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Osteoarthritis, a prevalent long-term condition of the joints, primarily impacts 
older individuals, resulting in discomfort, restrictions in mobility, and a decrease 
in overall well-being. Although Osteoarthritis is widely spread, there is a lack of 
successful interventions to stop the advancement of the condition. Numerous 
signaling pathways have been emphasized in recent research on Osteoarthritis, 
yet the diagnostic significance of numerous genes has not been investigated. To 
identify genes that were expressed differently in osteoarthritis, we  utilized the 
Gene Expression Omnibus database. To identify marker genes, we built machine 
learning models including Least Absolute Shrinkage and Selection Operator and 
Random Forest. We categorized Osteoarthritis samples and performed immune 
cell infiltration analysis based on the expression patterns of these characteristic 
genes. Both the Least Absolute Shrinkage and Selection Operator and Random 
Forest models selected six marker genes (TOX3, ARG1, CST7, RERGL, COL11A1, 
NCRNA00185) out of a total of 17 differentially expressed genes. The osteoarthritis 
samples were categorized into two groups, namely a high expression group 
and a low expression group, based on the median levels of TOX3 expression. 
Comparative analysis of these groups identified 85 differentially expressed 
genes, showing notable enrichment in pathways related to lipid metabolism 
in the group with high expression. Analysis of immune cell infiltration revealed 
noticeable differences in immune profiles among the two groups. The group with 
high expression of TOX3 showed a notable increase in Mast cells and Type II 
IFN Response, whereas B cells, Cytolytic activity, Inflammation-promoting cells, 
NK cells, pDCs, T cell co-inhibition, Th1 cells, and Th2 cells were significantly 
decreased. We  constructed a ceRNA network for TOX3, revealing 57 lncRNAs 
and 18 miRNAs involved in 57 lncRNA-miRNA interactions, and 18 miRNA-mRNA 
interactions with TOX3. Validation of TOX3 expression was confirmed using 
an external dataset (GSE29746), revealing a notable increase in Osteoarthritis 
samples. In conclusion, our study presents a comprehensive analysis identifying 
TOX3 as a potential feature gene in Osteoarthritis. The distinct immune profiles 
and involvement in fat metabolism pathways associated with TOX3 expression 
suggest its significance in Osteoarthritis pathogenesis. The study establishes a 
basis for comprehending the intricate correlation between characteristic genes 
and Osteoarthritis, as well as for the formulation of individualized therapeutic 
approaches.
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Introduction

Osteoarthritis (OA), a common long-term joint condition, is 
widespread globally and is a major contributor to disability, especially 
in older individuals. Patients experience pain, functional restrictions, 
and a decrease in their quality of life, which greatly affects their daily 
activities (1). Factors such as age and obesity are associated with the 
incidence of OA, which primarily impacts the knee joints, hip joints, 
hands, and spine. Due to the growing number of elderly individuals 
and the increasing rates of obesity, the occurrence of OA is 
progressively on the rise (2). Pain is the primary symptom of OA, 
which worsens with joint use and improves during rest. Although the 
pain is typically localized to the affected joint, it can also radiate to 
other areas. The correlation between pain symptoms and disease 
severity evaluated through X-ray results remains poorly 
comprehended (3). In addition to pain, OA leads to functional 
impairments and limitations in daily activities. Lower limb joint 
involvement in OA is particularly problematic, leading to reduced 
mobility among older individuals. For patients in advanced stages of 
the disease, joint replacement surgery is often necessary to alleviate 
symptoms and restore function (4, 5). However, this surgery also 
contributes significantly to the direct medical costs associated with 
OA. To summarize, OA is a common long-term condition affecting 
the joints, which has a substantial impact on the well-being and daily 
existence of those it affects. Despite the progress made in medical 
interventions, there is presently no viable remedy to decelerate the 
advancement of the illness.

Multiple signaling pathways, such as Wnt/β-catenin, NF-κB, focal 
adhesion, HIFs, TGFβ/BMP, and FGF signaling pathways, are involved 
in OA according to recent studies (6–8). The expression of important 
downstream factors in articular cartilage cells and synovium is 
controlled by activated pathways and regulatory factors, which operate 
through intricate networks of interactions and feedback mechanisms 
involving Runx2, MMP13, AMPK, PRG4, and others (6). Moreover, 
studies have indicated that Emodin, a substance that hinders matrix 
metalloproteinases (MMPs) and a disintegrin and metalloproteinase 
with thrombospondin motifs (ADAMTS), has the ability to impede 
the NF-κB and Wnt/β-catenin signaling pathways. As a result, it can 
improve the deterioration of cartilage in OA (9). Other studies have 
demonstrated that overexpression of miR-182-5p reduces cartilage cell 
proliferation by targeting and inhibiting FGF9, leading to increased 
cell apoptosis rates and inflammatory factors (10). Furthermore, the 
elimination of UHRF1 boosts the cellular autophagy capability, 
safeguarding cartilage cells against apoptosis caused by osteoarthritis 
via the PI3K/AKT/mTOR signaling pathway (11). The results 
highlight the important functions of particular genes and signaling 
pathways in the advancement of OA. However, the diagnostic value of 
many genes in OA has yet to be studied.

Currently, bioinformatics is widely employed in various disease 
research (12). Integrating relevant bioinformatics studies can more 
accurately screen differential genes, enabling the exploration of potential 
disease mechanisms. For this research, we initially obtained OA disease 
datasets from the Gene Expression Omnibus (GEO) database (13). Then, 
we performed differential analysis to detect genes that were expressed 
differently (DEGs) and identified characteristic genes by creating 
machine learning models. Subsequently, we  utilized the expression 
profiles of these marker genes to group OA samples. Additionally, 
we examined if there were variances in the prevalence of immune cells 

among the groups by conducting immune infiltration analysis. To 
understand the intricate relationships between various genes, 
we developed the competing endogenous RNA (ceRNA) network for 
characteristic genes. Finally, we validated the accuracy of our results using 
external datasets. The aim of this study is to discover new diagnostic 
genes for OA through bioinformatics, which will establish a theoretical 
foundation for future personalized and accurate treatment of OA patients.

Materials and methods

Data source and preprocessing

We downloaded seven datasets from the GEO database, namely 
GSE169077 (GPL96 platform, controls: 5, OA: 6), GSE51588 
(GPL13497 platform, controls: 10, OA: 40), GSE55235 (GPL96 
platform, controls: 10, OA: 10), GSE55457 (GPL96 platform, controls: 
10, OA: 10), GSE29746 (GPL4133, controls: 11, OA: 11), GSE117999 
(GPL20844, controls: 12, OA: 12), and GSE178557 (GPL13497, 
controls: 4, OA: 4) (14–16). GSE29746, GSE117999, and GSE178557 
were used as a validation dataset. Initially, we employed the R 4.2.2 
packages “limma” and “sva” to standardize GSE169077, GSE51588, 
GSE55235, and GSE55457, and subsequently combine the datasets. 
The “sva” package in R 4.2.2 utilized the combat function to eliminate 
batch effects from the combined dataset.

Identifying differentially expressed genes

The four datasets were merged into a single dataset and batch effects 
were eliminated using the combat function, we conducted differential 
analysis on the merged dataset using the “limma” package in R 4.2.2. To 
identify the DEGs, we  set the criteria as |Log FC| ≥ 1 and adjusted 
p-value < 0.05. These criteria were used to determine the significance of 
gene expression changes between normal and OA samples.

Construction of machine learning models

We utilized the DEGs to construct two machine learning models 
for OA: Least Absolute Shrinkage and Selection Operator (LASSO) and 
Random Forest (RF) (17, 18). The LASSO is employed for the purpose 
of selecting features and performing regression analysis. It introduces 
a L1 regularization term to penalize unimportant features, resulting in 
feature sparsity and model simplification. For our investigation, 
we  utilized the R 4.2.2 and the “glmnet” package to construct the 
LASSO model. To construct the model, the merged dataset was read, 
transformed into a feature matrix and target variable, and the “glmnet” 
function was used. We assessed the effectiveness of the LASSO model 
by creating visual representations of the LASSO regression path and 
conducting cross-validation. After analyzing the cross-validation 
outcomes, we determined the optimal penalty parameter and identified 
the genes that were chosen as features. RF is an ensemble learning 
method commonly used for classification and regression tasks. It 
consists of multiple decision trees, each constructed by bootstrapping 
the dataset and randomly selecting features. For our study, we utilized 
the R 4.2.2 software and the “randomForest” package to construct the 
RF model. The process involved reading the data from the merged 
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dataset, converting it into a feature matrix and target variable, and 
training the random forest model. After plotting the graph depicting 
the correlation between the number of trees and error rate, 
we successfully pinpointed the precise location of the minimum error 
point. Subsequently, we rebuilt the random forest model and calculated 
the importance scores for the genes, allowing us to select the significant 
marker genes. A bubble chart was created using the “ggplot2” package 
to display the gene importance scores. In order to detect shared disease 
marker genes between the LASSO and RF models, we utilized the R 
4.2.2 package called “VennDiagram.” This facilitated subsequent 
analysis and comparison of the selected marker genes.

Analysis of marker genes

In order to observe the patterns of expression of the chosen genes 
between normal and OA samples, we employed the R 4.2.2 packages 
“limma” and “ggpubr” to create the violin figure for each gene. The 
visual depiction facilitates a more instinctive comprehension of the 
disparities in gene expression between the two groups of samples. 
Furthermore, we evaluated the discriminatory ability of each gene 
feature individually by creating receiver operating characteristic 
(ROC) curves. We  used the “pROC” package in R 4.2.2 for this 
analysis. ROC curves illustrate the sensitivity (true positive rate) vs. 
the specificity (1 - false positive rate) across different threshold values. 
The area under the curve (AUC) is computed to measure the capacity 
of each gene to differentiate between normal samples and OA samples 
on an individual basis. Greater AUC values indicate superior ability of 
a specific gene to differentiate between the two groups of samples. Our 
goal is to enhance our understanding of the potential roles of the 
selected marker genes in distinguishing between normal samples and 
OA samples by visually representing their expression patterns and 
individual discriminatory abilities through the use of create the violin 
figure and ROC curves.

Osteoarthritis grouping and differential 
analysis based on marker genes

By analyzing the median expression levels of marker genes in OA 
samples (n = 66) from the combined dataset, we categorized the OA 
samples into two groups: the high expression group and the low 
expression group. We conducted differential analysis between the high 
and low expression groups using the R 4.2.2 packages “limma” and 
“pheatmap,” with a with a screening criteria of |Log FC| ≥ 1 and adjusted 
p-value < 0.05. The results were then visualized. Afterwards, we conducted 
correlation analysis of DEGs using the R 4.2.2 package called “corrplot.” 
Furthermore, in order to clarify the primary roles of these DEGs, 
we employed the R 4.2.2 packages called “clusterProfiler,” “org.Hs.eg.db,” 
and “enrichplot” to conduct Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis on the DEGs.

Gene set enrichment analysis and gene set 
variation analysis

In order to further examine the gene expression data and obtain 
a better understanding of the biological processes and pathways linked 

to the groups with high and low expression, we  utilized two 
techniques: Gene Set Enrichment Analysis (GSEA) and Gene Set 
Variation Analysis (GSVA). GSEA is a widely used method for 
determining whether a predefined gene set is enriched or coupled 
with the gene expression data. In order to conduct GSEA, we acquired 
the GSEA program (version 3.0) from the MSigDB website repository 
and retrieved the subsets “c2.cp.kegg.v7.4.symbols.gmt” and “c5.
go.symbols.gmt” from the MSigDB website database (19). These gene 
sets represent known pathways and biological processes. The GSEA 
software was utilized to assess the enrichment of these gene sets using 
the gene expression profiles of the high and low expression groups. 
The examination was conducted using particular criteria, which 
consisted of a minimum gene collection of 5, a maximum gene 
collection of 5,000, resampling 1,000 times, and establishing statistical 
significance at a p-value less than 0.05 and a false discovery rate (FDR) 
less than 0.25. In contrast, GSVA is a non-parametric technique 
utilized to evaluate the collective activity levels of gene sets in a specific 
set of samples. GSVA helps us understand the relative variation of 
gene sets in samples, revealing functional differences between different 
sample groups. In order to conduct GSVA enrichment analysis, 
we  acquired the “c2.cp.kegg.v7.4.symbols” and “c5.go.bp.
v7.5.1.symbols” files from the database on the MSigDB website. Next, 
we  utilized the R 4.2.2 and the “GSVA” package to compute the 
enrichment scores for every gene set in each sample, which generated 
a matrix of enrichment scores. In conclusion, we employed the R 4.2.2 
“limma” package to detect dissimilarly expressed pathways and 
biological functions through comparing the GSVA scores of the high 
expression and low expression groups. Our objective was to discover 
and describe the enriched gene sets, pathways, and biological 
functions linked to the distinct gene expression patterns observed 
between the high expression and low expression groups.

Analysis of immune cell correlation with 
marker genes

In order to examine the association between characteristic genes 
and immune cells in OA, we employed the CIBERSORT algorithm 
(20) for the analysis of variations in immune cell infiltration between 
normal and OA samples. Next, we utilized the Spearman algorithm to 
conduct correlation analysis in order to investigate the association 
between immune cells and marker genes. To assess immune function 
based on ssGSEA, we also used the “limma,” “GSVA,” and “GSEABase” 
packages in R 4.2.2. We examined the infiltration of immune cells in 
the marker genes high and low expression groups and presented the 
findings through box plots.

Construction of ceRNA network for marker 
genes

The miRcode database (21) was used to match lncRNA and 
miRNA. miRTarBase (22), miRDB (23), and TargetScan (24) databases 
were used to find miRNAs matching marker genes. Interactions 
between miRNA, lncRNA, and target genes were integrated to 
construct a ceRNA regulatory network. Cytoscape (version 3.7.2) was 
used for visualization (25). Finally, three datasets (GSE29746, 
GSE117999, and GSE178557) were used for validation of the marker 
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genes. The ROC curves of the marker genes in these datasets were 
constructed using the “pROC” package in R 4.2.2, which was used to 
validate the accuracy of the marker genes in distinguishing between 
non-OA and OA patients.

Results

Identifying differentially expressed genes

Normalization was conducted on four datasets, namely 
GSE169077, GSE51588, GSE55235, and GSE55457 (Figures 1A,B). By 
applying the criteria of |Log FC| ≥ 1 and adjusted p-value < 0.05, the 
differential analysis successfully detected 17 DEGs. These DEGs 
included 4 genes that were upregulated and 13 genes that were 
downregulated (Figure  1C). Figure  1D displayed the expression 
patterns of the identified DEGs through a heatmap.

Construction of machine learning models

Figures  2A,B shows that the LASSO algorithm in machine 
learning detected 9 marker genes related to OA, which are ARG1, 
CST7, RERGL, TOX3, NFE2, COMP, COL11A1, CTSG, and 

NCRNA00185. In the same way, we used 271 trees, the RF machine 
learning algorithm discovered a group of 8 marker genes, specifically 
COL11A1, CST7, NCRNA00185, AZU1, RERGL, ARG1, S100A12, 
and TOX3 (Figures  2C,D). Figure  2E displays the Venn diagram 
analysis of the marker genes from both models, uncovering 6 shared 
genes namely TOX3, ARG1, CST7, RERGL, COL11A1, 
and NCRNA00185.

Analysis of marker genes

In order to offer a more graphical depiction of the 6 overlapping 
marker genes (TOX3, ARG1, CST7, RERGL, COL11A1, 
NCRNA00185), a violin figure was generated (Figure  3A). 
Furthermore, we generated receiver ROC curves for each of the 6 
marker genes to evaluate their individual capacity in differentiating 
normal and OA samples. The findings indicated that TOX3 achieved 
an AUC value of 0.713, RERGL attained an AUC value of 0.727, 
NCRNA00185 obtained an AUC value of 0.694, CST7 recorded an 
AUC value of 0.738, COL11A1 obtained an AUC value of 0.729, and 
ARG1 exhibited the highest AUC value of 0.765 (Figures 3B–G). The 
results suggest that the 6 marker genes have a strong ability to 
differentiate between normal and OA samples. A large number of 
studies have shown that TOX3 is associated with a wide range of 

FIGURE 1

Identification of differentially expressed genes in Osteoarthritis. (A) Principal Component Analysis before merging the four data sets. (B) Principal 
Component Analysis after merging the four data sets. (C) Volcano map of differentially expressed genes. (D) Heat map of differentially expressed 
genes.
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diseases and involves complex biological mechanisms (26, 27). 
therefore, we selected TOX3 for further study.

Osteoarthritis grouping and differential 
analysis based on marker genes

Based on the median expression levels of TOX3 (cutoff 
value = 2.667), we categorized the 66 OA samples into two groups: a 
group with high expression (n = 32) and a group with low expression 
(n = 34). A comparative analysis was performed on these two groups, 
using the criteria of |Log FC| ≥ 1 and adjusted p < 0.05. The 
examination uncovered a grand total of 85 DEGs, comprising of 27 
genes that were upregulated and 58 genes that were downregulated 
(Figure  4A). To visualize the expression patterns of the top  20 
upregulated and downregulated DEGs (Figure 4B), a heatmap was 
created. Additional correlation analysis of DEGs revealed a significant 
positive correlation between TOX3 and STMN2, LPPR3, and IL11. 
Conversely, a notable negative correlation was detected between 
TOX3 and GRB14, SPON1, and COPG2IT1. These findings suggest 
that TOX3 is influenced by intricate regulatory mechanisms in OA, as 
depicted in Figure 4C. The DEGs underwent GO and KEGG analyses. 
The analysis of GO showed that in biological processes (BP), DEGs 

were primarily enriched in adipocyte differentiation, 
thermoregulation, and alcohol metabolism. DEGs in cellular 
components (CC) were mainly linked to lipid droplet, extracellular 
matrix containing collagen, and distal axon. DEGs in molecular 
functions (MF) primarily participated in receptor ligand activity, 
activation of signaling receptors, and cytokine activity (Figure 4D). 
According to the KEGG analysis, DEGs showed significant enrichment 
in the AMPK signaling pathway, adipocyte lipolysis regulation, the 
PPAR signaling pathway, and various related pathways (Figure 4E). 
The results indicate that the breakdown of fat could have a substantial 
impact on the development and advancement of OA.

Gene set enrichment analysis and gene set 
variation analysis

GSEA and GSVA were performed to investigate the functional 
disparities associated with DEGs between the TOX3 high-expressing 
cohort and the low-expressing cohort. The GSEA findings indicated 
that the TOX3 high-expression group exhibited notable enrichment 
in the organization of external encapsulating structures, segregation 
of mitotic sister chromatids, and functions related to external 
encapsulating structures (Figure 5A). Furthermore, the analysis of 

FIGURE 2

Machine learning models. (A) Coefficient diagram of Least Absolute Shrinkage and Selection Operator. (B) Parameter plot of Least Absolute Shrinkage 
and Selection Operator. (C) Results of the Random Forest model. (D) Importance score of candidate genes for Osteoarthritis. (E) Intersectional marker 
genes for Least Absolute Shrinkage and Selection Operator and Random Forest.
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pathway enrichment revealed enrichment in the cell cycle, interaction 
with ECM receptors, the hedgehog signaling pathway, and various 
other signaling pathways (Figure 5B). The GSVA analysis revealed that 
in the high-expression group of TOX3, pathways associated with the 
promotion of lipid storage, diacylglycerol metabolism, and cholesterol 
storage were found to be upregulated. On the other hand, in the group 
with low expression of TOX3, the upregulation of pathways related to 
phosphatidylethanolamine flippase function, biosynthesis of dermatan 
sulfate proteoglycan, and inhibition of ubiquitin protein ligase activity 
was observed (Figure 5C). Furthermore, the TOX3 high-expression 

group exhibited significant enhancement in various pathways, 
including but not limited to the insulin signaling pathway, 
adipocytokine signaling pathway, glycerophospholipid metabolism, 
and PPAR signaling pathway, as revealed by pathway enrichment 
analysis. In contrast, the group with low expression of TOX3 showed 
significant enhancement in pathways such as chondroitin sulfate 
biosynthesis of glycosaminoglycan, cell cycle, and the p53 signaling 
pathway (Figure  5D). The results suggest notable variations in 
functionality between the high-expression group of TOX3 and the 
low-expression group. The group with high expression of TOX3 seems 

FIGURE 3

Analysis of marker genes. (A) The violin diagram of marker genes. Receiver operating characteristic of TOX3 (B), RERGL (C), NCRNA00185 (D), CST7 (E), 
COL11A1 (F), and ARG1 (G). *p  <  0.05, **p  <  0.01, and ***p  <  0.001.
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to have a strong connection with lipid metabolism, whereas the group 
with low expression of TOX3 may be more linked to cell proliferation.

Immune cell correlation analysis of marker 
genes

We utilized the CIBERSORT algorithm to conduct immune 
scoring for each sample using the combined dataset. Next, the 
Spearman algorithm was utilized to perform correlation analysis on 
immune cells and TOX3. The results showed that TOX3 had a 
correlation with a variety of immune cells. TOX3 displayed a less 
powerful negative correlation with Mast cells activated, Eosinophils, 
NK cells activated, and T cells gamma delta. In contrast, TOX3 
exhibited a less powerful positive correlation with Dendritic cells 
resting and Dendritic cells activated. TOX3 had some positive 
correlation with Mast cells resting (Figures  6A–H). These results 
indicated that TOX3 correlates with a wide range of immune cells, and 
although these correlations were not strong, they also suggested that 
TOX3 may play a crucial role in the complex immune processes 
associated with OA. Moreover, we investigated if there are any notable 
variations in the immune system between the high-expression and 
low-expression groups of TOX3. Distinct immune profiles were 
revealed through an analysis of immune cell infiltration conducted on 
the two groups. The TOX3 high-expression group showed a notable 

increase in Mast cells and Type II IFN Response, in contrast to the 
TOX3 low-expression group. In contrast, the TOX3 high-expression 
group showed significant downregulation of B cells, cytolytic activity, 
inflammation-promoting cells, NK cells, pDCs, T cell co-inhibition, 
Th1 cells, and Th2 cells (Figure 6I). The findings suggested notable 
variations in the composition of immune cells between the high-
expression and low-expression groups of TOX3. Collectively, these 
results indicated that TOX3 was not only associated with particular 
types of immune cells but also played a role in the immune variations 
observed between the high-expression and low-expression groups of 
OA. The findings provided insight into the possible role of TOX3 in 
the immune regulation of OA.

Construction of ceRNA network for marker 
genes

We constructed a ceRNA network for TOX3, which revealed 57 
lncRNAs and 18 miRNAs involved in 57 lncRNA-miRNA interactions. 
Furthermore, TOX3 was discovered to interact with 18 miRNAs, 
resulting in the formation of 18 miRNA-mRNA interactions. Firstly, 
we  observed interactions between the TOX3 gene and multiple 
miRNAs, which play pivotal roles in the pathophysiological processes 
of OA. For instance, the interaction of miR-185-5p with TOX3 has 
been reported to be associated with OA (28). TOX3 may exert its 

FIGURE 4

Analysis of high and low TOX3 expression groupings in osteoarthritis. (A) Volcano map of differentially expressed genes. (B) Heat map of differentially 
expressed genes. (C) Correlation analysis of differentially expressed genes. (D) Gene Ontology analysis of differentially expressed genes. (E) Kyoto 
Encyclopedia of Genes and Genomes.
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influence by binding to these miRNAs, thereby affecting their 
regulation of other mRNAs and consequently impacting the 
progression of OA. Secondly, we  identified interactions between 
various lncRNAs and miRNAs, where these lncRNAs may serve as 
“sponges” for miRNAs, attenuating their regulation of other target 
genes. For example, interactions such as RP5-894D12.5 with 
miR-218-5p and LINC01043 with miR-1-3p are likely to play a role in 
the regulation of OA. Additionally, some miRNAs simultaneously 
interact with multiple lncRNAs and mRNAs, suggesting their 
extensive regulatory roles in OA. This multi-pathway regulatory 
mechanism may have complex implications for disease progression. 
For instance, miR-185-5p, in addition to its interaction with TOX3, 
also engages with several other lncRNAs and mRNAs, potentially 
affecting the gene expression related to OA through these interactions 
(Figure 7). Finally, we validated the diagnostic value of TOX3 using 
ROC curves based on three external independent datasets, GSE29746, 
GSE117999 and GSE178557. The ROC of GSE29746 was 0.868 
(Figure 8A), the ROC of GSE117999 was 0.838 (Figure 8B) and the 
ROC of GSE178557 was 0.688 (Figure 8C). This validation supports 
the accuracy and reliability of TOX3 as a potential feature gene for 

diagnosing OA. Our research findings collectively suggest that TOX3 
shows potential as a new marker gene that could aid in the detection 
of OA. The ceRNA network involving TOX3, along with its validated 
expression pattern, further supports its potential significance in the 
context of OA.

Discussion

OA is a common long-term condition affecting people globally and 
has a substantial impact on their quality of life. This condition is 
marked by the gradual deterioration of joint cartilage, resulting in 
discomfort, swelling, and limited joint movement (29). The disabling 
characteristics of OA result in occupational impairment and 
diminished quality of life for those impacted. Recent studies have 
brought attention to the role of inflammation and immune reactions 
in the development of OA. Abnormal activation of these processes can 
contribute to cartilage damage and joint dysfunction (30, 31). Obesity, 
a known risk factor for OA, exacerbates joint deterioration by 
increasing mechanical stress on the joints and releasing inflammatory 

FIGURE 5

Gene Set Enrichment Analysis and Gene Set Variation Analysis. (A) Gene Ontology of Gene Set Enrichment Analysis in high expression group. (B) Kyoto 
Encyclopedia of Genes and Genomes of Gene Set Enrichment Analysis in high expression group. (C) Gene Ontology of Gene Set Variation Analysis. 
(D) Kyoto Encyclopedia of Genes and Genomes of Gene Set Variation Analysis.
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substances from adipose tissue (32, 33). Over the past few years, 
numerous functional genes have been recognized as crucial 
contributors to the advancement and growth of OA. Examples include 
GREM1, FRZB, DKK1, BCL2, and BAX (34). It is crucial to 
comprehend the diagnostic significance of these genes in OA for 
enhancing early identification and formulating focused therapeutic 
approaches. Moreover, the examination of numerous genes in OA for 
their diagnostic significance remains unexplored. In general, additional 
investigation is required to clarify the exact roles of these genes in the 
development of OA and their potential for diagnosis and treatment.

The main focus of this study was on OA, with the objective of 
identifying DEGs that are linked to this disease. We  utilized four 
datasets, namely GSE169077, GSE51588, GSE55235, and GSE55457, 
and applied strict criteria to screen for DEGs. By employing machine 
learning algorithms, particularly LASSO and RF, we have discovered a 
group of marker genes. Among these genes, TOX3, ARG1, CST7, 
RERGL, COL11A1, and NCRNA00185 were found to be shared by 
both models. In order to acquire a more profound comprehension of 
the function of these marker genes, we  carried out additional 

investigations. The ROC curve analysis exhibited the capacity of these 
genes to accurately differentiate normal samples from OA samples. 
Specifically, our attention was directed toward the TOX3 gene, and 
we  categorized the OA samples into two groups, high and low 
expression, depending on the levels of TOX3 expression. By conducting 
differential analysis and functional enrichment analysis, we discovered 
DEGs linked to lipid metabolism, indicating their potential role in the 
development and advancement of OA. In addition, we  conducted 
GSEA and GSVA investigations to examine functional disparities 
between the TOX3 high expression cohort and low expression cohort. 
The analyses uncovered connections with lipid metabolism in the 
group with high expression and cell growth in the group with low 
expression. Furthermore, we examined the association between TOX3 
and immune cells utilizing the CIBERSORT algorithm, and we detected 
notable disparities in the infiltration of immune cells among the two 
groups with varying TOX3 expression. According to previous studies, 
TOX3 was mainly involved in the regulation of estrogen receptor 
signaling. Combined with the results of the present study, 
we hypothesized that through the hormonal pathway, estrogen levels 

FIGURE 6

Immunological correlation analysis. (A) A landscape wide map of TOX3 correlation with all immune cells. (B) Correlation of TOX3 and Mast cell 
activation. (C) Correlation of TOX3 and Dendritic cells resting. (D) Correlation of TOX3 and Dendritic cells activated. (E) Correlation of TOX3 and 
Eosinophils. (F) Correlation of TOX3 and NK cells activated. (G) Correlation of TOX3 and Mast cells resting. (H) Correlation of TOX3 and T cells gamma 
delta. (I) Immune cell infiltration analysis of TOX3 high and low expression groups. *p  <  0.05, **p  <  0.01, and ***p  <  0.001.
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FIGURE 7

Construction of ceRNA networks. The red is the mRNA, TOX3. The green is miRNAs. The purple is lncRNAs.

FIGURE 8

Receiver operating characteristic of external independent validation datasets. Receiver operating characteristic of GSE29746 (A), GSE117999 (B), and 
GSE178557 (C).
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may indirectly affect lipid metabolism and thus have a link with TOX3 
(35). Second, lipid metabolism plays a key role in the function of 
immune cells. Lipids are important components of cell membranes, 
and immune cells need to regulate their lipid metabolism to perform 
various functions such as phagocytosis, cytokine production, and 
immune signaling (36, 37). At the same time, lipid metabolism can also 
affect the inflammatory response, which is closely related to immune 
cell function. Disorders of lipid metabolism may lead to inflammation, 
which in turn affects the immune response in a variety of contexts, 
including OA (38). Thus, TOX3, there may be a complex link between 
lipid metabolism and immune cells that influences the development of 
OA. Moreover, a network of ceRNAs was established using TOX3, 
uncovering intricate connections involving numerous lncRNAs, 
miRNAs, and TOX3. The TOX3 regulatory mechanisms in OA are 
illuminated by this network, offering valuable insights. To validate our 
findings, we verified the diagnostic value of TOX3 using ROC curves 
based on three external independent datasets (GSE29746: AUC = 0.868, 
GSE117999: AUC = 0.838, and GSE178557: AUC = 0.688). All ROC 
results showed that TOX3 has excellent diagnostic value, which was in 
consistent with our previous findings. In the context of OA, the 
significance of these identified genes, especially TOX3, is emphasized 
by our study. The results of this study enhance our comprehension of 
the molecular processes involved in the progression of OA and could 
potentially impact the diagnosis and management of this condition.

TOX3 is a crucial gene that encodes proteins and has diverse 
functions in cellular processes. The high mobility group box domain 
of this protein is engaged in interactions with CREB protein and 
CITED1 (35). The neuroprotective effects of TOX3 have been 
discovered through its ability to prevent neuronal cell death caused by 
endoplasmic reticulum stress or excessive BAX expression. This is 
accomplished by regulating the expression of genes that prevent cell 
death and genes that promote cell death (39). Furthermore, TOX3 
plays a role in controlling the transcription linked to estrogen response 
elements and estrogen response promoters (35). It is worth mentioning 
that TOX3 has been linked to studies on cancer (40, 41). A decrease 
in TOX3 expression has been noted in cases of acute myeloid leukemia 
(AML). Nevertheless, increased TOX3 expression in individuals with 
AML is linked to inferior survival results, suggesting its potential as a 
biomarker for AML (42). Although TOX3 has been implicated in 
various types of cancer, there is currently a scarcity of in vivo and in 
vitro experimental studies investigating the association between TOX3 
and OA. In this study, a new marker gene for OA, namely TOX3, was 
identified through a comprehensive bioinformatics approach. After 
further analysis of the expression pattern and mechanism of function, 
etc., TOX3 was found to play an important role in OA. These findings 
provided new directions and potential targets for the diagnosis and 
treatment of OA, and are important for the development of TOX3 in 
the field of OA understanding and research.

Certainly, although this study offers valuable perspectives, it is 
important to recognize certain constraints. A constraint of this study 
is that all the samples from OA patients utilized were acquired from 
publicly available databases. Therefore, further validation of the 
clinical value of TOX3 in OA would require extensive recruitment of 
clinical patients in future studies. Furthermore, a thorough 
comprehension of the complex mechanisms and associations of 
TOX3, lipid metabolism, and the role of immune cells in OA requires 
extensive in vivo and in vitro experiments. These experiments could 
offer a more comprehensive understanding of the functional 
significance of TOX3, lipid metabolism, and the role of immune cells 

in the development of OA. Future studies that focus on these 
constraints have the potential to improve our comprehension of TOX3 
and its viability as a target for diagnosis and treatment in OA.

Conclusion

This study utilized OA datasets to identify 17 DEGs associated with 
OA. By employing LASSO and RF machine learning models, six 
common marker genes, including TOX3, were identified. Further 
analysis demonstrated that TOX3 exhibits remarkable performance in 
distinguishing between normal and OA samples, and it may be implicated 
in lipid metabolism and immune cell infiltration. These findings offer 
novel insights into the mechanisms underlying the development and 
progression of OA, and they pave the way for the development of 
innovative diagnostic and therapeutic approaches in the future.
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