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Head and neck squamous cell carcinoma (HNSCC) originates from the squamous 
epithelium of the oral cavity, oropharynx, larynx, and hypopharynx. HNSCC 
in the oral cavity and larynx is strongly associated with tobacco smoking and 
alcohol consumption, while oropharyngeal cancer is increasingly attributed 
to infection by human papillomavirus (HPV), particularly HPV-16. The tumor 
microenvironment (TME) is a complex network of cancer cells, immune cells, 
stromal cells, surrounding blood vessels, and signaling molecules, and plays a 
critical role in tumor cell survival, invasion, and recurrence. Therefore, it is critical 
to elucidate the molecular basis of the interaction between tumor cells and the 
TME in order to develop innovative anti-cancer therapeutic strategies.
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1. Introduction

Head and neck cancer ranks as the sixth most common cancer globally, with approximately 
600,000 new cases diagnosed every year. Head and neck squamous cell carcinoma (HNSCC) is 
the predominant type, and arises from the mucosal epithelium of the oral cavity, pharynx, and 
larynx (1, 2). Several risk factors of HNSCC have been identified, such as exposure to tobacco-
derived carcinogens and excessive alcohol consumption (3). In addition, oncogenic viruses such 
as high-risk human papillomavirus (HPV), particularly HPV-16, are increasingly being 
recognized as common causes of HNSCC in younger patients (4). The treatment options for 
HNSCC include surgery, radiation therapy, chemotherapy, targeted therapy, or a combination 
thereof, and the suitable approach depends on the tumor location and staging, along with the 
age and overall health of patients (5). Nevertheless, the prognosis for HNSCC patients is often 
poor due to high rates of local recurrence and lymph node metastasis (6). The five-year survival 
rate of HNSCC patients ranges from 50 to 60%, and up to 30% will experience cancer recurrence 
and treatment failure (7).

The tumor microenvironment (TME) is a complex array of cellular and non-cellular 
components that drive tumor initiation and progression (8). The cellular components include 
stromal cells and immune cells, and the non-cellular components consist of extracellular matrix 
(ECM) proteins (9). Stromal cells include cancer-associated fibroblasts (CAFs), endothelial cells 
(ECs), and the blood and lymphatic vessel network, while immune cells comprise of tumor-
associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), T cells, B cells, 
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and natural killer (NK) cells. Tumor cells rely on the TME for 
nutrients, intermediate metabolites, hormones, cytokines/chemokines, 
and growth factors crucial for their proliferation and survival. 
Moreover, the TME plays a pivotal role in tumor immune evasion and 
promoting tumor-associated inflammation (10). On the other hand, 
the metabolic alterations in the proliferating tumor cells can reshape 
the TME to create conditions favorable for tumor progression (11) 
(Figure 1).

While surgery and radiation therapy are effective against early-
stage tumors (stages I and II), many HNSCC patients are diagnosed 
at the advanced stage of the disease without a clinical history of 
precancerous lesions, which portends poor prognosis (12). 
Furthermore, Radiotherapy and chemotherapy often leads to severe 
side effects and reduces quality of life (13). Targeted therapy involves 
specific drugs that selectively bind to oncogenic targets within tumor 
cells, with minimal effects on the adjacent healthy tissues (14). Given 
the indispensable role of the TME in tumor progression, further 
research has been initiated into new therapeutic strategies that target 
TME for the treatment of HNSCC or other solid tumors.

2. Targeting the tumor 
microenvironment

Tumor microenvironment is a complex network of cellular and 
non-cellular components. Cancer is considered to be an evolutionary 
and ecological process involving continuous, dynamic and reciprocal 
interactions between cancer cells and TMEs (15). The TME is a key 
determinant of cancer prognosis and treatment outcomes (16). 
While the TME promotes tumor progression, the latter induces 
adaptations in the TME to facilitate its growth. These reciprocal 

interactions between tumor cells and the TME collectively shape the 
trajectory of the tumor (17). Furthermore, the TME becomes highly 
complex and heterogenous in the advanced stages of solid tumors 
(18). Therefore, it is crucial to elucidate the molecular interactions 
between tumor cells and the TME in order to identify potential 
therapeutic targets for cancer treatment. The key components of the 
TME that contribute to tumor progression, as well as the clinical 
studies on drugs targeting these components, have been discussed 
in the subsequent sections.

2.1. Targeting the extracellular matrix

The ECM is an intricate network of protein, polysaccharides, and 
glycoproteins that provides structural and biochemical support to the 
tissue. It is primarily composed of collagen, along with fibronectin, 
elastin, laminin, hyaluronic acid, chondroitin sulfate, keratan sulfate, 
and heparan sulfate (19). Dysregulation of the ECM is a hallmark 
feature of cancer (20). Tumor cells recruit and transform fibroblasts 
into CAFs, which contribute to excessive ECM deposition. CAFs are 
the predominant non-immune cells in the TME, and constitute up to 
80% of the cells in advanced HNSCC tumors. While undifferentiated 
fibroblasts can suppress tumor growth, activated CAFs remodel the 
tumor stroma, and influence the behavior and invasiveness of 
HNSCC cells by producing soluble factors and ECM proteins (21, 
22). Excessive collagen deposition and crosslinking of fibrillar 
collagen and elastin result in a dense and rigid ECM, leading to tissue 
stiffening (23). This protein network protects tumor cells from 
immune destruction and mediates treatment resistance. Moreover, 
the ECM promotes tumor progression by providing proliferative 
signals to the tumor cells, blocking growth-inhibitory factors, 

FIGURE 1

The tumor microenvironment is mainly composed of cancer cells, immune cells, stromal cells and extracellular matrix (ECM). Tumor tissue infiltrated 
by CAF and immune cells. Tumor tissue is stiffer than normal tissue due to stromal deposition and cross-linking. CAF, cancer-associated fibroblasts; 
TAM, tumor-associated macrophages; MDSC, myeloid-derived suppressor cells; ECM, extracellular matrix.
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inducing angiogenesis, and facilitating the invasion and metastasis of 
tumor cells (24).

Given its critical role in HNSCC progression, the ECM represents 
an important therapeutic target. The TGF-β signaling pathway is 
involved in collagen synthesis (25), and drugs targeting TGF-β 
receptors have shown promising clinical effects. Fluorothiazinone 
(FT), a plant-derived anti-bacterial alkaloid, can inhibit collagen 
synthesis by inactivating the TGF-β/Smad2/3 signaling pathway (26). 
Wang et al. demonstrated that HF inhibited the proliferation of CAFs 
in oral squamous cell carcinoma (OSCC) by targeting the TGF-β/
Smad2/3 pathway (27). Flumatinib (HF) has shown favorable clinical 
outcomes. Bintrafusp alfa, a bifunctional fusion protein targeting 
TGF-β and PD-L1, achieved promising clinical outcomes in a phase 
I trial in advanced HNSCC patients with a manageable safety profile. 
Darantelcept binds to activin receptor-like kinase 1 (ALK1), a TGF-β 
receptor expressed on activated endothelial cells, and blocks TGF-β 
signaling. It has demonstrated modest dose-dependent anti-cancer 
activity and a favorable safety profile in phase I  clinical trials in 
patients with cisplatin-resistant, recurrent or metastatic HNSCC 
(RM-HNSCC), and may be  tested further in combination with 
radiotherapy in RM-HNSCC patients (28).

CD44 is a receptor for hyaluronic acid, collagen, fibronectin and 
growth factors, and thus regulates signaling pathways related to 
cancer proliferation, invasion, metastasis, and treatment resistance 
(29). CD44 isoforms are overexpressed in various tumors, including 
HNSCC. Although targeted drugs like bivatuzumab mertansine 
(BIWI 1) have been explored in clinical trials, their severe skin toxic 
side effects have halted their development (30). The strong toxic 
side effects of BIWI 1 have forced the termination of research on 
this drug. However, CD44 plays an important role in tumor 
progression and has the potential to be a tumor therapeutic target, 
which may warrant more in-depth research in tumor therapy in 
the future.

In summary, dysregulation of the ECM contributes to cancer 
development and progression, and targeting the ECM and associated 
signaling pathways is a promising therapeutic strategy for 
HNSCC. However, further research and clinical studies are necessary 
to unravel the intricate interplay between tumor cells and the ECM in 
order to develop effective and safe targeted therapies against HNSCC.

2.2. Targeting tumor hypoxia

Tumor hypoxia (TH) is characterized by an increased demand for 
oxygen due to the rapid proliferation of tumor cells and is often 
associated with poor prognosis (31). It can be classified into acute and 
chronic hypoxia (32). Acute hypoxia is the result of insufficient oxygen 
supply to cells due to compromised blood vessels, while chronic 
hypoxia is primarily caused by limited oxygen diffusion into the tumor 
cells on account of the distance from blood vessels or restrictive 
geometric shapes (33). Chronic hypoxia is more common in solid 
tumors due to their expansive growth. For instance, the oxygen 
pressure within HNSCC tissue is <10 mm Hg compared to 
approximately 43 mm Hg in normal tissues (34).

Hypoxia exacerbates the malignant phenotype of tumor cells and 
inhibits apoptosis, thereby promoting tumor progression, invasion, 
metastasis, and treatment resistance (35, 36). Moreover, hypoxia-
induced increase in glycolysis and carbon dioxide production acidifies 

the TME, which renders cells resistant to radiation and chemotherapy 
(37). Key endogenous hypoxia markers in tumors include hypoxia-
inducible factor 1 (HIF-1), glucose transporter 1 (GLUT-1), carbonic 
anhydrase IX (CAIX), vascular endothelial growth factor (VEGF), and 
osteopontin (OPN) (38). HIF-1 is a heterodimeric transcription factor 
composed of a constitutively expressed β subunit and an oxygen-
regulated α subunit. It is a major regulator of cellular oxygen 
homeostasis, and promotes angiogenesis in hypoxic tumor tissues by 
upregulating VEGF and promoting recruitment of mature endothelial 
cells (39). HIF-1 also induces glycolysis and GLUT-1 expression under 
hypoxic conditions to facilitate energy production (40, 41). OPN 
expression is induced under hypoxic conditions independent of the 
HIF pathway, and protects cells against hypoxia-triggered death (42). 
CAIX is a cell surface metalloenzyme that catalyzes the reversible 
conversion of carbon dioxide to bicarbonate (HCO3-) and H+, which 
maintains a favorable pH for tumor cell survival and growth. 
Furthermore, CAIX contributes to extracellular acidification, and 
promotes tumor cell migration, invasion, metastasis, and treatment 
resistance (43).

Hypoxia and TME acidification are contributing factors to 
HNSCC recurrence (44). Furthermore, hypoxic conditions promote 
epithelial-mesenchymal transition (EMT) of OSCC cells, leading to a 
significant decrease in E-cadherin mRNA levels and increased tumor 
cell migration (45). Clinical trials targeting HIF-1 and CAIX have 
been conducted extensively and have yielded some promising 
therapeutic results. Thus, HIF-1 and CAIX might be  promising 
therapeutic targets for head and neck cancers. For instance, the 
HIF-1α inhibitor bortezomib has shown good tolerability in 
combination with bevacizumab in phase I  trials for advanced 
refractory malignancies. It is effective against pre-treated advanced 
malignancies and inhibits tumor angiogenesis. Furthermore, clinical 
trials involving bortezomib in combination with docetaxel for 
androgen-independent prostate cancer and the combination of 
bortezomib and irinotecan for relapsed/refractory high-risk 
neuroblastoma have reported encouraging results (46, 47). Another 
HIF-1α inhibitor topotecan is currently being tested in clinical trials 
for late-stage solid tumors. After 1 week of treatment, DCE-MRI 
imaging demonstrated a reduction in tumor blood flow and 
permeability, indicating effective suppression of HIF-1α expression in 
late-stage solid tumors (48). The CAIX inhibitor SLC-0111 has shown 
a good safety profile in phase I  trials for treatment-experienced 
patients with late-stage solid tumors, even at high doses of 1,000 mg 
per day. Some patients treated with SLC-0111 have exhibited 
prolonged stable disease (SD). In addition, SLC-0111 augmented the 
effects of immune checkpoint blockade in preclinical models of 
melanoma and breast cancer. Nevertheless, further clinical studies are 
warranted to explore the efficacy and safety of SLC-0111 in a larger 
patient population (49).

To summarize, inhibiting the HIF-1 and CAIX pathways in 
HNSCC and other solid tumors can disrupt the adaptive mechanisms 
of tumor cells to hypoxia, overcome treatment resistance, and augment 
the efficacy of existing therapies. However, it is crucial to fully 
elucidate the complex mechanisms underlying tumor hypoxia and 
develop effective and safe targeted therapies for HNSCC patients. In 
addition, combination of hypoxia-targeting agents with other 
treatment modalities, such as radiation and chemotherapy, should 
be  explored to optimize treatment outcomes and improve 
patient survival.
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2.3. Targeting tumor-promoting chronic 
inflammation

Inflammation is a dynamic defense mechanism that occurs in 
response to harmful stimuli, and involves biological, chemical, and 
physical factors. The primary objective of the inflammatory response 
is to eliminate damage and facilitate tissue regeneration (50). However, 
inflammation can also contribute to the progression of certain diseases 
by exacerbating tissue damage. Chronic inflammation in particular is 
characterized by prolonged cycles of tissue destruction and 
regeneration (51). Furthermore, inflammation plays a significant role 
in tumor development and progression, and tumor cells in turn can 
enhance inflammatory responses (52). The microenvironment of 
HNSCC is rich in inflammatory mediators that may promote 
tumorigenesis, and are therefore ideal targets for innovative 
cancer therapies.

2.3.1. Targeting the COX-2 pathway
Cyclooxygenase (COX) enzyme exists as COX-1 and COX-2 

isoforms. It has the function of converting arachidonic acid into 
prostaglandins (PG) (53). COX-1 is constitutively expressed in most 
cells and is involved in physiological functions such as platelet 
aggregation. On the other hand, COX-2 is an inducible enzyme that 
is upregulated only in response to inflammation and other pathological 
stimuli. In addition, COX-2 is aberrantly expressed in pre-cancerous 
and cancerous lesions, and its overexpression can promote 
carcinogenesis (54). The oncogenic effect of COX-2 is primarily 
mediated through the release of the pro-inflammatory mediator PGE2 
(55). Numerous studies have demonstrated the significant role of the 
COX-2/PGE2 pathway in the progression of HNSCC. High expression 
levels of COX-2 and PGE2  in HNSCC have been associated with 
worse prognosis, lymph node involvement, advanced histological 
grade, local tumor recurrence, and lower survival rate (56). COX-2 
and PGE2 enhance migration of OSCC cells by upregulating 
intercellular adhesion molecule-1 (ICAM-1), a surface glycoprotein 
involved in cell-to-cell adhesion (57, 58). In addition, both COX-2 and 
PGE2 regulate tumor angiogenesis by modulating VEGF or directly 
influencing endothelial cell proliferation (59). COX-2 expression is 
also correlated with lymph node metastasis and disease progression 
in nasopharyngeal carcinoma (NPC), and co-expression of COX-2/
VEGF-C in OSCC has been associated with the generation of 
lymphatic vessels (60, 61). Furthermore, PGE2 promotes the 
maturation of regulatory T cells (Tregs) and facilitates the recruitment 
of MDSCs to the tumor tissues, which suppresses the anti-tumor 
immune response and promotes tumor growth (62).

The above findings suggest that COX-2 is a promising therapeutic 
target in cancer (63). Indeed, the COX-2 inhibitors tested so far have 
demonstrated high treatment efficacy with acceptable side effects 
compared to traditional anti-cancer therapies (64). In addition, 
COX-2 inhibitors can also increase tumor sensitivity to radiation and 
chemotherapy. Due to the simultaneous inhibition of COX-1 and 
COX-2, non-selective NSAIDs not only fail to achieve the anti-
inflammatory and analgesic purpose, but also cause serious adverse 
effects, such as gastrointestinal tract damage and platelet dysfunction. 
On the other hand, selective NSAIDs only inhibit COX-2 and does not 
affect the protective effects of COX-1-catalyzed prostaglandins on the 
gastrointestinal tract and platelets, thus greatly reducing the risk of 
gastrointestinal side effects (65). However, NSAIDs that selectively 

target COX-2, including celecoxib and rofecoxib, cause minimal 
damage to the GI, and have been widely tested in clinical trials (66). 
For instance, rofecoxib has been shown to reduce neo-angiogenesis in 
colorectal cancer patients with liver metastasis (67). In a phase II 
clinical trial evaluating the efficacy and safety of celecoxib in advanced 
cancer patients with cachexia, the body weight and tumor necrosis 
factor (TNF-α) levels improved following celecoxib treatment. These 
findings suggest that celecoxib could be an effective monotherapy for 
cancer-related cachexia (68).

2.3.2. Targeting tumor necrosis factor alpha
Tumor necrosis factor alpha (TNF-α) is a cytokine that plays a 

critical role in regulating inflammation, immunity, cellular 
homeostasis, and tumor progression (69). Recent studies show that 
TNF-α is one of the key mediators of cancer-related inflammation and 
acts as a tumor-promoting factor (70). It exerts its effects through TNF 
receptor 2 (TNFR-2) and TNF receptor 1 (TNFR-1). While TNFR-2 
has higher affinity, it is mainly expressed on immune cells. On the 
other hand, TNFR-1 is expressed ubiquitously and initiates most of 
the biological activities of TNF-α (71). In addition, TNFR-1 is a dual-
action receptor that relays both apoptotic and survival signals, and 
TNFR-1 activation also contributes to pro-inflammatory responses 
(72). Overexpression of TNF-α in HNSCC is associated with higher 
proliferative potency (73), and inhibiting TNF-α in oral cancer 
suppressed tumor growth. Furthermore, TNF-α is a mediator of pain 
perception and inflammation in oral cancer, and TNF-α blockade can 
potentially alleviate oral cancer-related pain (74, 75). TNF-α promotes 
HNSCC progression by upregulating MMP-9, which in turn enhances 
tumor migration and invasion by facilitating TGF-β1-induced EMT 
(76, 77). Moreover, TNF-α also increases the metastatic potential of 
HNSCC cells by upregulating CCR6 and CXCR-4 (78, 79).

Tumor necrosis factor alpha inhibitors, such as infliximab and 
etanercept, have been widely evaluated in clinical trials for various 
cancers and have shown promising results. In a phase II trial, 
infliximab showed therapeutic effects in renal cell carcinoma (RCC) 
patients. Infliximab may inhibit tumor cell proliferation by 
neutralizing TNF-α or inducing TNF-α-dependent apoptosis by 
depriving cells of the cytokine. Lower circulating levels of TNF-α can 
stabilize tumor growth (80). In another clinical study evaluating 
tolerance and biological effects in advanced cancer patients, infliximab 
was found to be safe and well-tolerated without dose-limiting toxic 
reactions. Etanercept has also demonstrated therapeutic efficacy and 
safety in phase II studies on recurrent ovarian cancer and metastatic 
breast cancer (81).

2.4. Targeting the tumor immune system

Immune cells are an important component of the TME, and exert 
both anti-tumorigenic and pro-tumorigenic effects. The MDSCs and 
TAMs are immunosuppressive cells that promote tumor growth and 
aid in immune evasion. The role of these cell types in HNSCC and 
their therapeutic potential have been discussed in greater detail below.

2.4.1. Targeting tumor-associated macrophages
Most TAMs originate from the bone marrow and infiltrate into 

the tumor via peripheral blood (82). Macrophages can be classified 
into the classically activated M1 macrophages and alternatively 
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activated M2 macrophages. M1 macrophages exhibit enhanced 
antigen presentation and lysosomal activity, and promote Th1 
responses. They also secrete chemokines (e.g., TNF-α, iNOS) involved 
in immune activation and phagocytosis to counteract tumor growth. 
TAMs predominantly display the M2 phenotype, and produce 
pro-oncogenic factors (IL-10, IL-4, TGF-β, VEGF, and MMP) that 
drive tumor growth, metastasis, angiogenesis, and immune evasion 
(83, 84).

Haque et  al. (85) found that CD206+ TAMs promote 
proliferation of oral tumor cells through EGF signaling. In addition, 
TAMs also play a role in regulating the adhesion, migration, and 
invasion of HNSCC cells, promote metastasis by supporting the 
generation of blood vessels and lymphatic vessels, and contribute to 
tumor progression via immunosuppression (86). In laryngeal 
squamous cell carcinoma, M2 macrophages activate JAK/STAT 
signaling to produce IL-10, which upregulates the immune 
checkpoint PD-L1. TAMs can directly inhibit T cell activation and 
proliferation, and induce T cell apoptosis via PD-L1. Immune 
checkpoint blockade through PD-1/PD-L1 inhibitors has been 
highly effective in various cancers (87).

Head and neck squamous cell carcinoma cells and TAMs have a 
mutually synergistic relationship. While the tumor cells release CCL2 
to recruit monocytes and induce their differentiation and polarization 
to M2 macrophages, the latter release epidermal growth factor (EGF) 
that upregulates CCL2 expression in tumor cells (88). Numerous 
TAM-targeting drugs have been developed that are currently in the 
clinical phase of testing. CCL2/CCR2 inhibitors, such as carlumab 
(CNTO 888) (89) and PF-04136309 (90), modulate macrophage 
recruitment and differentiation, and have been tested in clinical trials. 
CSF-1 receptor (CSF-1R), a transmembrane tyrosine kinase receptor, 
plays a crucial role in regulating TAM development, morphology, 
survival, and function after binding with CSF-1 (91). Several CSF-1 
and CSF-1R inhibitors, such as emactuzumab (RG-7155) (92), 
AMG-820 (93), and pexidartinib (PLX3397) (94), are currently 
undergoing clinical trials. In addition, reprogramming TAMs from 
the pro-tumor M2 phenotype to the anti-tumor M1 phenotype is a 
promising therapeutic strategy. RRx-001 is an SIRP-a and CD47 
inhibitor that can repolarize TAMs to the M1 phenotype, and clinical 
trials conducted so far on cancer patients have been encouraging (95). 
Inhibitors of the CCL2/CCR2 axis and CSF-1/CSF-1R signaling also 
modulate macrophage recruitment and differentiation, and have 
shown promising results in preclinical and clinical studies. Therefore, 
elucidating the complex interactions between TAMs and the TME will 
help in the development of effective therapies for HNSCC and other 
cancers (Table 1).

2.4.2. Targeting myeloid-derived suppressor cells
Myeloid-derived suppressor cells constitute a heterogeneous 

population of cells that morphologically resemble immature 
granulocytes, monocytes, and dendritic cells (DCs) (96). The MDSCs 
are normally scarce but their numbers increase significantly during 
early or advanced stages of cancer (97). MDSCs are primarily recruited 
to the TME through the CXCR2 ligand, which is overexpressed in 
various cancers (98). They inhibit T cell-mediated immunity through 
multiple mechanisms. For instance, MDSCs interfere with the supply 
of amino acids (such as L-arginine and L-citrulline), which is 
necessary for T cell proliferation and activation. In addition, the 
MDSCs produce high levels of reactive oxygen species (ROS), which 
interact with nitric oxide (NO) to generate peroxynitrite (ONOO−) 
radicals that inhibit T cell activation and proliferation (99). Moreover, 
MDSCs promote tumor angiogenesis by expressing VEGF, and the 
latter recruits MDSCs through the VEGF receptor (VEGFR) expressed 
on the cells’ surface (100).

The accumulation of MDSCs in the tumor tissues is closely 
associated with clinical outcomes and generally indicates poor 
prognosis. MDSCs are abundant in HNSCC tissues (101), and 
promote tumor progression in HNSCC through various mechanisms, 
including proliferation, apoptosis resistance, migration, invasion, 
EMT, and vasculogenic mimicry formation (VM). Tumor cells also 
induce immunosuppression by upregulating arginase 1 (ARG1) and 
inducible nitric oxide synthase (iNOS) in the MDSCs (102). Detection 
of circulating MDSCs in patients with thyroid nodules using flow 
cytometry is a novel approach for the evaluating cancer risk and 
severity, and may even serve as a useful tool for predicting the tumor 
stage and recurrence risk of HNSCC (103). Fugle et  al. (104) 
demonstrated that functional inhibition of MDSCs in mice delayed 
the onset of oral cancer. Signal transducer and activator of 
transcription 1 (STAT1) is a transcription factor involved in a wide 
variety of immunological responses (104). Ryan et al. (105) showed 
that inhibiting accumulation of MDSCs in HNSCC through STAT1 
promotion facilitated T cell-mediated anti-tumor immune response.

Current treatment strategies targeting MDSCs mainly focus on (1) 
depletion of MDSCs, (2) inducing differentiation and maturation of 
MDSCs, and (3) inhibition of the immunosuppressive functions of 
MDSCs. For instance, most colorectal cancer patients showed a 
decrease in MDSC numbers after first-line combination therapy with 
5-fluorouracil, oxaliplatin, and bevacizumab (FOLFOX-bevacizumab), 
which was associated with improved survival outcomes (106). 
Furthermore, all-trans retinoic acid (ATRA) can induceefore decrease 
their numbers in circulation. The combination of ipilimumab and 
ATRA significantly reduced the number of circulating MDSCs in 

TABLE 1 TAMs targeting therapies.

Target site Substance Cancer type Mechanism of action Phase

CCL2/CCR2 axis Carlumab (CNTO 888) Prostate cancer Suppress the expression of CCL2 II

CCL2/CCR2 axis PF-04136309 Pancreatic cancer Blockade of CCR2 Ib

CSF-1/CSF-1R Emactuzumab Solid tumors Blockade of CSF-1R I

CSF-1/CSF-1R AMG-820 Solid tumors Blockade of CSF-1R I

CSF-1/CSF-1R Pexidartinib Tenosynovial giant cell tumor Blockade of CSF-1R III

CD47 and SIRP-a Bromonitrozidine (RRx-001) Colorectal cancer Macrophage repolarizing II

NA Zoledronic acid Breast cancer Depletion of M2-like TAMs III
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melanoma patients compared to ipilimumab monotherapy (107). Nrf2 
plays a crucial role in regulating the expression of antioxidant enzymes 
and protects cells against free radical damage. The synthetic 
triterpenoid compound CCDO-Me reduced the production of ROS 
by MDSCs through Nrf2 upregulation, and reversed their 
immunosuppressive effects (108, 109). Several drugs that target the 
above aspects of MDSCs are currently in clinical trials. Furthermore, 
phosphodiesterase-5 (PDE5) inhibitors such as sildenafil, tadalafil, 
and vardenafil can reduce the levels of ARG1 and iNOS, thereby 
reversing MDSC-mediated immune suppression, reducing 
inflammation in the TME, and reactivating anti-tumor T cells and NK 
cells (110–112). In one clinical trial, tadalafil significantly reduced the 
number of intra-tumoral and circulating MDSCs and Tregs in 
HNSCC patients, and was well-tolerated. Chemotherapeutic agents 
can also effectively deplete MDSCs.

2.5. Targeting tumor angiogenesis

The rapid proliferation of tumor cells is accompanied by 
generation of new blood vessels that supply adequate nutrients, 
oxygen, and growth factors for sustaining tumor growth and 
facilitating dissemination of tumor cells (113, 114). Neo-angiogenesis 
involves tumor endothelial cells (TECs) and surrounding perivascular 
cells. TECs exhibit genetic abnormalities and are resistant to anti-
angiogenic drugs (115). Naito et al. (116) showed that the recalcitrance 
of TECs to antiangiogenic drugs may contribute to tumor resistance. 
In addition, endothelial cells play a significant role in tumor 
progression and metastasis. The hypoxic conditions in the tumor 
tissue induce the production of VEGF, which initiates tumor 
angiogenesis and confers resistance to hypoxia. VEGF exerts its effect 
upon binding to its receptors (VEGFR-1, VEGFR-2, and VEGFR-3). 
VEGFR-1 and VEGFR-2 are expressed in the blood vessels, while 
VEGFR-3 is expressed in the lymphatic endothelium (117). 
Elevated VEGF expression in HNSCC has diagnostic and prognostic 
value. VEGF activates the VEGF receptors on the surface of the 
neighboring endothelial cells through paracrine signaling, which 

stimulates their migration and proliferation, and induces angiogenesis 
(118). During neovascular expansion, endothelial cells expressing 
high levels of VEGFR become tip cells and promote angiogenesis by 
interacting with delta-like ligand 4 (DLL4) and angiopoietin 2 
(ANGPT2) (119). Sun et al. (120) demonstrated that inhibition of 
VEGF/VEGFR2 signaling with the flavonoid B2PB2 suppressed 
angiogenesis and growth in the OSCC cell line SCC-25. It also 
decreased the viability, invasion, migration, and EMT of the tumor 
cells, and promoted apoptosis (120). Under normal circumstances, 
endothelial cells remain quiescent and proliferate once every 150 days. 
However, increased expression of VEGF in response to various 
pathological stimuli can induce endothelial cell-mediated 
angiogenesis. Chen et al. and Wu et al. have shown that inhibiting 
VEGF expression can suppress migration and angiogenesis in NPC 
cells (121, 122). Anti-angiogenic drugs targeting VEGF/VEGFR, 
including bevacizumab (123), apatinib (124), vandetanib (125), AMG 
706 (126), pazopanib (127), axitinib (128), famitinib (129), lenvatinib 
(130), cabozantinib (131), and regorafenib (132). Most of these drugs 
have shown therapeutic effects against various cancers, and could 
be considered for HNSCC treatment. There are others that need to 
be further explored because of toxicity or efficacy (Table 2).

2.6. Targeting other factors in the TME

In addition to the above TME components, there are many other 
TME components (e.g., cancer stem cells, microorganism, and 
mechanical microenvironment) that have received less attention but 
may also be therapeutic targets for tumors. Cancer Stem Cells (CSCs) 
constitute a small portion of malignant cells and serve as tumor-
initiation cells, propelling tumor development (133). CSCs possess a 
range of functions, including plasticity, quiescence, and self-renewal, 
enabling them to regulate tumor growth, metastasis, survival, 
recurrence, and resistance to cancer treatment through specific 
signaling pathways (134, 135). Specific molecules have been identified 
as markers for CSCs in HNSCC, such as Aldehyde Dehydrogenase 
(ALDH) and CD44. ALDH+ CD44+ cancer cells are considered CSCs 

TABLE 2 Antiangiogenic agents targeting vascular endothelial growth factor signaling in clinical trials.

Regimen Phase Sample Cancer typle Outcome

Bevacizumab, carboplatin and 

paclitaxel

IV 398 Ovarian cancer Median PFS: 20.8 months median OS: 41.1 months

Apatinib vs. Placebo III 92 Thyroid cancer Median PFS: 22.2 months ORR: 54.3% DCR: 58.7%

Vandetanib and everolimus I 80 Solid tumors Median PFS: 4.1 months median OS: 10.5 months

Motesanib，paclitaxel, and 

carboplatin

III 401 Nonsquamous non-small-cell lung 

cancer

Median PFS: 5.6 months ORR: 60.1%

Pazopanib II 168 Thyroid carcinoma Best response rate: 35.6% DCR: 89.4%

Axitinib and pembrolizumab Ib 52 Renal-cell carcinoma Median PFS: 23.5 months ORR: 73.1%

Famitinib and camrelizumab II 33 Cervical squamous cell carcinoma Median PFS: 10.3 months 12-month duration of 

response rate: 74.1%

Lenvatinib II 52 Thyroid cancer 1 year overall survival rate: 11.9% ORR: 11.9% DCR: 

73.8%

Cabozantinib III 258 Thyroid cancer Median PFS: 11.0 months

Regorafenib II 39 Biliary tract cancer ORR: 9.1% DCR: 63.6%

PFS, progression-free survival; OS, overall survival; ORR, objective response rate; DCR, disease control rate.
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in HNSCC and exhibit increased tumorigenicity through the aberrant 
activation of the PI3K/mTOR signaling pathway and upregulation of 
SOX2 expression (136). The tumor microenvironment (TME) harbors 
microorganisms, and the microbial communities that influence tumor 
progression and are associated with tumors are referred to as the 
tumor microbiota (137). Tumors can create more suitable conditions 
for microbial survival and remodeling of microbial profiles, while 
microbes can also contribute to tumorigenesis and progression by 
establishing an inflammatory milieu and influencing host immunity, 
and unlike normal tissues where the balance of the microbiota 
contributes to the defense against tissue pathology, the microbiota in 
the TME affects tumor progression and therapy (138). The mechanical 
microenvironment is also part of the TME.

3. Conclusion

In this review, we  have summarized the role of hypoxia, 
inflammatory response, immune cells, and angiogenesis in the 
progression of HNSCC, and discussed novel therapeutic strategies 
targeting these components. In recent decades, the focus of 
cancer treatment has steadily shifted to the TME, and numerous 
clinical trials are currently underway to validate the efficacy and 
safety of anti-cancer agents targeting the cells and factors that 
comprise the TME. Several of these targeted therapies have 
demonstrated promising clinical outcomes. However, disrupting 
the interactions between tumor cells and the TME often yield 
suboptimal results. It has been realized that TME is a complex 
ecosystem, full of heterogeneity, that can affect almost every 
aspect of cancer biology. At the same time, the advantages of 
targeted drugs over conventional drugs have been deeply 
understood, and the efficacy of many drugs targeting the TME in 
tumors has brought home the potential of the TME for tumor 
therapy. Therefore, there is an urgent need to elucidate the 
relationship between HNSCC and TME in more detail, with a 
focus on targeting the key components that promote tumor 
growth within the TME, to find more targets for treating tumors, 
to improve and refine the drugs in current clinical trials, and to 
develop more effective antitumor strategies.
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