotypic differences in expression of genes 
important for maintaining vascular integrity, heterogeneous 
phenotypes can also exist within tissues. For example, it has been 
shown that in quiescent conditions, VE-cadherin contains 
phosphorylated residues in veins but not arteries, which might prime 
the protein for rapid internalization under inflammatory conditions 
to allow the required increase in vascular permeability (86). In 
addition, the tight junction protein claudin 5 (CLDN5) is highly 
expressed in the brain as compared to the other organs, while a recent 
scRNA-seq study showed that the decrease in CLDN5 levels along the 
arteriovenous axis in the brain inversely correlated with histamine-
induced vascular leakage (103). Similarly, ANGPT-2 is barely 
detectable in murine renal arterioles and postcapillary venules, while 
it is abundantly expressed in the glomerular microvasculature (19). 
Interestingly, although this ANGPT-2 expression in glomeruli 
coincides with high levels of TIE2, relatively low levels of ANGPT-1, 
and robust expression of VEGF and VEGFR2—a combination that is 
normally associated with promotion of barrier degradation and 
neovascularization—this vascular segment is not particularly leaky 
nor proliferatively active (19).

Endothelial regulation of haemostasis

Under physiological conditions, ECs have an anticoagulant 
phenotype as they express tissue factor pathway inhibitor (TFPI), 
thrombomodulin (TM) and the endothelial protein C receptor (EPCR; 
PROCR) (104, 105). Their anticoagulant property is further supported 
by the presence of fibrinolytic proteins including tissue-type 
plasminogen activator (tPA) and the plasminogen activator inhibitor 
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PAI-1 (SERPINE1). Endothelial activation causes a procoagulant shift 
and leads to the release of VWF, which is required for platelet binding 
and activation that enhances thrombin formation. Although thrombin 
is mostly known as a procoagulant factor, it can also serve as an 
anticoagulant via binding to TM to activate protein C (leading to the 
formation of activated protein C, or APC), a process that is further 
facilitated by EPCR (106) (Figure 3). In addition to its anticoagulant 
function, APC also exerts anti-inflammatory and barrier protection 
properties (107–109), and has therefore gained a lot of interest in the 
sepsis field as a target for pharmacological interventions in the past 
(see below). Besides activating protein C, thrombin can also bind and 
activate protease-activated receptors (PARs), with binding to PAR1 
playing a role in regulating microvascular permeability (110). 
Additional crosstalk between regulation of haemostasis and vascular 
integrity also takes place via ANGPT-2, which was recently shown to 
inhibit TM-mediated formation of APC (111).

Endothelial heterogeneity with respect to coagulation factors 
has received substantial attention, with studies in the 1990s already 
showing distinct expression patterns for EPCR, TFPI and tPA 
across organs as well as along the vascular tree [recently reviewed 
in (31)]. Similarly, VWF expression has been shown to 
be particularly high in large blood vessels, but low in capillaries (31, 
112, 113). VWF serves as a carrier protein for coagulation factor 
VIII (F8), and in the past decade it has become evident that FVIII 
is also synthesized in the endothelium, particularly in the liver and 
kidney (114, 115). These initial organotypic observations have since 
been validated in numerous studies, including those using 
scRNA-seq analyses such as the Tabula Muris Consortium (40). 
Evaluation of VWF/F8 expression levels across different organs in 
this dataset showed that lung also contains a specific EC 
subpopulation that expresses F8, but interestingly these ECs do not 
express VWF. In line with this, a recent scRNA-seq analysis of 
alveolar capillary endothelium showed that 2 different EC types 
(aerocyte vs. “general” capillary ECs) each produce their own 
unique set of pro- and anticoagulant factors. Whereas expression of 
TFPI and PAI-1 was restricted to aerocytes, general capillary ECs 

expressed VWF and tPA (65). These data suggest a division of 
labour, where different ECs serve different functions in regulating 
haemostasis, which could potentially also explain the observations 
regarding F8/VWF expression in the lung (40).

Microvascular engagement in multiple 
organ dysfunction syndrome in sepsis 
patients

Multiple organ dysfunction syndrome in sepsis patients is a 
complex disorder resulting from an aberrant host response to 
pathogen invasion, characterized by a derailed immune response 
leading to organ injury (116) (Figure 1). The endothelium actively 
engages in the establishment of MODS, as evidenced by clinical 
studies reporting increased circulating levels of EC-derived proteins 
including soluble E-selectin, VCAM-1, VE-cadherin, PECAM-1, 
VEGFR1, ANGPT-2, IL-8, VWF, TM, tPA, PAI-1, and glycocalyx 
constituents in sepsis patients (8–11, 117–123). Also in the human 
endotoxaemia model (124), a consistent rapid increase in many of 
these plasma markers were established after LPS administration, 
strongly suggesting a direct link between pathogen exposure and EC 
response (119, 125, 126).

Although important for diagnostic purposes, changes in 
EC-derived proteins present in the circulation do not provide direct 
information on the extent of organ-specific microvascular 
contributions. Being able to address the latter depends directly on 
tissue samples, yet studies reporting molecular and functional 
behaviour throughout different vascular beds have been scarce and are 
typically limited to those evaluating samples of patients who 
succumbed to sepsis. Nevertheless, histological analyses have shown 
the presence of immune cells in the periportal regions of the liver and 
kidney glomeruli (127, 128), and neutrophil infiltration in the lung 
has long been considered an important contributor to sepsis-related 
ARDS (129, 130). In addition to neutrophils, the number of 

FIGURE 3

Schematic showing molecular systems important in endothelial (patho)physiology. Activation of receptors provides the microvascular ECs a pro-
inflammatory, permeable, and coagulant status. The receptors and their ligands include examples discussed in the text, yet are not all encompassing. 
Of note, although TLR4 is traditionally known as a transmembrane receptor in myeloid cells, previous studies have demonstrated its intracellular 
location and function in ECs (87, 88). The reader is referred to Luxen et al. (90) for more detailed information on the signal transduction cascades that 
are activated by the receptors shown. APC, activated protein C; angpt, angiopoietin; EPCR, endothelial protein C receptor; LPS, lipopolysaccharide; 
PAR1, protease-activated receptor 1; PC, protein C; S1P(R), spingosine-1-phosphate (receptor); T, thrombin; Tie, tunica intima endothelial kinase; TLR, 
Toll-like receptor; TM, thrombomodulin; TNF(R), tumour necrosis factor (receptor); VEGF(R2), vascular endothelial growth factor (receptor 2).
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macrophages and B- and T-lymphocyte are also increased in lungs of 
patients who died of Neisseria meningitidis septic shock (131). A direct 
comparison between lung and heart samples of these patients revealed 
that the influx of several leukocyte populations was 30–80% higher in 
the lung as compared to heart, whereas the brain was devoid of 
enhanced leukocyte recruitment (132). Despite this latter, haemostatic 
abnormalities have been observed in brain samples of sepsis patients, 
with areas displaying hypercoagulability as well as haemorrhaging, 
indicative of consumptive coagulopathy (128). In addition, enhanced 
coagulation has also been noted in the kidney, as illustrated by fibrin 
depositions in glomeruli and peritubular capillaries in a subset of 
sepsis patients (127, 128).

Besides evaluating cellular contributions, immunohistochemical 
analyses indicated increased levels of MCP-1 and PAI-1 in the alveolar 
space in the lung, likely expressed by alveolar capillary ECs, whereas 
in heart these proteins were upregulated and co-localized in the 
arteriolar microvascular segment (132). Furthermore, evaluation of 
kidney biopsies of septic patients for markers known for their role in 
vascular permeability regulation showed a decrease in ANGPT-1 
levels while ANGPT-2 was increased and TIE2 remained unchanged. 
At the same time, expression of VEGF and VEGFR2 was also reduced 
(102). These changes are all expected to contribute to kidney failure 
associated with sepsis.

In a recent study, microarray analysis was performed in tissue 
samples of meningococcal septic shock patients, which provides an 
opportunity to evaluate transcriptional changes in an unbiased 
manner and determine differences and similarities in organotypic 
responses (132). Although all organs included in the study showed 
changes under septic conditions as compared to samples from 
non-inflammatory origin, the number of differentially expressed 
genes was highest in kidney, followed by lung, heart, liver, and was 
lowest in the spleen. Not surprisingly, many of these genes were 
related to the host’s inflammatory response. In addition, a decrease 
in transcripts associated with metabolism and energy production was 
also observed across multiple organs (132). Interestingly, short-term 
changes in metabolism can be beneficial to the host as a temporal 
increase in energy is required to eliminate the pathogen. However, 
uncontrolled and prolonged disruption of the metabolic balance is 
detrimental since at the same time energy should be  preserved 
because of poor nutritional input (133).

While studies based on human tissue biopsies have been 
informative, interpretation of results is difficult as they are often 
performed on bulk tissue, which precludes identification of the cell-
specific contribution to the observed molecular changes. Even for 
histopathological and immunohistochemical analysis, correlating 
spatiotemporal cellular and molecular changes in the microvasculature 
to clinical symptoms is challenging. This is partly due to the intrinsic 
heterogeneity in the patient population itself (age, underlying 
co-morbidities, etcetera), and also because it is often unknown when 
the patient got infected prior to presentation in the hospital (see 
Challenges below). It thus remains elusive whether EC responses 
occur prior to the establishment of MODS, or whether EC activation 
forms an integral part of its pathogenesis. Therefore, animal models 
are invaluable to provide a rationale for validation studies in the sparse 
clinical material available to date as they recapitulate processes 
underlying sepsis and allow for detailed cellular and molecular 
analyses in an organ- and cell type-specific manner over time.

Microvascular engagement in animal 
models of sepsis

Animal models of sepsis

Non-human primates are highly similar to humans in their 
anatomy and physiology, as well as their hemodynamic and cytokine 
responses to infection. Also the ability to provide supportive care 
similar to that in septic patients makes them an important model to 
study sepsis, and as such they have provided crucial insights in 
disease aetiology (134–136). Other larger animals including pigs and 
sheep have also been used as they too share many aspects of sepsis 
that are similar to humans (134). However, from an economical and 
feasibility perspective, mice are much more attractive due to the 
availability of genetically engineered animals and low costs. Most 
importantly, the relative ease of experimental models allows a more 
reproducible evaluation of sepsis pathology. Although the use of 
mouse models in sepsis research has been a topic of debate (137, 138) 
as they do not fully recapitulate the clinical complexity, they have 
significantly contributed to our molecular understanding of the host 
response to infection and form the cornerstone of translational  
research.

The most frequently used models to induce a sepsis-like 
phenotype are based on the administration of either a toxin (e.g., 
lipopolysaccharide; LPS) or viable pathogen, or by breaching an 
endogenous protective barrier such as done in the caecal ligation 
and puncture (CLP) model (139–141). Whereas LPS is often used 
because of its technical ease and reproducibility, it has also been 
criticised for not capturing the intricacies of sepsis. On the other 
hand, CLP results in a polymicrobial infection, leading to a 
response that is more representative for sepsis (142). Although 
considered the “golden standard,” it is more variable and the 
severity of disease is highly dependent on the experimental 
parameters. Despite these differences, both models display signs 
of MODS as indicated by an increase in serum creatinine and 
blood urea levels reflecting renal dysfunction, AST and ALT 
levels indicating hepatocellular injury, and lung myeloperoxidase 
representing increased neutrophil infiltration. In addition, these 
models lead to a decrease in body temperature and heart rate, and 
metabolic derailment of organs has also been reported in both 
the CLP model and LPS-induced endotoxaemia (143–146).

For the remainder of this review, we  focus where possible on 
studies that reported sepsis-induced changes in more than one organ 
to best reflect human MODS. Moreover, this circumvents limitations 
in interpretation of combined results from different studies which 
would be complicated due to methodological variations in execution 
of experiments, such as the use of different dosages and administration 
routes of LPS, differences in experimental execution of the CLP 
model, and/or differences in the time frame in which molecular and 
functional changes were assessed. We will first discuss results from 
hypothesis-driven studies that directly evaluated molecules involved 
in leukocyte recruitment, regulation of vascular permeability, and 
maintenance of the haemostatic balance. This will be followed by an 
overview of animal studies that used unbiased transcriptomics 
approaches in order to get a more comprehensive overview of the 
vascular bed-specific changes that occur during, and contribute to, 
sepsis pathology.
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Microvascular engagement in animal 
models of sepsis—leukocyte recruitment

EC activation in sepsis can occur via the LPS-induced Toll-like 
receptor (TLR)-4 signalling cascade, interaction with circulating 
cytokines, and via changes in blood flow leading to differences in shear 
stress (147, 148). Histological analyses showed that leukocytes, 
predominantly neutrophils, infiltrate lung, and to a lesser extent liver 
and intestine, with the lowest neutrophil content observed in kidney 
and heart 4 h after LPS exposure (149). In the polymicrobial CLP 
model of sepsis a similar increase in neutrophil accumulation occurred 
in major organs including lung, liver and kidney, which lasted until at 
least 24 h after surgery (150–152). Despite the comparable neutrophil 
influx across these organs, formation of neutrophil extracellular traps 
(NETs), which has been associated with loss of organ function (153), 
was most prominent in lung and least in kidney (154).

In general, endotoxaemia models all result in an upregulation of 
E-selectin, P-selectin, ICAM-1 and VCAM-1 (18, 155–158). As 
expected, induction of gene expression occurs early, within 4 h after 
LPS exposure, and with the exception of E-selectin in the liver, all these 
changes were still present after 24 h (18, 157, 158). It is important to 
note that lung showed the least increase in expression as compared to 
other organs tested, which might relate to the relatively higher 
abundance of these proteins under basal conditions (157, 158).

In line with these observations, a previous study of N. meningitidis 
bacteraemia in pigs also showed increased levels of E-selectin, ICAM-1 
and VCAM-1 in kidney, liver and lung with results in the latter being 
the most modest (159). Escherichia coli infection in mice identified the 
heart as the least responsive organ regarding the up-regulation of 
VCAM-1 as compared to changes in the lung, kidney and liver (160). 
Also in the CLP model, increases in E- and P-selectin occurred early, 
after 6 h (161), and their expression remained high in brain, heart and 
lung up to at least 24 h after sepsis induction (18, 162). Effects of 
CLP-induced sepsis on ICAM-1 and VCAM-1 expression were less 
prominent at these early time points in these organs. Wen et al. (163) 
showed that 14 days after CLP surgery ICAM-1 levels in kidney were 
elevated. However, it was not investigated whether this late stage 
increase in expression occurred in other organs as well.

Besides differences in expression levels across organs, 
immunohistochemical analysis of the lung and kidney indicated that 
16 h post-CLP surgery E-selectin was primarily present in the bigger 
vessels in the lung (164). In the kidney, VCAM-1 was predominantly 
induced in arterioles whereas ICAM-1 was most abundant in 
glomeruli and peritubular capillaries (164).

Together these data indicate that spatiotemporal changes are unique 
to each organ and disease model, suggesting specialized functions and 
recruitment of potentially different (subsets of) immune cells across 
organs as well as different branches of the vascular tree within organs 
(158, 165, 166). Despite some differences in results between studies that 
were likely due to differences in pathogenic stimulus, in general selectins 
appear to respond more strongly than VCAM-1 and ICAM-1.

Microvascular engagement in animal 
models of sepsis—increase in vascular 
permeability/leakage

Endotoxaemic mice display increased permeability in the kidney, 
lung, heart and spleen at 6 h after LPS administration (101, 149). For 

kidney and lung, this increase sustained at least until 24 h post-LPS, 
whereas this was not the case for heart and spleen (158, 167). 
Collectively, these studies indicated that there was significant leakage 
in main organs in the first 24 h after LPS exposure, although data on 
vascular leakage in the liver was inconclusive at the 6 h timepoint. 
Interestingly, LPS did not affect cerebrovascular permeability. On the 
other hand, CLP surgery increased vascular permeability in all major 
organs, including the brain (168, 169). Mice infected with E.coli or 
Staphylococcus aureus to simulate peritonitis or pneumonia, 
respectively, also displayed microvascular leakage in the kidney, lung, 
liver and heart at 6–7 h after infection (160, 170). The brain was not 
assessed in these latter studies.

The molecular changes underlying the observed increase in 
sepsis-induced vascular permeability are predominantly regulated via 
VEGF/VEGFR and angiopoietin/TIE2 receptor interactions (30). 
Although VEGF is not produced by ECs, it has a major impact on 
their function via binding to the EC-expressed VEGFR1 (FLT1) and 
VEGFR2 (KDR). Changes in VEGF expression under septic conditions 
showed a spatiotemporal expression signature. For example in the 
kidney, LPS caused an increase in VEGF mRNA levels 4 h post-LPS, 
while after 8 h a significant reduction was observed and levels were 
normalized 24 h after LPS administration (102). Protein levels 
followed this kinetics, though at 24 h after LPS challenge VEGF 
protein in kidney remained reduced compared to control conditions 
(158). In lung, mRNA decrease only occurred later in time, at 8 h after 
LPS exposure, and remained low until at least 24 h post-LPS, 
coinciding with reduced protein levels at 24 h (102, 158). In heart on 
the other hand, VEGF protein levels were significantly increased in 
the early hours of endotoxaemia, and returned to basal levels at 24 h 
(158). In contrast to VEGF, VEGF receptors are expressed by the 
endothelium. In endotoxaemia, only in lung the expression of 
VEGFR1 and VEGFR2 decreased and remained low until 24 h post-
LPS. In kidney, expression of neither receptor was significantly 
affected in time. Also in mouse CLP-sepsis, VEGFR2 expression 
remained constant in the kidney, while it decreased in a time-
dependent manner in heart, liver and lung (171).

Regarding the angiopoietin/TIE2 axis, loss of TIE2 expression 
occurred in all major organs at 4–8 h after LPS exposure, with the 
kidney and lung being most affected (157, 172). These changes 
coincided with a transient decrease in ANGPT-1 levels in kidney at 
8 h, while in lung ANGPT-1 was already reduced after 4 h, and 
remained low until at least 24 h after LPS administration (102). At the 
same time, ANGPT-2 levels were increased at the 4 h and 8 h timepoint 
in both organs, but normalized after 24 h. In line with these data from 
LPS studies, ANGPT-1 levels were also downregulated in CLP-induced 
sepsis (171). However, in contrast to LPS, CLP resulted in a decrease 
in ANGPT-2 in heart, kidney, liver, and lung between 12 and 24 h 
after surgery.

Given its importance in adhesion junctions, VE-cadherin is also 
often evaluated with regard to changes in vascular permeability, and 
endotoxaemia has been shown to result in significantly decreased 
levels in the lung (164). Also in the CLP model, a reduction in 
VE-cadherin was present in the heart, lung, kidney and liver, which 
was associated with increased vascular leakage in the latter two (173).

Overall, it can be concluded that there is a general increase in 
microvascular permeability across different experimental sepsis 
models, though there is variation in the kinetics and extent of leakage 
between organs, as well as variation in the responses observed in 
specific pathways associated with vascular barrier function.
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Microvascular engagement in animal 
models of sepsis—pro-coagulant status

Dysregulation of the haemostatic balance is a common feature of 
sepsis, which can lead to disseminated intravascular coagulation 
contributing to the development of organ dysfunction (174). This 
procoagulant shift is reflected by increased levels of circulating 
thrombin-antithrombin complexes, tissue factor, PAI-1 and D-dimer 
levels (175), with the latter indicating fibrin degradation. LPS-induced 
endotoxaemia results in fibrin depositions in the liver, lung and 
kidney, where particularly bigger vessels and a subset of capillaries 
were affected in liver and lung 8 h post-LPS (175, 176). In kidney, 
fibrin was present in all microvascular segments at 24 h after LPS 
exposure (177). In a rat LPS model, fibrin deposition was reported to 
occur in liver capillaries, glomeruli and peritubular capillaries but not 
in the lung (178). However, they noted that LPS-induced endothelial 
injury was dependent on the dose and duration of LPS treatment. 
Finally, fibrin deposition was also observed in the liver after 
CLP-induced sepsis (176).

The procoagulant shift of the endothelium is greatly influenced by 
the downregulation of anticoagulant proteins such as TFPI and 
thrombomodulin (TM). For example, in response to LPS TFPI mRNA 
levels decreased in heart, kidney, and lung at the 8 h timepoint, with 
levels returning back to normal within 24 h (179). TM in rat liver and 
lung capillaries was strongly reduced within 2–4 h after LPS exposure, 
and a similar trend was observed in kidney peritubular capillaries, 
although TM expression in glomeruli remained high (178).

PAI-1 inhibits fibrinolysis, and in line with the previously 
mentioned increase in plasma PAI-1 levels, LPS also upregulated its 
local expression in heart (mostly in capillaries), kidney, lung and brain 
(predominantly in venules). Increase in PAI-1 levels was highest in 
heart, whereas brain and lung showed only a modest increase (158, 
179). Although the origin of procoagulant tissue factor has been 
controversial (175, 180), a (transient) increase in expression was 
observed across multiple organs in a rabbit LPS model with the 
highest induction in brain, kidney, and lung at 2–3 h after LPS 
exposure (180). In mice, on the other hand, LPS caused increased TF 
expression in kidney and lung, but not in liver, heart or brain (101, 
181). Interestingly, the observed increase in kidney appeared to 
be almost completely regulated via S1PR2 signaling, whereas changes 
in the lung were only partly regulated by S1PR2 (101), indicating an 
additional connection between coagulation and vascular barrier 
protection, besides the protein C pathway (107–109).

In summary, these results indicate that rapid increases in tissue 
factor and PAI-1, together with decreased levels of anticoagulant 
proteins such as TFPI and TM, contribute to a procoagulant shift that 
can lead to fibrin deposition. Changes occur primarily at the level of 
the microvasculature, although distinct organotypic differences exist.

Use of -omics approaches in sepsis 
research

Based on the previously discussed hypothesis-driven studies, 
direct comparison of EC behaviour across organs revealed organ-
specific differences in kinetics of molecular changes, yet literature on 
spatiotemporal responses of ECs is scarce. In addition, a big gap in 
knowledge exists to date regarding the location of molecular changes 
in microvascular branches in organs in response to sepsis conditions.

Unbiased approaches have become one of the most powerful tools 
to evaluate molecular characteristics of cells and organs in a systematic 
manner, and have provided valuable information on changes 
occurring in biological processes under pathophysiological conditions. 
Especially the application of single cell RNA-seq and spatial 
transcriptomics to help unravel protein–protein interactions 
important for identifying novel pathways contributing to disease 
pathogenesis, is eagerly awaited as this could enable the identification 
of potential diagnostic and prognostic biomarkers, as well as targets 
that would facilitate the development of therapeutics (182). The 
following section will discuss studies that used -omics analyses in 
order to get a better understanding of (organotypic) sepsis 
pathophysiology, and the contribution of the endothelium in this 
process. We will particularly focus on studies performing unbiased 
RNA-seq analysis of mRNA species in intact tissue (bulk RNA-seq), 
mRNAs bound to actively translating ribosomes isolated from 
endothelial cells specifically using a translating ribosome affinity 
purification (TRAP) approach followed by RNA-seq, and studies 
utilizing single cell RNA-seq that allows the evaluation of gene 
expression profiles at the individual cell level. We refer the reader to 
(31, 183, 184) for more information on these different techniques and 
their application in studying the vasculature.

Organotypic changes in sepsis: bulk 
RNA-seq

One of the first studies using an unbiased approach to evaluate 
sepsis in an organ-specific way employed a rat CLP model, and 
identified subsets of genes that had both shared and unique expression 
patterns across different tissues that were temporally regulated (185). 
As expected, these included genes involved in inflammation and 
coagulation, but in addition they identified several transcripts that 
were not previously linked to sepsis-induced responses. For example, 
downregulation of genes known to be  related to maintaining 
extracellular matrix (ECM) was observed in the lung and spleen, 
which suggests inadequate tissue repair. Furthermore, changes in 
transcripts important for antioxidant defence mechanisms were 
present in multiple tissues, including decreased levels of several 
members of the glutathione S-transferase gene family, of which 
glutathione S-transferase pi has been shown to play a role in regulating 
vascular permeability (186). Finally, they identified prominent 
alterations in genes associated with lipid metabolism across organs, 
and it is now well-established that lipid dysregulation in sepsis can 
affect the immune system and regulate the immune response by 
clearing bacterial toxins, reduce inflammation and inhibit the 
expression of adhesion molecules (187).

Many of these initial observations based on microarray-based 
data have since been confirmed using RNA-seq analysis. A recent 
study using a murine CLP model also identified significant changes in 
lipid metabolism and ECM remodelling in at least 2 organs, in 
addition to the expected (early) effects on the immune system and 
haemostasis (171). Metabolic dysregulation in the liver was already 
affected 6 h post-CLP, and changes sustained for at least 24 h. The 
kidney and lung also showed significant metabolic alterations at 12, 
respectively, 24 h after surgery, whereas the metabolic processes in the 
heart did not appear to be affected (171). This study furthermore 
validated the decrease in ECM genes in the lung, but interestingly 
found a CLP-induced overrepresentation of these transcripts in the 
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liver. Overall, the number of significant differentially expressed genes 
for each organ was highest 12 h after CLP, with only the heart being 
almost completely normalized 24 h post-surgery.

Organotypic changes in sepsis: EC-specific 
RNA-seq

Together, these studies illustrate spatiotemporal changes in gene 
expression patterns in sepsis in an unbiased way (171, 185). However, 
although they indicated a potential role for the endothelium in sepsis-
related pathology, it must be noted that these studies used bulk tissue 
RNA for their analyses. The importance of studying transcriptional 
changes in a specific cell type, particularly those that, like ECs, are 
present in organs in low numbers, was initially shown using a 
translating ribosome affinity purification (TRAP) approach to 
determine EC-specific changes in an endotoxaemia model (16, 37). 
Similar to the apparent lack of CLP-induced changes in the brain in 
the rat CLP study (185), short-term LPS exposure in the mouse also 
resulted in minimal effects in the brain based on bulk tissue RNA-seq 
(16). However, when specifically evaluating expression profiles of the 
endothelial cells in the brain, the number of genes significantly 
affected was much higher and remarkably similar to those observed 
in other organs. Furthermore, with the exception of the brain, other 
target organs including the kidney, liver, lung and heart showed fewer 
EC-enriched genes to be upregulated than downregulated after LPS 
treatment, with the upregulated genes displaying a high degree of 
tissue-specificity. On the other hand, EC-enriched genes with reduced 
expression in LPS-treated mice were more commonly shared between 
organs (16).

EC-TRAP studies have confirmed many of the previously 
discussed organotypic alterations in expression levels of endothelial 
genes involved in leukocyte recruitment, cell junctions, and 
haemostasis (16, 37). In addition, gene ontology analyses based on 
transcripts significantly affected by LPS have indicated a consistent 
overrepresentation of genes involved in the regulation of metabolism 
across tissues. This has not only been observed after short-term LPS 
exposure, but a timecourse evaluating early and late inflammatory 
responses as well as changes occurring during the resolution phase 
also showed unique spatiotemporal expression patterns of metabolic 
genes (37). For example, brain EC-specific glycolysis genes were 
upregulated by LPS with expression levels remaining high throughout 
the course of inflammation progression and resolution, while 
glycolytic genes in ECs of the heart were not affected. In lung 
endothelium, the key glycolytic enzyme Pfkfb3 showed a more 
dynamic pattern over time, with only a temporary rise in transcript 
levels. Targeting dysregulated EC metabolism has recently (re)gained 
increased interest as a therapeutic strategy for sepsis (188, 189), and it 
is worth noting that several studies have shown beneficial effects of 
PFKFB3 inhibition in acute sepsis-induced lung injury models 
(190, 191).

Besides evaluating transcript levels, recent studies have used in 
vivo biotinylation combined with proteomics to characterize the 
luminal surface of vascular cells (38, 39). These studies have confirmed 
organotypic differences in surface proteins under basal conditions as 
well as those induced by S. aureus infection. Not surprisingly, proteins 
that changed across multiple organs due to infection showed (organ-
specific) enrichment in acute phase reactants. More specifically, these 

included haptoglobin in brain, and serum amyloid A proteins in 
kidney, liver and heart, which are both known to have predictive value 
for the diagnosis of systemic inflammatory processes (192). 
Methicillin-resistant S. aureus infection affected predominantly the 
liver vasculature, with a strong and tissue-specific increase in PRG4 
levels (39). Although a role in sepsis has not been previously 
demonstrated, PRG4 has been established as an anti-inflammatory 
competitor for hyaluronic acid binding and it could therefore 
influence how immune cells interact with activated ECs (193). Besides, 
PRG4 has recently been suggested to serve as a potential therapeutic 
and biomarker in sepsis (194).

A follow-up study using vascular proteomics in the same model 
also showed a decrease in proteins involved in lipid metabolism in the 
liver, as well as a time-dependent procoagulant and antifibrinolytic 
shift of the endothelium. Interestingly, the changes in haemostatic 
proteins occurred well before signs of organ dysfunction and 
thrombosis were observed (38).

Organotypic changes in sepsis: single cell 
RNA-seq

Organotypic changes in animal models of sepsis are now well-
established, but the previous studies evaluated the EC population 
within an organ as a whole, which prohibits determining whether 
changes follow a distinct pattern along different branches of the 
vascular tree. Using scRNA-seq analysis, a recent study determined 
cell-specific changes in acute kidney injury during a 48 h course after 
LPS injection (195). Although this study did not specifically focus on 
the endothelium, they did notice that changes in ECs already started 
to appear 1 h post-LPS, whereas changes in expression profiles of 
proximal tubule epithelial cells took 4 h to occur. Moreover, based on 
gene regulatory networks and receptor-ligand crosstalk analyses, it 
was shown that there is general cell–cell communication failure 
around 16 h after LPS exposure, which plays not only a role in the 
progression to organ dysfunction, but also in activating recovery 
pathways (195).

A scRNA-seq study looking at CLP-induced changes in 
non-parenchymal cells of the liver was able to identify 4 distinct EC 
subpopulations, which were all uniquely affected by CLP (196). Out 
of these 4 subsets, 2 were nearly exclusively present under sepsis 
conditions. Although they both displayed a proinflammatory 
phenotype, they presented at different stages during infection, with 
expression data suggesting that one subset likely plays a role in EC 
activation while the other contributes to the adaptive immune 
response to infection as antigen presenting cells (196). Similarly, 
scRNA-seq of non-neuronal cells of the mouse cerebral cortex 
identified 6 main EC subsets under basal conditions, with an 
additional minor subpopulation of venous ECs characterized by the 
presence of Icam-1 and Vcam-1 (47). The significance of the latter was 
evaluated 2 h after LPS exposure, where based on 
immunohistochemical analyses it was suggested that this EC 
subpopulation predominantly exists in the postcapillary venules and 
may serve as an initial site for leukocyte recruitment. Finally, 
scRNA-seq of lung endothelium established 2 major EC populations 
under naïve conditions, with one subpopulation expressing immune 
response genes while the other expressed genes associated with 
development and regeneration (197). Evaluation of these subsets after 
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LPS exposure showed distinct transcriptional changes in the early and 
late inflammatory response. Interestingly, during the recovery phase 
(3 days post-LPS) a third population of proliferative ECs emerged 
from the developmental subset, which is presumably important for 
vascular regeneration.

Taken together, these scRNA-seq studies have established several 
endothelial subsets per organ, which show unique properties 
depending on their location along the vascular tree as well as their 
function. Sepsis-induced transcriptional changes imply that these 
subpopulations participate in distinct but complementary tasks.

EC heterogeneity in sepsis—molecular 
treasure trove and pharmacological 
Gordian knot

Because of the direct contact between the endothelium and blood, 
EC-derived proteins easily emerge in plasma, and can therefore be used 
as potential biomarkers. Over the years, hundreds of biomarkers in 
relation to sepsis for diagnostic and/or prognostic applications have 
been proposed, typically focusing on inflammation, coagulation, 
endothelial damage or vital organ function, although only a small 
fraction of these have been evaluated in larger patient cohorts or 
validated across multiple studies (198). Several of these are indeed 
EC-derived, and not surprisingly, they are often related to leukocyte 
adhesion, vascular permeability, or coagulation processes (Table 2). It 
is important to note, however, that despite the observed differences in 
plasma levels and their reported associations with disease severity, 
none of them (either alone or in combination) are truly specific or 
sensitive enough to accurately diagnose sepsis or predict sepsis 
outcome (198). Furthermore, many of these markers are expressed by 
ECs in multiple organs, and changes in blood levels may thus represent 
either general EC dysfunction or organ-specific EC damage. Especially 
the latter would be valuable for diagnostic and prognostic purposes 
since several studies have indicated that EC dysfunction precedes 
organ failure (195, 196). Therefore, being able to identify organotypic 
EC-derived proteins in the circulation could be used to predict organ 
dysfunction so preventive measures can be taken. Unbiased -omics 
studies using transcriptomics and proteomics analyses as described 
here could guide the identification of such biomarkers.

Besides identifying biomarkers, -omics studies are also likely to 
generate information from which new candidate molecules for drug 
interventions can be derived, as the easy access and early responses of 
the endothelium provides a unique potential for therapeutic 
intervention. Historically, proposed treatments for sepsis have focused 
on inhibiting inflammation (e.g., anti-TNFα or IL-1Ra therapy), 
promoting vascular integrity (via TIE2 stabilization), or counteracting 
the procoagulant shift of the endothelium (e.g., by using activated 
protein C, or recombinant soluble thrombomodulin) (199–205). 
However, none of these have resulted in approved drugs currently 
used in the clinic. There are several plausible explanations for this (see 
also next section), including the now widely recognized organotypic 
EC heterogeneity which could have contributed to their lack of 
success, as many of these drugs might have been developed under the 
assumption that circulating biomarkers would represent a general 
dysfunctional EC phenotype. Based on current data, this is likely 
incorrect, and these early developed strategies may therefore cause 
more harm than good under certain conditions, as EC activation 

during inflammation is first and foremost a beneficial response aimed 
at maintaining tissue homeostasis by eliminating the pathogen and 
limiting damage (206).

It is important to obtain a comprehensive understanding of the 
differences in kinetics of EC activation and dysfunction across 
vascular beds, as well as the presence of unique molecules that can 
distinguish between affected EC subsets since this would support the 
development of targeted delivery approaches to limit unwanted side-
effects. Trying to leverage EC heterogeneity for therapeutic gain, drug 
delivery approaches have employed antibodies coupled with 
therapeutic agents or targeted nanobodies against EC surface markers 
such as PECAM, E-selectin, and VCAM-1 (207–211). Yet, while 
intended to target dysfunctional ECs, in reality many 
non-dysfunctional ECs also express these markers and thus molecular 
information at a high cellular resolution will be required to establish 
specific cargo transfer of these drug delivery systems. Besides the 
decision on which receptor to target (Figure 3), the choice of drug 
treatment needs to be  carefully considered to avoid that risks 
associated with treatment outweigh the benefits. Therefore, we need 
to get a better understanding of the kinetics of (downstream) 
intracellular pathways affected in sepsis, and their status in different 
microvascular beds. This pharmacological Gordian knot can in theory, 
and possibly also experimentally in the near future, be disentangled 
by combining transcriptomics and proteomics with, for example, 
protein kinase activity platform techniques (kinomics) to study 
activation status of multiple signal transduction cascades (212).

Challenges and future directions

Despite all efforts to develop therapies to improve sepsis outcome, 
at present only supportive organ care can be offered to sepsis patients. 
This lack of pharmacologically effective treatment strategies to 
counteract the pathophysiological processes in sepsis is in stark 
contrast to the successes observed in preclinical studies that interfere 
with dedicated molecular pathways. The following part will discuss 
some of the challenges sepsis research has faced, and is still facing, that 
could explain this discrepancy, together with future directions to help 
move the sepsis field forward.

Experimental models of sepsis

The complexity of sepsis requires the use of experimental animal 
models to study (cell-specific) mechanisms underlying 
pathophysiology. However, even in an intact animal such as the 
mouse, it is difficult to accurately recapitulate sepsis pathobiology. This 
is partly due to physiological differences between mice and humans, 
as well as their respective response to a septic insult, as mice are more 
resistant and show greater resilience, and are typically relatively young 
and healthy. Especially this latter is opposite from the “average” septic 
patient, who is generally older with more comorbidities (2). 
Furthermore, particularly in small animal models, it is not feasible to 
incorporate organ support that is typically given to sepsis patients.

A previous study compared 3 different murine sepsis models and 
showed clear differences in kinetics and magnitude of the inflammatory 
response (146). These data indicate that the model strongly influences 
the host response and findings from one model do not necessarily reflect 
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general sepsis patho(physio)logy. Although sepsis models thus need to 
be carefully chosen based on the goal of the study, these differences can 
also be used to our advantage: in order to standardize preclinical studies, 
a systematic multi-model approach should be developed in which drug 
candidates are tested throughout models with greater levels of complexity 
(i.e., LPS followed by CLP in mice, followed by studies in bigger animal 
models in which care can be given as applied in the ICU) as research 
progresses. In addition, therapeutic interventions should also be tested 
at different time points after insult to fully address their pharmacological 
effectiveness when drugs are administered at different stages of sepsis 
progression, as each stage is likely associated with distinct changes in the 
host response. Furthermore, attention should be  paid to 
pharmacokinetics/pharmacodynamics in these pre-clinical studies, to 
prohibit misinterpretation of treatment outcome due to differences in 
drug half-life and/or metabolism, for example. Addressing cell type-
specific pharmacodynamics furthermore aids in understanding which 
effects of drug treatment occur in cells considered to be the target of 
therapeutic intervention versus cells that engage in the pathophysiology 
but are not target cells per se. scRNA-seq techniques as well as isolation 
of cellular subsets by laser microdissection prior to RNA-seq (213) or 
spatial transcriptomics, which allows evaluation of cellular interactions 
in situ and thus provides information on how the alterations in ECs affect 
underlying parenchyma, will be critical technological advancements for 
this purpose, and eventually create a full “pharmacolomics” view in 
which drug effects are related to pathophysiological changes. This 
approach is of crucial importance to make a rational decision to enter a 
clinical testing phase, and to provide substantial information to make a 
well-informed choice of biomarkers to measure in the restricted clinical 
samples available.

Clinical challenges

A retrospective analysis of >20,000 sepsis patients identified 4 
distinct sepsis phenotypes that correlated with host response 

patterns and clinical outcome (214). Interestingly, this study 
suggested that including patients in trials based on the specific 
sepsis phenotype could lead to drastic differences in outcome 
depending on the clinical intervention. For example, they showed 
that treatment with activated protein C (Xigris) which, despite its 
dual action as an anticoagulant and involvement in protecting the 
vascular barrier, was discontinued as a therapy for sepsis due to an 
increased bleeding risk (203, 215), would improve outcome in 
patients with sepsis-induced disseminated intravascular 
coagulopathy whereas for other phenotypes it was indicated to 
be harmful (214). A similar result was described in a reanalysis of 
sepsis patients treated with recombinant thrombomodulin, which 
was shown to only benefit patients with a severe coagulopathy 
phenotype (216). These data illustrate that unbiased patient 
inclusion can cause conflicting results as interventions can 
be  beneficial or detrimental to certain patient populations. 
Therefore, it has been suggested to revisit previous sepsis treatments 
that failed in clinical trials, and re-evaluate them in better defined 
patient groups.

Another clinical challenge pertains to the use of biomarkers to 
guide clinical decisions. Although a consistent difference in 
biomarker patterns was observed between sepsis phenotypes (214), 
it required data obtained from several biomarkers as not one by itself 
is specific or sensitive enough to diagnose sepsis reliably. Besides 
their lack of specificity regarding cellular and organ origin, biomarker 
levels display large inter-patient variability and they are time-
dependent as they fluctuate based on disease progression. Thus, the 
absence of a significantly elevated protein in serum does not 
automatically preclude sepsis diagnosis, and it is therefore important 
to continuously monitor patients to accurately assess the 
pathophysiological stage of sepsis, starting as soon as the patient 
presents with clinical symptoms through at least until they get 
discharged from the ICU. This is not only to initially determine the 
course of sepsis, but also to monitor effects of organ support, and 
possibly drug treatment regimens.

TABLE 2 Overview of EC-derived biomarkers and their main diagnostic/prognostic value based on selected references.a

Process Biomarker Main outcome References

Cell adhesion Soluble E-selectin Increased levels associated with sepsis severity, organ dysfunction and mortality (18, 118, 120)

Soluble ICAM-1 Increased levels associated with sepsis severity, organ dysfunction and mortality (18, 118, 120)

Prognostic value for 90 days mortality in severe sepsis and septic shock (123)

Soluble VCAM-1 Increased levels associated with sepsis severity, organ dysfunction and mortality (18, 118, 120)

Prognostic value for 90 days mortality in severe sepsis and septic shock (123)

Increased levels in patients with SIRS, but not independently associated with it (9)

Permeability Angiopoeitin-2 Increased levels associated with mortality (122)

VEGFR1 Increased levels associated with sepsis severity, organ dysfunction and mortality (18, 120, 122)

Coagulation Soluble thrombomodulin Early predictor multiple organ failure and mortality (11, 12)

Increased levels in non-survivors (122, 123)

PAI-1 Increased levels associated with sepsis severity, organ dysfunction and mortality (18, 120, 176)

VWF Increased levels in non-survivors (122)

Increased levels in patients, but no correlation with disease severity, organ dysfunction or disease 

outcome

(8)

aA complete overview of biomarkers previously associated with sepsis diagnosis and/or prognosis is provided in reference (198).
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Integration of -omics studies

Based on their early response, ECs have been consistently 
suggested as a target for therapeutics. Even though better biomarkers 
and patient stratification will be helpful in determining a treatment 
plan, it is unlikely that targeting only one molecule or pathway will 
be sufficient to ensure vascular protection and facilitate restoration of 
EC function since the molecular mechanisms underlying sepsis are so 
complex. This complexity has become even more fully appreciated 
with the introduction of unbiased -omics approaches.

In light of the latter, it is interesting to take a closer look at the 
efforts taken to study SARS-CoV-2 infection leading to COVID-19. 
Once the true impact of this disease became apparent, the scientific 
community quickly rallied to employ methods such as (single cell) 
RNA-seq and spatial transcriptomics to generate testable hypotheses 
leading to a better understanding of the molecular mechanisms 
driving the host response and general patho(physio)logy of this 
devastating disease (90, 217–222). Although several parallels can 
be drawn between COVID-19 and sepsis, including the presence of 
endotheliopathy (219, 221), it is interesting to note that studies using 
these relatively new technologies have only started to emerge recently 
in the sepsis field (195, 196). Nonetheless, these are expected to make 
a great stride forward in elucidating the complexity of sepsis.

Traditional transcriptomics approaches are invaluable for 
understanding the dynamics of gene expression, but they do not tell 
the full story. miRNAs, including EC-derived miRNAs, are 
increasingly recognized for their role in sepsis and potential as 
biomarker (223–226). Although studying miRNAs in an unbiased 
manner has been historically more difficult due to technical 
limitations (227), our recent studies combining RNA-seq and 
miRNA-seq data obtained from distinct microvascular segments in 
the kidney have demonstrated its potential to predict RNA-miRNA 
relations in the complexity of the vasculature in an in vivo setting 
(213). Thus, these data could serve as a starting point for the 
identification of targets for therapeutic interventions. Furthermore, 
epigenetic regulation of gene expression and the resulting proteome 
also provide important information, particularly the proteome of the 
vessel wall (38, 39) and the plasma proteome as these could lead to 
the identification of markers used for therapeutics or diagnostic/
prognostic purposes. While a few translational research teams have 
actively sought to create a biobank of biological materials including 
plasma, serum, urine, and tissue samples obtained from sepsis 
patients, a broad concerted strategy that can be incorporated into the 
daily workflow of clinical departments is at present lacking. In 
addition, miniaturization of -omics analyses is key to make the 
desired progress in unravelling the molecular basis of sepsis and 
sepsis-related multiple organ dysfunction and to make -omics not 
compete with standard assessment of clinically relevant parameters 
but become an add-on assessment instead (112). Even though it is 
currently not feasible (yet) to base a treatment plan on -omics data 
generated from patient samples given its relatively slow turn-around 
time whereas sepsis rapidly progresses, eventually the integration of 
-omics data will be  required to map the spatiotemporal changes 
occurring during sepsis progression. This will create opportunities 
for a systems biology approach to get a holistic picture of sepsis 
pathophysiology required for developing rational therapeutic 
intervention strategies.

Conclusion

Endothelial cells are often referred to as gatekeepers of tissue 
homeostasis given their unique position between the blood and 
parenchyma, and their interspersed distribution throughout the body. 
This makes ECs a particularly relevant cell type for therapeutic 
strategies since they are not only early responders and active 
contributors to disease pathophysiology, including sepsis, but are also 
easily accessible. However, their heterogeneity across vascular beds 
under both physiological and pathological conditions makes this 
notion more complicated and may explain, at least partly, the lack of 
success in our quest of developing effective treatment options for 
sepsis aimed at the endothelium. The introduction of -omics 
approaches has enabled the field to get a better understanding of 
organ- and (endothelial) cell-specific changes that occur during sepsis 
progression. This has not only contributed to our general knowledge 
of pathogen-host interactions, but it is also expected that it will open 
the doors for identifying new therapeutic targets, molecules for 
targeted drug delivery, and biomarkers with diagnostic, prognostic 
and/or predictive value. Together with patient stratification, -omics 
data from pathophysiological and pharmacological studies is expected 
to unveil the molecular treasure trove to advance disentangling, or 
maybe even cutting, the Gordian knot of EC heterogeneity in the 
contribution to sepsis pathology.
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